Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Зоологии


Новости Зоологии (727)

Новый вид змеи живет на мексиканском острове Кларион так и остался бы неизвестен науке, если бы не усилия команды ученых. Подробности этого открытия опубликованы в майском журнале PLoS ONE.

Это Clarion Nightsnake (Hypsiglena unaocularus), обнаружен на черной лаве, в местах обитания на острове Кларион, темного цвета,  имеет характерный рисунок пятен на голове и шее.Это Clarion Nightsnake (Hypsiglena unaocularus), обнаружен на черной лаве, в местах обитания на острове Кларион, темного цвета, имеет характерный рисунок пятен на голове и шее.Исследователь Даниэль Малкахи был вдохновлен поисками nightsnake на острове Кларион после изучения одиночного образца в Американском музее коллекций естественной истории. Ученые верили, что эта змея представляет новый вид, и что все еще может жить на Кларионе сегодня. Малкахи также вступил в дискуссию по поводу включения этой змеи в научные записи, и обнаружил, что это - единственный вид когда-либо отвергнутый из-за предполагаемой ошибки местности.

Анализ древней ДНК из музея был неубедительным, и это побудило Малкахи сотрудничать с Хуаном Мартинесом-Гомесом, экспертом по Ревильяхихедским островам,опираясь на записи натуралиста Уильяма Биба в поисках потерянного nightsnake.

"Повторное открытие nightsnake Clarion - это невероятная история о том, как ученые полагаются на исторические данные и музейные коллекции, чтобы решить современные тайны о биоразнообразии в мире в котором мы живем", - сказал Малкахи. "Правильное определение является первым шагом на пути к сохранению этих змей, и мы планируем продолжать мониторинг этого вида, чтобы узнать больше о роли, которую они играют в деликатной островной экосистеме».

Натуралист Уильям Биб впервые обнаружил nightsnake Clarion в 1936 году во время экспедиции в Западную Мексику, где он писал о её необычной окраске и нашел только один экземпляр. В течение следующих нескольких десятилетий, ученые не смогли обнаружить никаких следов nightsnake Clarion в своих полевых исследованиях, что привело к отрицанию обоснованности выводов Биба. В мае 2013 года, Малкахи и команда Мартинеса-Гомеса из Института Экологии в Ксалапа продолжила поиски змеи. После интенсивного поиска, команда нашла 11 змей, соответствующих описаниею Биба, и провела ряд тестов ДНК в лабораториях Смитсоновского института аналитической биологии, чтобы подтвердить, что nightsnake Clarion существует, и в настоящее время признается в качестве полноправного вида (Hypsiglena unaocularus), генетически различен от других змей, которые обитают на материковой части Мексики.

Clarion nightsnake живет в водах вулканического залива и вырастает до 18 см в длину. Змеи буровато-черного цвета имеют характерный ряд темных пятен на голове и шее. Хотя они были некогда официально объявлены вымершими, этот вид до сих пор отсутствует в научной литературе в связи с двумя основными факторами: место обитания nightsnake по Clarion крайне невелико и доступно только с военным эскортом, значительно ограничивая число биологов, которые могут получить доступ к этой области, и к змеям ,ведущим ночной образ жизни, темная окраска, которых делает их труднообнаружимыми .


Источник: НАУЧНАЯ РОССИЯ


Биологи установили, что малоизученный хищный клещ из Северной Америки является мировым рекордсменом по бегу. За секунду клещ может преодолеть дистанцию, эквивалентную 322 длинам его тела.

Клещ Paratarsotomus macropalpisКлещ Paratarsotomus macropalpisОб этом на конференции по экспериментальной биологии в Сан-Диего рассказали американские ученые из Колледжа Питцера.

Клещ Paratarsotomus macropalpis, обитающий в Южной Калифорнии, относится к семейству хищных клещей Anystidae. Он был открыт еще в 1916 году, но до сих пор специалисты практически ничего не знают о его биологии. Ученые из Колледжа Питцера обратили внимание на этот вид, занимаясь исследованием особенностей мускулатуры членистоногих.

Когда биологи записали на видеокамеру перемещения клеща в естественных условиях, они поняли, что ненароком открыли мирового рекордсмена по бегу. Ранее самым быстрым существом на Земле считался австралийский жук-скакун, который за секунду покрывает расстояние, равное 171 длине своего тела (для сравнения, гепард за секунду пробегает всего 16 длин своего тела).

Клещ-бегун по размерам сопоставим с семечком кунжута, но за секунду он перемещается на расстояние, превышающее длину его тела в 322 раза. Если бы человек бежал с подобной скоростью, то он преодолевал бы за час около 2100 километров. «Ловить этих клещей достаточно сложно, но еще сложнее снимать их бег, поскольку они всё время убегают за пределы поля зрения видеокамеры», -- пояснил Сэмуэль Рубин, соавтор статьи.

Примечательно, что клещи Paratarsotomus macropalpis, которые нередко попадаются по обочинам дорог, без проблем передвигаются по бетонной поверхности, разогретой лучами Солнца до 60 градусов Цельсия. Как надеются ученые, дальнейшее изучение этого клеща покажет, как миниатюризация сказывается на работе мускулатуры. Возможно, это поможет при создании роботов-малюток.


Источник: infox.ru


В 2010 году в пещерах Бразилии были открыты насекомые рода Neotrogla, относящиеся к одному из семейств сеноедов. Появление нового вида или рода насекомых не такое уж большое событие в биологии, однако Neotrogla привлекли к себе внимание необычным строением половых органов: у их самок есть пенис, называемый в этом случае гиносомой, а у самцов — специальная выемка для него.

Пенис самки Neotrogla aurora (здесь и ниже иллюстрации авторов работы).Пенис самки Neotrogla aurora (здесь и ниже иллюстрации авторов работы).Довольно скоро учёные заметили, что во время спаривания самец и самка как будто меняются местами: самка забирается на самца, а не наоборот. 

В статье, вышедшей в журнале Current Biology, первооткрыватель этих насекомых Родриго Феррейра (Rodrigo Ferreira) из Федерального университета в Лаврасе (Бразилия) вместе с коллегами из Японии и Европы описывает в деталях особенности брачного поведения и брачной физиологии Neotrogla. Взгромоздившись на самца, сеноедка вводит свой половой орган в генитальное отверстие мужской особи. Это отверстие ведёт в специальную камеру, которую можно сравнить с влагалищем. У трёх из четырёх видов Neotrogla «пенис» самок снабжён выростами, и когда после введения в самца он набухает (эрегирует), его выросты попадают в специальные карманы на стенках самцового «влагалища». Теперь его уже так просто не вытащишь, и самка прочно закрепляется на спине кавалера. (У четвёртого вида Neotrogla гиносома имеет что-то вроде щетинок, что опять же помогает удержать «пенис» во «влагалище».) 

Пещерные Neotrogla во время спаривания: «девочки сверху».Пещерные Neotrogla во время спаривания: «девочки сверху».Самки закрепляются на самцах настолько прочно, что попытка оторвать их друг от друга приводит к тому, что самец просто разрывается надвое. Стоит также заметить, что «пенис» у самок весьма велик: при общем размере этих насекомых от 4,7 до 3,7 мм гиносома составляет 0,4–0,5 мм — как если бы мужчина ростом 1,75 м имел половой орган длиной 24,9 см. Само же спаривание у Neotrogla может длиться 40–70 часов без перерыва.

Но зачем, спрашивается, их самкам понадобился столь внушительный (псевдо-)мужской орган? И зачем вообще Neotrogla столь странные игры в «женское доминирование»? 

В главном самец Neotrogla остаётся самцом: он производит мужские половые клетки, которые потом поступают в половые пути самки. «Пенис» же самки служит вакуумным насосом, с помощью которого она засасывает в себя сперму. Однако дело тут не только в оплодотворении. Известно, что у некоторых насекомых самцы приходят к самкам с брачным подарком в виде питательной семенной капсулы, которой они угощают своих избранниц. Смысл угощения в том, чтобы обеспечить самку ресурсами, необходимыми для производства яиц. Что же до Neotrogla, то у них самки седлают самцов и высасывают их семенные выделения, даже будучи в юном возрасте, то есть до половой зрелости. Иначе говоря, интерес самок к семени самцов имеет не только репродуктивный характер. 

Зоологи видят причину такого поведения в том, что в пещерах, где живут Neotrogla, еды не слишком много, а потому сперма самцов оказывается важной дополнительной подкормкой. Возможно, когда-то самцы сами давали свои подарки самкам, но потом последние решили взять всё в свои руки. Однако ведь и самцам приходится тратить ресурсы, чтобы наработать семя, и не факт, что они готовы делиться им с первой попавшейся самкой. Самцы должны быть в этом случае весьма и весьма разборчивы. И вот, чтобы как-то преодолеть эту разборчивость самцов, у самок развился аналог пениса, с помощью которого они могут удержаться на самце и забирать его питательное семя, что бы тот ни думал по этому поводу. 

Вообще, примеры «удерживающих пенисов» в природе нередки; не только среди насекомых есть виды, самцы которых «крепят к себе» самку с помощью сложно устроенного полового органа, но и, скажем, среди рыб. Однако никто не ожидал, что эту чисто самцовую уловку возьмут на вооружение самки. Тут можно сказать что-то вроде «Посмотрите, до чего голод может довести слабый пол».

Впрочем, учёным ещё предстоит выяснить, как именно самки «додумались» до такого и почему самцы пошли у них на поводу. Речь в данном случае идёт об эволюции молекулярно-клеточных механизмов, которая привела к столь диковинному результату. 


Источник: КОМПЬЮЛЕНТА


Рыбы астианаксы часто привлекают внимание исследователей: они живут в пещерных водоёмах, а потому стали слепыми, однако особенность их в том, что мальки астианаксов вполне зрячие. Есть и другие разновидности этих рыб, которые живут в открытых водоёмах и у которых вполне нормальное зрение. Так что они оказываются хорошим объектом для изучения эволюции и её механизмов, в том числе на самом тонком, молекулярно-клеточном уровне, и исследователи с помощью астианаксов получают порой весьма любопытные результаты: вспомним хотя бы работу о влиянии шаперонов на эволюцию.

Незрячие астианаксы и без глаз могут определить, где что находится. (Фото Visuals Unlimited / Corbis.) Незрячие астианаксы и без глаз могут определить, где что находится. (Фото Visuals Unlimited / Corbis.) Однако сейчас мы хотим рассказать об исследовании, касающемся непосредственно астианаксов. Несмотря на то что эти рыбы слепы, они никогда не натыкаются на камни и прочие предметы, которые им могут встретиться в воде. В этом вообще-то нет ничего удивительного: все животные, утратившие зрение или не могущие видеть из-за особенностей среды обитания, со временем учатся компенсировать свой недостаток за счёт других сенсорных систем. И об астианаксах долго думали, что они чувствуют предметы под водой с помощью боковой линии, рецепторы которой отслеживают изменения в давлении воды при приближении к чему-то твёрдому.

Однако специалисты из Тель-Авивского университета (Израиль) обратили внимание на одну особенность в поведении астианаксов: рыбы часто засасывали в рот воду, выпуская её через жабры. Когда Рои Хольцман (Roi Holzman) и его коллеги попытались выяснить, от чего зависит такое поведение, оказалось, что после перестановки предметов в аквариуме астианаксы начинали «просасывать» воду в четыре раза чаще и плавать намного быстрее. 

Причём чем ближе рыба была к какому-нибудь большому объекту, тем активнее она пропускала воду через жабры: в 7 см астианакс качал воду в два раза чаще, чем обычно, а на расстоянии 2 см и ближе — уже в шесть раз чаще. 

В Journal of Experimental Biology зоологи приходят к выводу, что астианаксы прощупывают окружающее пространство, специально создавая волны в воде. Всасывая воду ртом и выпуская её через жабры, рыба формирует нечто вроде сонарного сигнала, который, отразившись от предмета в воде, сообщает рецепторам боковой линии информацию о том, что находится вокруг. 

Вообще говоря, все рыбы чувствуют движения волн с помощью боковой линии, и все рыбы могут пропускать воду через рот и жабры. Однако учёные до сих пор ни разу не наблюдали, чтобы рыбы могли вот так специально создавать волны. По словам исследователей, получаемый астианаксами сигнал оказывается в 60 раз сильнее, чем если бы они ловили отражения обычных волн, порождённых движениями тел.

 


Источник: КОМПЬЮЛЕНТА


Прямо сейчас, когда вы читаете эанную статью, в застенках Центра молекулярной терапии Северо-Западного университета (США) учёные щекочут крыс. Зачем? Чтобы создать таблетку счастья. В то же время, возможно, удастся доказать, что не только люди обладают чувством юмора. 

Изображение Fuse / iStockphoto, chrisbrignell / Natalie Matthews-Ramo. Изображение Fuse / iStockphoto, chrisbrignell / Natalie Matthews-Ramo. По современным научным представлениям, смех развился из пыхтения, которое наблюдается у играющих человекообразных обезьян. Оно сигнализирует о том, что участники игры получают удовольствие, что все угрозы шутейные и что никто не собирается всерьёз оторвать партнёру голову.

Психолог Марина Давила-Росс из Портсмутского университета (Великобритания) в своё время проанализировала звуки, издаваемые при щекотке шимпанзе, бонобо, гориллами и орангутангами, а также человеческий смех и пришла к выводу, что гипотеза верна. Шимпанзе и бонобо ближе к нам по эволюционной родословной, и их пыхтение больше напоминает смех, тогда как орангутанги, которые от нас далеки, пыхтят наиболее примитивным образом. Гориллы, как и положено, где-то посередине. 

Приматы не только смеются, но и по-своему балагурят. Горилла по имени Коко из Вудсайда (штат Калифорния), выучившая более двух тысяч слов и тысячу движений языка жестов, играет значениями. Например, когда её спрашивают, что бывает тяжёлым, она показывает знаки «камень» и «работа». Однажды она связала вместе шнурки на ботинках её дрессировщика и выдала жест «погоня». 

Как насчёт других представителей животного царства — есть в них комедийная жилка? Марк Бекофф из Колорадского университета (США), специалист по экологии и эволюционной биологии и автор книги «Эмоциональная жизнь животных», отвечает на этот вопрос утвердительно. Он не исключает того, что чувством юмора обладают все млекопитающие без исключения и наука вскоре это докажет. 

Если эта мысль кажется вам притянутой за уши, то, скорее всего, вы не в курсе новейших открытий в области поведения животных. Г-н Бекофф и другие специалисты показали, например, что собаки чувствуют несправедливость, пауки обладают разным темпераментом, а пчёл можно научить пессимизму. Г-н Бекофф напоминает мнение Дарвина о том, что разница между интеллектом человека и животного — в степени, а не в сути. И если у нас есть чувство юмора, то и животные должны им обладать. 

Аналогичное соображение побудило в 1997 году психолога Яака Панксеппа войти в лабораторию Университета штата Огайо в Боулинг-Грине и сказать студенту Джеффри Бёргдорфу: «Давайте щекотать крыс». К тому времени они уже выяснили, что крысы издают ультразвуковой писк на частоте 50 кГц, когда понарошку дерутся и бегают друг за другом. И учёным стало интересно, не зарегистрируют ли их приборы тот же звук во время щекотки. Грызунам почесали животики — и раздались те же самые 50 кГц. Крысам понравилось, они не отпускали пальцы исследователей и требовали продолжения. Вскоре СМИ раструбили, что крысы умеют смеяться, и по всему миру стали открываться клетки ради щекоточных войн. 

Однако г-н Бёргдорф, работающий ныне в Северо-Западном университете, осторожен в формулировках: «Я бы не спешил называть это смехом. Предпочитаю говорить о сигнале положительного аффекта». И его можно понять: среди специалистов идёт дискуссия, что же в действительности было обнаружено. 

Щекотка далеко не всегда приятна. Однако крысы почему-то издают только положительный писк — тот самый, который слышится лишь во время весёлой возни с особями аналогичного размера. Если в шутейной драке принимает участие крыса, которая намного больше других участников, вокализация приобретает иной характер, как будто игра закончилась и началась травля. Когда крысам дают выбор, они предпочитают проигрывать звук на частоте 50 кГц, из чего следует вывод, что он им приятнее других видов писка. 

Наконец, когда учёные с помощью электродов, опиатов и прочих средств воздействовали на центры удовольствия в мозге, крысы издавали опять же этот счастливый звук. 

Смех это или нет, очевидно, что данная вокализация свидетельствует о радостном переживании. Выше говорилось о «таблетке счастья»: г-н Бёргдорф и его коллеги тестируют на крысах новый антидепрессант, желая понять, вызовет ли он писк от счастья. Вы не против, если крысы сделают этот мир лучше?


Источник: КОМПЬЮЛЕНТА


Насекомые отличаются исключительно чувствительным обонянием, благодаря которому они не только могут по нескольким запаховым молекулам узнать, где их ждёт угощение, но и общаться друг с другом с помощью изощрённых химических сигналов. И, учитывая роль запахов в их жизни, можно было бы предположить, что насекомые приобрели обонятельную систему, как только вышли из воды на сушу.

У L. y-signata нет никаких обонятельных белков. Вообще. (Фото naturgucker.de.) У L. y-signata нет никаких обонятельных белков. Вообще. (Фото naturgucker.de.) Однако, как утверждают исследователи из Института химической экологии Общества Макса Планка (Германия), полноценное обоняние у насекомых появилось неожиданно поздно — где-то одновременно со способностью к полётам.

За обоняние у насекомых (как, впрочем, у всех животных с этим чувством) отвечают специальные рецепторные белки: складываясь вместе, они образуют сложные комплексы, способные улавливать даже единичные молекулы летучих веществ. Однако, например, у ракообразных, которые произошли от общего с насекомыми предка, таких рецепторов нет. Это и заставило предположить, что насекомые «почуяли, чем пахнет», только выйдя на сушу. Кроме того, вне воды им действительно было важнее создать обонятельную систему взамен химического чувства, с помощью которого они ориентировались в воде и которое теперь стало бесполезным: отныне химические вещества надо было ловить в воздухе. 

...А у T. domestica есть, но не все. (Фото Sarah Gregg | Italy.) ...А у T. domestica есть, но не все. (Фото Sarah Gregg | Italy.) Обоняние у насекомых исследовали всегда либо на крылатых видах, либо на тех, кто утратил крылья впоследствии (те и другие, впрочем, составляют среди современных насекомых большинство). Однако Эвальд Гроссе-Вильде (Ewald Grosse-Wilde) и его коллеги решили заняться первичнобескрылыми, древнейшими из современных насекомых. Для исследований они выбрали щетинохвостку Thermobia domestica и представителя древнечелюстных Lepismachilis y-signata.

 Как пишут авторы работы в eLIFE, у щетинохвостки, которая на эволюционной лестнице стоит ближе к насекомым, какие-то компоненты обонятельной системы были: в её антеннах работали гены обонятельных корецепторов, хотя сами рецепторы отсутствовали. Но вот у более эволюционно старой L. y-signata никаких следов обонятельной системы обнаружить не удалось. 

Из этого можно сделать два вывода: во-первых, разные части обонятельной системы развивались независимо друг от друга, а во-вторых, само развитие этой системы началось сильно позже появления насекомых на суше.

Скорее всего, обоняние понадобилось насекомым, когда они начали учиться летать, а нужно оно было, например, для того чтобы ориентироваться в полёте. Однако не будем забывать, что у одного из древнейших насекомых (T. domestica) некие компоненты обонятельного аппарата всё же есть, так что отдельные части обонятельной системы, очевидно, развивались для каких-то насущных задач раньше умения летать.


Источник: КОМПЬЮЛЕНТА


Известные «рога» самцов жуков-оленей развились из челюстного аппарата насекомых. Строго говоря, это сильно увеличенные мандибулы, или верхние «челюсти» жуков. Однако рогатые самцы используют их не для того, чтобы есть, а для привлечения самок и для сражений с другими соплеменниками. 

Самец жука Cyclommatus metallifer (фото Radio Ga Ga Broadcasts Again).Самец жука Cyclommatus metallifer (фото Radio Ga Ga Broadcasts Again).Но тут возникает вопрос, много ли практической пользы от их рогов в смысле нанесения ран противнику? Для того чтобы поранить противника, жук должен напрячь мышцы головы, и это мышечное движение должно дойти до концов его оружия. Однако с чисто механической точки зрения эффективность мышечного усилия тут невелика: слишком уж длинен рычаг, к которому это усилие прикладывается. 

Однако бои жуков-оленей отличаются большой брутальностью, то есть их оружие всё-таки вполне эффективно. А это значит, что у них есть какие-то анатомические уловки, позволяющие орудовать рогами.

К анатомии самцов жуков-оленей присмотрелись зоологи из Антверпенского университета (Бельгия), сравнивавшие силу челюстей и анатомию головы у самцов и самок Cyclommatus metallifer. В Journal of Experimental Biology исследователи сообщают, что самцы кусали в три раза сильнее самок, и силой укуса они, по-видимому, обязаны особенностям анатомии головы. 

Голова самцов жуков-оленей намного шире, чем у самок, а это, в свою очередь, обеспечивает больший мышечный рычаг для «рогов». Зоологи сравнивают работу гипертрофированных челюстей жуков с щипцами, у которых есть относительно большие мышечные «ручки», спрятанные в голове.

Вообще, по их словам, голова самцов устроена так, чтобы вместить в себя как можно больше мышц; решение, как видим, проще некуда. Но как раз благодаря столь «мускулистой» голове самцы и могут выполнять все те силовые приёмы, которые можно наблюдать на многочисленных видео с дерущимися жуками.


Источник: КОМПЬЮЛЕНТА


Супружеский каннибализм пауков не новость давно, и, как считается, самка съедает своего ухажёра для того, чтобы пополнить запас энергии перед кладкой яиц. Однако зоологи продолжают выяснять новые подробности, касающиеся этого странного обычая. Известно, например, что у пауков не только самки едят самцов, но и самцы лакомятся самками, причём взаимное поедание может случаться даже на полный желудок. В прошлом году мы писали о работе чешских учёных, которые пытались объяснить взаимный каннибализм в рамках полового отбора: дескать, поедая друг друга, пауки отсеивают особей, от которых популяции нет никакой пользы...

Самки A. pennsylvanica повышают свою привлекательность, съедая самцов. (Фото pumilio2.) Самки A. pennsylvanica повышают свою привлекательность, съедая самцов. (Фото pumilio2.) Но и в «классическом» варианте каннибализма, когда самка поедает пришедшего к ней с брачными целями самца, можно обнаружить новые любопытные подробности. В отличие от самок богомолов, закусывающих самцами во время спаривания, у пауков до дела может так и не дойти: паучиха съест самца безо всякого спаривания.

Однако и тут есть свой смысл: как пишут в Ethology исследователи из Питтсбургского университета (США), убийство самца привлекает к самке новых кавалеров. Джонатан Пруитт (Jonathan N. Pruitt) и его коллеги наблюдали за брачным поведением воронкового (травяного) паука Agelenopsis pennsylvanica. Хотя Agelenopsis pennsylvanica живёт только в Северной Америке, его родственников можно встретить по всему миру: эти пауки плетут характерные воронкообразные гнёзда из паутины и стерегут добычу, сидя внутри воронки. Двигаются они чрезвычайно стремительно, хватая всё, что окажется на их паутинном ковре. 

За трёхнедельный брачный период к самке наведываются не более трёх самцов, каждый из которых рискует немедленно быть съеденным. В общем, кандидатов в супруги не так уж много, и возникает вопрос, не обрекают ли самки сами себя на безбрачие, с такими-то агрессивными повадками? Чтобы посмотреть, как у Agelenopsis pennsylvanica происходит ухаживание, зоологи принесли в лабораторию сотню самок, одну половину из них накормив самцами, а другую — сверчками. Затем, через спустя 10-24 дня, учёные предложили двум десяткам самцов такой выбор: пойти попытать счастья с самками, которые закусили самцами, или же направиться к самкам, попробовавшим сверчков.

Оказалось, что три четверти самцов предпочитают общаться с теми самками, которые до этого съели самца. 

По наблюдениям авторов работы, самка, съевшая именно самца, с большей вероятностью отложит яйца после спаривания, и из её яиц с большей вероятностью выведется потомство. Почему так происходит, учёные не знают, предполагая лишь, что самцы служат чем-то вроде биоактивной добавки или порции витаминов, необходимых для размножения. Съев самца, паучиха тем самым сигнализирует другим, что она может оправдать их надежды на продолжение рода. 

Это объясняет, почему самцы идут именно к «каннибалистическим» самкам. Кроме того, паучихи A. pennsylvanica ограничиваются обычно только одним самцом, то есть следующие могут рассчитывать на вполне безопасное свидание. То есть переваренный самец не единственный фактор, определяющий привлекательность самки, поэтому ей нужно быть в этом смысле осторожной, чтобы, съев единственного польстившегося на неё кавалера, она не осталась вовсе без женихов.

 


 

Источник: КОМПЬЮЛЕНТА


 

Мы отличаемся от животных тем, что можем смотреть в будущее и пренебрегать сиюминутной небольшой выгодой, чтобы потом отхватить гораздо больше. Далеко не все люди так поступают, однако все мы можем понять плюсы такой стратегии. Те же, кто не просто понимает, что в некоторых случаях лучше подождать, но ещё и поступает соответствующим образом, могут весьма преуспеть.

Вороны могут сравнить сиюминутную выгоду с отдалёнными перспективами. (Фото jackSTAR.) Вороны могут сравнить сиюминутную выгоду с отдалёнными перспективами. (Фото jackSTAR.) А вот у животных такую способность представить трудно: нам кажется вполне естественным, что зверь или птица предпочтут съесть то, что они могут съесть прямо сейчас, и что будущую выгоду они просто не в состоянии осмыслить.

Однако такое представление о животных оказалось ошибочным. Зоопсихологи из Венского университета (Австрия) убедились, что во́роны и воро́ны могут откладывать небольшую сиюминутную выгоду ради более аппетитного куска в будущем.

Слова «аппетитный кусок» в данном случае не преувеличение — исследователи экспериментировали с разной едой, к которой птицы питали большую или меньшую склонность. В одном случае во́ронам и воро́нам давали кусочек хлеба, который они могли съесть либо сразу, либо через какое-то время (от нескольких секунд до 10 минут) обменять на что-то более вкусное, скажем, мясо. Или же птицам потом предлагали то же самое, но в большем количестве. 

В другом случае птицы наблюдали, как экспериментатор несколько раз через одинаковые интервалы времени увеличивает порцию еды. Во́рон или воро́на могли сразу схватить то, что уже лежит, но тогда человек переставал прибавлять еду. То есть птица могла подождать, когда порция увеличится. 

Любопытно, что во́роны и воро́ны вели себя неодинаково в зависимости от того, зачем им нужно было ждать. Если ожидание вознаграждалось количественным прибавлением угощения, то птицы предпочитали не ждать и сразу съедали то, что у них уже было. То есть если вместо одного куска хлеба их ждали два куска, во́роны и воро́ны первый кусок съедали сразу. Если же ожидание заканчивалось другой, более вкусной едой (колбасой вместо хлеба), то пернатые были готовы ждать даже десять минут, демонстрируя тем самым необычайное терпение. 

Результаты исследования опубликованы в журнале Animal Behavior, однако не стоит думать, что это первая работа на данную тему. Почти год назад мы писали о подобном эксперименте, который поставили с какаду, и попугаи повели себя похожим образом, предпочтя большую отдалённую выгоду небольшой сиюминутной. Такие опыты ставились и с другими птицами, и с разным успехом, однако всякий раз пернатые могли совершать отложенный выбор только в отношении качества или количества — но не того и другого сразу. В будущем зоологи хотят сравнить эту способность птиц с аналогичной способностью приматов и маленьких детей и заодно проверить, будут ли обезьяны и дети ориентироваться лишь на качество или только на количество будущего вознаграждения. 

Умение ждать, конечно, не обязательно может привести к выгоде. Иногда бывает разумнее воспользоваться тем, что есть сейчас. Но, так или иначе, умение видеть будущую выгоду указывает на большую когнитивную развитость, и, очевидно, эта особенность появилась у некоторых птиц вместе со сложной социальной структурой.

Хотя эксперимент ставили с приручёнными птицами, учёные полагают, что вряд ли близость к человеку заставила врановых сделать такой когнитивный скачок и что дикие птицы обладают это способностью в той же степени.


Источник: КОМПЬЮЛЕНТА


Большинство организмов не переносят длительного охлаждения ниже нуля. Так, замерзание воды необратимо повреждает молекулярную кухню клетки и саму клетку, поэтому нужно или греть самого себя, как это делают теплокровные, или просто погибать перед зимой, что свойственно многим растениям и животным.

Феноменальная пиявка Ozobranchus jantseanus (вид снизу) (фото авторов работы).Феноменальная пиявка Ozobranchus jantseanus (вид снизу) (фото авторов работы).Впрочем, есть и третий выход — препятствовать замерзанию с помощью каких-нибудь антифризных веществ. 

Но насколько глубокое охлаждение позволяют выдерживать живые антифризные системы? Обычно в таких исследованиях ограничиваются более или менее разумными температурами, сравнимыми с тем, которые животным приходится выдерживать в естественной среде обитания. И поэтому эксперименты исследователей из Токийского университета морских наук и технологий (Япония) выглядят очень необычно.

Они охлаждали пиявку Ozobranchus jantseanus не до каких-то -10...-20 ˚C, а до температуры жидкого азота. То есть до -196 ˚C. 

Самое удивительное, что после суток в жидком азоте эта пиявка, которая питается кровью пресноводных черепах, выжила! Вот другие её рекорды. O. jantseanus очнулась после 32 месяцев при -90 ˚C. Кроме того, она смогла выдержать несколько циклов замораживания-размораживания, когда температура прыгала от -100 до +20 ˚C и обратно. Это единственный случай, когда организм оказался устойчив к такому огромному диапазону температур. 

Результаты экспериментов опубликованы в веб-журнале PLoS ONE

Тут, конечно, возникают два вопроса: как и зачем? То есть, во-первых, что это за феноменальные механизмы, которые обеспечивают пиявкам такую устойчивость, а во-вторых, зачем вдруг пиявкам понадобилось вырабатывать в себе такие таланты? Ведь в ходе эволюции они вряд ли сталкивались с температурой жидкого азота.

Скорее всего, подобный запас устойчивости есть лишь некий побочный эволюционный бонус, однако ответов на оба вопроса исследователи пока не дают. 

 


 

Источник: КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Тяньюаньский человек оказался родственником современных азиатов и индейцев

24-01-2013 Просмотров:10577 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Тяньюаньский человек оказался родственником современных азиатов и индейцев

Международная группа исследователей секвенировала ядерную и митохондриальную ДНК из ноги раннего современного человека из пещеры Тяньюань, расположенной неподалёку от Пекина (КНР). Нога, которая дала генетический материал (фото MPI for Evolutionary Anthropology)Анализ...

Окаменелые останки жирафов впервые обнаружены в Киргизии

30-07-2015 Просмотров:6784 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Окаменелые останки жирафов впервые обнаружены в Киргизии

Окаменелости экзотических животных, пролежавшие в земле 6 миллионов лет, обнаружены на территории Кочкора в Нарынской области Киргизии, сообщила американская исследовательница Уин Маклафлин. Она отметила, что исследования проводились под руководством директора Института сейсмологии, доктора геолого-минералогических наук...

Палеонтологи узнали, почему у утконосых динозавров не болели зубы

01-09-2016 Просмотров:6110 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи узнали, почему у утконосых динозавров не болели зубы

Ученые разобрались со строением уникальных зубов утконосых динозавров. Оказалось, что у них зарастала зубная пульпа, что избавляло от боли при износе зубов. ГадрозаврК такому выводу пришли канадские специалисты из Университета Торонто,...

3 000 лет назад магнитное поле Земли менялось быстрее

17-12-2010 Просмотров:10254 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

3 000 лет назад магнитное поле Земли менялось быстрее

Древние шлаки свидетельствуют о том, что магнитное поле Земли отличается большей изменчивостью, чем учёные могли себе вообразить. Пустыня Арава и долина Тимна (фото Chadica) Геомагнитное поле возникает в результате движения расплавленного...

Обезьяны помогают друг другу при родах

11-02-2013 Просмотров:11489 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Обезьяны помогают друг другу при родах

Роды у женщин сопровождаются болями и могут длиться час и больше. Поэтому при родах обычно присутствует акушерка, помогающая роженице. У остальных млекопитающих, включая и наших ближайших родичей приматов, процесс происходит...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.