Рыбы астианаксы часто привлекают внимание исследователей: они живут в пещерных водоёмах, а потому стали слепыми, однако особенность их в том, что мальки астианаксов вполне зрячие. Есть и другие разновидности этих рыб, которые живут в открытых водоёмах и у которых вполне нормальное зрение. Так что они оказываются хорошим объектом для изучения эволюции и её механизмов, в том числе на самом тонком, молекулярно-клеточном уровне, и исследователи с помощью астианаксов получают порой весьма любопытные результаты: вспомним хотя бы работу о влиянии шаперонов на эволюцию.
Однако сейчас мы хотим рассказать об исследовании, касающемся непосредственно астианаксов. Несмотря на то что эти рыбы слепы, они никогда не натыкаются на камни и прочие предметы, которые им могут встретиться в воде. В этом вообще-то нет ничего удивительного: все животные, утратившие зрение или не могущие видеть из-за особенностей среды обитания, со временем учатся компенсировать свой недостаток за счёт других сенсорных систем. И об астианаксах долго думали, что они чувствуют предметы под водой с помощью боковой линии, рецепторы которой отслеживают изменения в давлении воды при приближении к чему-то твёрдому.
Однако специалисты из Тель-Авивского университета (Израиль) обратили внимание на одну особенность в поведении астианаксов: рыбы часто засасывали в рот воду, выпуская её через жабры. Когда Рои Хольцман (Roi Holzman) и его коллеги попытались выяснить, от чего зависит такое поведение, оказалось, что после перестановки предметов в аквариуме астианаксы начинали «просасывать» воду в четыре раза чаще и плавать намного быстрее.
Причём чем ближе рыба была к какому-нибудь большому объекту, тем активнее она пропускала воду через жабры: в 7 см астианакс качал воду в два раза чаще, чем обычно, а на расстоянии 2 см и ближе — уже в шесть раз чаще.
В Journal of Experimental Biology зоологи приходят к выводу, что астианаксы прощупывают окружающее пространство, специально создавая волны в воде. Всасывая воду ртом и выпуская её через жабры, рыба формирует нечто вроде сонарного сигнала, который, отразившись от предмета в воде, сообщает рецепторам боковой линии информацию о том, что находится вокруг.
Вообще говоря, все рыбы чувствуют движения волн с помощью боковой линии, и все рыбы могут пропускать воду через рот и жабры. Однако учёные до сих пор ни разу не наблюдали, чтобы рыбы могли вот так специально создавать волны. По словам исследователей, получаемый астианаксами сигнал оказывается в 60 раз сильнее, чем если бы они ловили отражения обычных волн, порождённых движениями тел.
Источник: КОМПЬЮЛЕНТА
В обычном представлении эволюция — это накопление случайных генетических мутаций, которые, комбинируясь друг с другом, изменяют какие-то черты вида. Эти изменения могут быть как благоприятными, так и не очень, и первые проходят естественный отбор, а вторые отправляются в небытие вместе со своими носителями.
Эта модель предполагает, что времени на эволюцию уходит очень, очень много. Но живые организмы сталкиваются с такими экологическими изменениями, которые происходят быстро и остаются надолго. С одной стороны, в таких случаях можно обойтись теми возможностями, которые даёт имеющаяся эволюционная стадия. Но можно поступить иначе и воспользоваться «ускорителем эволюции».
О таком «ускорителе эволюции» рассказывают в журнале Science исследователи из Института Уайтхеда и Гарвардского университета (оба — США). Им оказался шаперон, белок теплового шока HSP90. С его помощью учёные описывают стремительную эволюцию слепых пещерных рыб астианаксов. Живя в полной темноте, эти существа утратили в своё время зрение и пигментацию; это считается эволюционным шагом вперёд, так как, отказавшись от бесполезных признаков, астианаксы смогли перенаправить ресурсы на другие системы: скажем, усовершенствовать органы осязания, позволяющие ориентироваться и находить добычу по колебаниям воды.
При этом следует обязательно сказать, что есть и обычные астианаксы, которые живут в открытых водоёмах и у которых с глазами и окраской всё в порядке.
Процессы вроде утраты зрения (и некоторые других эволюционные изменения) обычно объясняются с помощью концепции молчащих мутаций: в популяции накапливаются некие изменения в ДНК, потенциально полезные, но они остаются непроявленными — до того момента, пока популяция не испытает стресса. Но что именно удерживает такие мутации в молчании?
Некоторое время назад учёные обнаружили, что белок HSP90 может подавлять проявление генетических изменений у самых разных организмов, от дрозофил до дрожжей и растений. При стрессе внутриклеточный запас HSP90 падает, и это приводит к появлению черт, которых раньше не было: одни ничего не меняют в приспособленности организма к среде, а другие оказываются весьма полезными.
HSP90 относится к шаперонам, роль которых — помогать другим белкам принимать правильную пространственную конформацию. От 3D-структуры зависит работа любого белка, при этом процесс сворачивания белков довольно чувствителен и подвержен самым разным влияниям. Так что понятно, почему при стрессе важность шаперонов возрастает: им нужно поддержать другие белки в это нелёгкое время.
Но что будет, если активность шаперонов подавить?
С одной стороны, клетка может погибнуть от стресса, а с другой — как уже сказано, у неё могут проявиться какие-то новые особенности. Клиффорд Тэбин (Clifford Tabin) и его сотрудники поставили такой эксперимент: они брали «нормальных», зрячих астианаксов и растили их с веществом, подавляющее активность HSP90. У таких рыб, по словам исследователей, глаза получались абсолютно разных размеров (то есть у каждой особи — свои). С другой стороны, если активность HSP90 подавляли у пещерной вариации астианаксов, никакого разброса в размерах глазных орбит у них не было — зато эти орбиты становились очень маленькими.
Точно такой же результат был получен, когда зрячих рыб выращивали в воде, солёность которой была такой же низкой, как в подземных водоёмах. Низкая солёность влияет на механизмы реакции на тепловой шок, в том числе на активность белка HSP90. Рыбы, которых выращивали при подземной солёности, демонстрировали те же вариации в размерах глаз, что и рыбы, у которых HSP90 подавляли с помощью химического ингибитора.
То есть у рыб в запасе были какие-то мутации, которые можно приспособить при «переезде» из открытого водоёма в пещерный. И когда такой «переезд» случился, астианаксам не надо было ждать новой порции мутаций, чтобы отобрать нужные. Но до поры эти мутации оставались под спудом. Изменение экологических условий выпускало их на волю, то бишь подавляло активность HSP90, и генетические «полуфабрикаты» можно было доводить до ума.
Да, сырьём для эволюции тут по-прежнему служат мутации. Однако их реализация, или, если можно так сказать, освоение, может замедляться и ускоряться — и от этого же будет зависеть скорость эволюции в целом.
Ну а могут ли белки-шапероны служить такими регуляторами скорости эволюции у других видов, покажут только дальнейшие исследования.
Источник: КОМПЬЮЛЕНТА
21-09-2010 Просмотров:9652 Новости Микробиологии Антоненко Андрей
Учёные из Австралии и Германии нашли в древних австралийских строматолитах цианобактерии, содержащие новый вид хлорофилла. Открытию, как и полагается, тут же придумали применение: улучшение КПД солнечных батарей. За последние 60 лет...
19-02-2015 Просмотров:7483 Новости Ботаники Антоненко Андрей
Исследователи из Готенбургского университета в Швеции изучили остатки древних растений и пришли к выводу об их невероятной устойчивости перед лицом мировых катастроф. Результаты этого исследования были опубликованы в журнале New Phytologist. Растения выживают лучше...
11-12-2012 Просмотров:10860 Новости Палеонтологии Антоненко Андрей
Считается, что мел-палеогеновое вымирание, случившееся около 65 млн лет назад, изничтожило динозавров, но в основном пожалело других рептилий. Не тут-то было. Николас Лонгрич из Йельского университета (США) и его коллеги...
26-09-2012 Просмотров:12588 Новости Зоологии Антоненко Андрей
Образ жизни адского вампира совершенно не соответствует его имени: вместо того чтобы преследовать добычу во мраке вод и высасывать из неё кровь, сей глубоководный головоногий моллюск предпочитает мирно собирать плавающий...
19-09-2013 Просмотров:9057 Новости Геологии Антоненко Андрей
Филип Ливермор (Philip Livermore) и его коллеги из Лидского университета (Великобритания) заявляют, что им наконец-то удалось решить загадку о направлении вращения слоёв ядра нашей планеты. Магнитное поле, порождаемое внешними слоями ядра, заставляет его...
Когда мы слышим визг автомобильных тормозов, внутри всё у нас инстинктивно сжимается в ожидании звука столкновения. Понятно, что в нашей памяти хранится и звук тормозов, и звук столкновения, но этого…
Крупный растительноядный динозавр обдирал листву с высоких ветвей деревьев, однако питаться корой он не мог. Ученые из Бристольского университета и лондонского Музея естествознания при помощи новой технологии проанализировали череп диплодока, крупного…
Исследователи выявили пока лишь 1,4 млн видов животных; ещё несколько миллионов ждут, когда их обнаружат, назовут и опишут. Сколько на это потребуется денег? Пара бразильских учёных подумала и выдала умопомрачительную…
В сентябре этого года на установленные камеры-ловушки, во Вьетнами было сфотографировано одно из самых редких животных - саола. Фото саолы в неволе"Когда наша команда впервые взглянул на фотографии, мы не могли…
Энтомологи выяснили, что сокращение численности целого ряда видов опылителей в Европе напрямую связано с нехваткой растений, на которых они предпочитают кормиться. К такому выводу пришли голландские ученые из Университета Вагенингена, чья…
Геном человека не сидел зря последние пять тысяч лет. Население росло в геометрической прогрессии, и новые генетические мутации возникали с каждым поколением. И теперь мы обладаем замечательным обилием редких генетических…
Люди уже населяли арктический регион Сибири около 45 тысяч лет назад, то есть на 10 тысяч лет раньше, чем считалось до сих пор. Такой вывод сделали российские ученые из институтов…
Самый древний в Южной Америке помидор нашли ученые из университета Пенсильвании в геологических отложениях палеогенового периода. Как стало известно, прадедушка современных томатов довольно сильно отличался от хорошо известных нам сегодня…
Ра́нги биологи́ческих таксо́нов ме́жду ро́дом и ви́дом — ранги, которые в таксономической иерархии находятся ниже рода, но выше вида. Перечень таких рангов, как и их названия, отличаются в различных кодексах…