У животных социализация происходит обычно ко взаимной выгоде: индивидуумы собираются вместе, чтобы проще было найти брачного партнёра, чтобы легче было искать пищу или отбиваться от врагов. В этом смысле у раков-отшельников, которые живут не в море, а на суше, дела обстоят противоположным образом: эти членистоногие собираются вместе, чтобы осуществить, так сказать, захват чужой недвижимости.
Морским ракам-отшельникам жить намного проще, чем сухопутным существам: в море всегда в изобилии есть раковины моллюсков, оставшиеся после гибели их хозяев. Сухопутные же раки испытывают постоянный дефицит жилья, и даже если им удаётся найти пустую раковину, она не всегда подходит по размеру. Поэтому, когда рак вырастает, он не ищет новый дом, а
Зоологи из
Необычность ситуации в том, что раки-отшельники, вообще говоря, существа несоциальные, к сородичам относящиеся равнодушно. Социальное поведение у них возникло благодаря необычным причинам — из-за ограниченности жилищного ресурса на суше и способности раков перестраивать свой дом.
Источник: КОМПЬЮЛЕНТА
Европейская Южная обсерватория выложила в открытом доступе свежую фотографию нашей галактики. Размеры кадра составили примерно 9 гигапикселей что соответствует разрешению 108200×81500 точек, но пусть это не пугает. ESО любезно предоставила онлайновую утилиту просмотра с функцией зума, подобную Google maps. Увидеть родные просторы Млечного Пути во всей красе можно хоть со смартфона. Для этого просто пройдите по ссылке ниже.
снимок Млечного Пути (ESO, 2012)
МасштабируемыйИсходный файл занимает 24,6 Гб дискового пространства. Он умещается на Full HD экране после уменьшения в 4300 раз. Для его создания потребовалось отобрать и обработать 84 095 284 снимков из исходного фотоматериала вдвое большего количества. Каждая точка при увеличении растягивается до размеров экрана, демонстрируя тысячи других звёзд.
Профессиональные фотографы часто сетуют, что им приходится обрабатывать сотни и тысячи кадров. Полагаю, астрономам ESO трудно сдержать смех, сравнивая масштабы проделанной работы.
Изображения были полученных при помощи телескопа VISTA (Visible and Infrared Survey Telescope for Astronomy) и сведены в один графический файл. На сегодня это самая детальная фотография нашей галактики и первая диаграмма «цвет-величина», содержащая данные более чем о 84 миллионах звёзд.
Источник: КОМПЬЮТЕРРА
Ранние исследования эволюции хромосом показали, что Y-хромосома к настоящему моменту утратила всё, за исключением нескольких первоначальных генов, и оказалась на грани исчезновения.
Однако сравнение с целым рядом сухопутных животных, от земноводных до млекопитающих, свидетельствует о том, что у неё в запасе как минимум 100 млн лет.
Люди и большинство млекопитающих делятся на XX-самок и XY-самцов. У птиц совершенно иная картина: ZZ-самцы и ZW-самки, причём W-хромосома коротка. У крокодилов и некоторых других рептилий пол зависит от температуры в период созревания плода, и лишь иногда — и от температуры, и от генов.
Крис Орган из Университета Юты (США) проанализировал определение пола у 165 современных позвоночных. Сравнив мутационные различия между половыми хромосомами этих видов, а также сверившись с данными палеонтологической летописи о том, как давно жил их общий предок, учёный смог определить, когда появилась комбинация ZW. По его словам, существует 90-процентный шанс на то, что первые самки динозавров имели именно её, хотя от современных птиц их отделяет 230 млн лет.
Г-н Орган предполагает, что половые хромосомы преодолевают естественный распад путём добавления новых генов по мере исчезновения старых.
Напомним: в феврале с. г. Дженнифер Хьюз из Института Уайтхеда (США) показала, что человеческая Y-хромосома не потеряла ни одного гена с тех пор, как наши предки отделились от макак-резусов, а произошло это 25 млн лет назад.
Следует также отметить, что в 2008 году Дженнифер Грейвз из Канберрского университета (Австралия) заметила сходство между половыми хромосомами птиц и примитивными млекопитающими под названием однопроходные. Это говорит о том, что комбинация ZW может иметь ещё более долгую историю: последний общий предок этих групп жил примерно 310 млн лет назад.
Результаты исследования были представлены на конференции Общества палеонтологии позвоночных.
Источник: КОМПЬЮЛЕНТА
Тридцать лет назад, когда концепция структуры немышечной клетки была в рудиментарном состоянии, Аберкромби назвал тонкий слой цитоплазмы (толщиной 0.2 мкм), который выступает на переднем конце распластывающейся и передвигающейся клетки, первичной "органеллой" движения клеток. Когда такое выпячивание происходит параллельно субстрату, он назвал это ламеллиподия (ведущая ламелла, ведущий край ), когда цитоплазма выпячивается вверх, он назвал это раффлами (волнами).
Последующие исследования в течение более чем двух декад выявили присутствие концентрированных групп полярных актиновых волокон в ламеллиподии и показали, что выпячивание ( протрузия ) обусловлена полимеризацией актина . Эксперименты, в которых в фибробласты был введен флуоресцентный актин, показали, что ламеллиподии на самом деле являются основным местом накопления актина и главным местом "конструирования филаментов" в клетке.
Наряду с обеспечением двигательной активности ламеллиподии имеют и другие важные функции. Они вовлечены в обеспечение адгезии клетки к субстату и, создавая волны, способствуют макропиноцитозу и фагоцитозу . Они должны соответственно содержать все компоненты необходимые для осуществления этих функций. Само явление адгезии связано с реорганизацией филаментов ламеллиподии, что приводит к созданию разных классов адгезионных комплексов.
В том, что касается подвижности, главный интерес сейчас фокусируется на проблеме, как локализована и контролируется полимеризация актина . Поскольку ламеллиподии трудно изолировать для биохимического анализа, идеи по этой проблеме вначале возникли из изучения актина in vitro и из изучения белков участвующих в движении внутри цитоплазмы патогенных микроорганизмов. Из этих исследований явствует, что комплекс Arp2/3 играет важную роль в инициации полимеризации в случае обеспеченного актином движения микроорганизмов; другие данные подтверждают роль Arp2/3 в организации протрузии ламеллиподии. Однако комплекс Arp2/3 является только одним из участвующих многих игроков в инициировании, организации и разборке структуры ламеллиподии. Последние успехи в понимании функций других игроков (компонент) были достигнуты в частности за счет использования белка с зеленой флуоресценцией ( GFP ) для мечения компонент в комбинации с микроскопией живых клеток для локализации этих компонент in vitro. Этот подход, важность которого стала очевидной, особенно результативен для выяснения организации ламеллиподии, поскольку химическая фиксация легко может привести к потере существенных компонент и, при неправильных условиях, к существенному нарушению структуры ламеллиподии; к сожалению, это является типичным фактом в публикуемых снимках. В настоящем обзоре мы пытаемся дать представление о молекулярной структуре ламеллиподии с целью детально описать ее подструктуры и состав ( Рис. 1 , Рис. 2 , Рис. 3 ) и обсудить функциональные связи и открытые проблемы.
Остановимся на определениях. В зависимости от типа и состояния клеток ламеллиподия может варьировать по ширине от 1 до 5 мкм, и может содержать сильно варьирующее количество радиальных пучков диаметром 0.1 - 0.2 мкм и много микрон длиной. Актиновые пучки, заключенные внутри ламеллиподии часто называют "ребрами", а когда они выступают за край ламеллиподии их называют "микроспайки" или "филоподии". Здесь мы используем термин "микроспайки" (предпочитая этот термин "ребрам") для обозначения пучков не выступающих за край клетки и "филоподии" когда они выступают. Согласно этой терминологии микроспайки являются элементами ламеллиподии и могут быть потенциальными предшественниками филоподий. Термин "кортикальный актин", часто неправильно используемый для описания ламеллиподиальных сетей, будет использоваться для описания актиносодержащих комплексов в клеточной мембране, состоящей из таких белков как спектрин, дистрофин и эзрин. Ламеллиподиальные выросты используют белковые комплексы для стимуляции полимеризации актина.
Источник: БИОЛОГИЯ И МЕДИЦИНА
В перемещающихся клетках существуют две основные группы структурно различающихся движущихся органелл; ламеллоподии и филлоподии, содержащие плотные пучки параллельных актиновых филаментов, филаменты однозначно ориентированы в них растущими концами вперед (+).
Актиновые пучки, заключенные внутри ламеллиподии часто называют "ребрами", а когда они выступают за край ламеллиподии их называют "микроспайки" или "филоподии". Здесь мы используем термин "микроспайки" (предпочитая этот термин "ребрам") для обозначения пучков не выступающих за край клетки и "филоподии" когда они выступают. Согласно этой терминологии микроспайки являются элементами ламеллиподии и могут быть потенциальными предшественниками филоподий. Филлоподии образованы радиально ориентированными пучками актиновых филаментов диаметром от 0,1 до 0,25 микрона. Филаменты этих пучков встроены в сеть ламеллиподии , из которой они и происходят; они могут вытягиваться подобно пальцеобразным выростам за край ламеллиподии. Ламеллиподии и филоподии состоят из актиновых филаментов поляризованных быстро растущими концами по направлению к клеточному краю, что совместимо с функцией протрузии. В качестве протрузивных "органелл" они вовлечены в процесс клеточной подвижности.
Источник: БИОЛОГИЯ И МЕДИЦИНА
Хотя мы и представляем себе в общих чертах, как работают чувствительные нейроны, многое в этой области остаётся неясным. Известно, что за разные раздражители отвечают особые специализированные клетки, но как именно эти клетки отличают, например, сильное воздействие от слабого?
Медицинском центре Университета Дьюка (США), отвечают на этот вопрос, хотя и не полностью. Исследователи работали с личинками дрозофил. Изучая поведение личинок в ответ на раздражение и сопоставляя поведенческие реакции с возбуждением чувствительных нейронов, они обнаружили следующие особенности. Сенсорные сигналы от механорецепторов у личинок передают две группы нейронов, снабжённые множеством отростков-дендритов. Если эти нейроны выключались генетическими методами, насекомые переставали реагировать на прикосновение, если включались — чувство осязания к личинкам возвращалось.
Результаты экспериментов, проведённых вГлавной особенностью этих нейронов были микровыросты на поверхности мембраны, или филоподии. Они работают как антенны, воспринимая раздражение из окружающей среды. И количество филоподий прямо соответствовало чувствительности нейрона: если микровыростов было много, нейрон чувствовал самое слабое прикосновение, если число филоподий было невелико, к рецептору нужно было приложить большую силу. При этом никакой корреляции между длиной микровыростов и чувствительностью нейрона обнаружить не удалось.
Логично было бы предположить, что чем больше таких выростов у нейрона, тем больше мембранных ионных каналов работают на то, чтобы фиксировать раздражение, — и, соответственно, чувствительность нейронов будет зависеть от генов, которые отвечают за эти каналы. Так оно и оказалось: генетический анализ подтвердил, что гены, кодирующие белки некоторых семейств ионных каналов, напрямую контролируют осязательную чувствительность личинок дрозофил. Список этих генов исследователи приводят в своей статье в Current Biology.
Хотя механизмы осязания у насекомых и у млекопитающих могут довольно существенно различаться, некоторые признаки, как полагают исследователи, у них общие. В этом смысле опыты с дрозофилами показывают, в каком направлении следует «рыть» при изучении осязания у людей. Возможно, это поможет понять природу некоторых неврологических расстройств, связанных с гиперчувствительностью к боли или, наоборот, с очень малой чувствительностью к механическому раздражению.
Источник: КОМПЬЮЛЕНТА
Аватар |
Описание |
Код |
Все о природе |
<!--WWLIFE 200x52 code--><a href="http://wwlife.ru/" target="_top"><img src="http://wwlife.ru/wwlife200.jpg" alt="Мир дикой природы" border="0" WIDTH="200" HEIGHT="52"></a><!--WWLIFE code--> | |
<!--WWLIFE 100x26 code--><a href="http://wwlife.ru/" target="_top"><img src="http://wwlife.ru/wwlife100.jpg" alt="Мир дикой природы" border="0" WIDTH="100" HEIGHT="26"></a><!--WWLIFE code--> |
Рекомендуемые сайты:
Несмотря на то что австралопитек афарский мог ходить на задних лапах, скорее всего, бóльшую часть времени он проводил на деревьях.
Вопрос о том, когда предок человека отказался от жизни на деревьях, очень важен, ибо это напрямую связано с развитием прямохождения и освобождения передних конечностей, что и сделало обезьяну человеком.
Зересенай Алемсегед из Калифорнийской академии наук (США) и его коллеги впервые, по их словам, всесторонне проанализировали две полные лопатки образца «Селам» — исключительно хорошо сохранившегося скелета трёхлетней девочки австралопитека афарского, которая жила примерно 3,3 млн лет назад в Дикике (Эфиопия). Г-н Алемсегед сам же его и обнаружил в 2000 году.
Лопатки тонки, как бумага, и очень редко фоссилизируются, да и то фрагментарно, поэтому их сохранность — редкая удача. Исследователи извлекли кости из песчаника и обнаружили, что они имеют много общего с лопатками современных обезьян. Например, у людей ямки плечевого сустава обращены в стороны, а у обезьян и «Селам» — вверх, что является признаком активного лазанья по деревьям.
Кстати, та же суставная ямка у «Люси» (самый известный скелет австралопитека афарского) тоже смотрит вверх. То есть данная черта была свойственна этому виду не только в детстве. Люди, напротив, рождаются с этим элементом, обращённым немного вниз, после чего он постепенно смещается.
В то же время большинство исследователей сходится на том, что многие черты костей нижних конечностей австралопитека афарского, вплоть до стопы, однозначно человекоподобны, то есть адаптированы для вертикальной ходьбы.
Результаты исследования опубликованы в журнале Science.
Итсочник: КОМПЬЮЛЕНТА
Рыбки брызгуны, обитатели пресноводных водоёмов, добывают пищу необычным способом, сбивая насекомых струйкой воды. Рыба видит цель, сидящую на листе или на ветке над водой, и буквально плюёт в неё мощной струёй. Насекомое падает в воду — и брызгун получает свой обед.
Миланского университета (Италия) пришли к выводу, что никаких особых приспособлений у брызгуна нет, а необходимая сила струи достигается за счёт остроумного использования физических законов.
Эта способность брызгунов известна зоологам с XVIII века, и с тех пор они пытались понять, как рыбам удаётся плевать с такой силой. Потому что если взять, например, кузнечика, то он держится на листе с силой, в 10 раз превышающей его собственный вес, и водяной заряд брызгуна должен быть весьма и весьма значительным. Долгое время считалось, что у рыбы есть особое устройство, дополнительное анатомическое приспособление, которое и помогает «выстреливать» водой с необходимой силой. Однако исследователи изЗоологи наблюдали за тем, как 6–7-сантиметровые рыбки, жившие в аквариуме, сбивали цели, расположенные в 15 см над водой. Водяной заряд вылетает изо рта рыбы со скоростью 2 м/с, пишут они в интернет-журнале PLoS ONE. Но затем брызгун начинает ускорять подачу воды, и «хвост» водяной струи летит с большей скоростью, чем её «голова». В результате на переднюю часть водяного заряда сзади давит сила, которая сообщает ей дополнительную энергию и увеличивает в ней объём воды. На насекомое обрушивается мощная капля, заметно увеличившаяся в размере и силе.
Одни только мускулы брызгуна могут развить удельную мощность в 500 Вт/кг. Уловка, когда «задняя» вода догоняет «переднюю», позволяет увеличить эту величину до 3 000 Вт/кг. С точки зрения эволюции такой способ оказался настолько эффективен, что позволил брызгунам обойтись без дополнительных анатомических ухищрений для «стрельбы» — в отличие, например, от хамелеона, который решает похожую задачу с помощью особых коллагеновых волокон, добавляющих языку рептилии быстроту.
Источник: КОМПЬЮЛЕНТА
31-08-2016 Просмотров:6450 Новости Зоологии Антоненко Андрей
Орнитологи выяснили, что слизни периодически убивают птенцов, в силу своей медлительности не привлекая внимания их родителей. Об этом говорится в статье польских ученых, опубликованной в журнале Journal of Avian Biology. Впервые на...
08-03-2011 Просмотров:11034 Новости Нейробиологии Антоненко Андрей
Нейроны не могут самостоятельно оформить текущие переживания в долгую память. На помощь им приходят астроциты, которые снабжают нейроны дополнительным источником энергии. Нейроны головного мозгаНейрофизиологи прояснили важный этап формирования в мозге долговременной...
24-09-2013 Просмотров:8885 Новости Астрономии Антоненко Андрей
Считается, что судьбоносное столкновение случилось 4,56 млрд лет назад. Но Ричард Карлсон (Richard Carlson) из Института Карнеги (США), который проанализировал все доступные лунные породы, думает иначе. Ему кажется, что возраст Селены колеблется...
07-11-2011 Просмотров:12158 Новости Палеонтологии Антоненко Андрей
Палеонтолог-любитель обнаружил в Марокко фрагмент черепа крокодила мелового периода. Образец выкупил Королевский музей Онтарио (Канада). Изображение Henry Tsai (University of Missouri)Кейси Холлидей из Университета штата Миссури (США) и его коллеги выяснили,...
02-07-2015 Просмотров:7433 Новости Эволюции Антоненко Андрей
Любители морепродуктов должны быть благодарны массовому вымиранию, погубившему динозавров в конце мелового периода. Как выяснили палеонтологи, именно вслед за этим событием в океанах резко возросла численность лучеперых рыб, которые в...
Новое исследование может положить конец спорам: обнаружена последовательность лав возрастом 4,4 млрд лет, которые могут оказаться остатками первой зоны субдукции на Земле. Скалы острова Гуам сложены застывшей лавой, относящейся ко временам…
Археологи обнаружили в Аравийской пустыне рельефы, изображающие собак и высеченные охотниками каменного века. Возможно, находка представляет собой древнейшие дошедшие до наших дней изображения собак. Первые изображения собакОб этом говорится в статье…
Специалисты Института нефтегазовой геологии и геофизики (ИНГГ) Сибирского отделения РАН в ходе работы на станции "Остров Самойловский" в дельте реки Лена обнаружили следы события Келлвассера - оно произошло около 374…
Семейство: Гоминиды (лат. Hominidae) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые приматы (Haplorhini) Инфраотряд: Обезьянообразные (Simiiformes) Парвотряд: Узконосые обезьяны (Catarrhini) Надсемейство: Человекообразные (Hominoidea) Семейство: Гоминиды (Hominidae) Подсемейство: Гоминины (Homininae) Понгины (Ponginae) Оглавление 1. Общие сведения о…
Ученые рассмотрели мозг представителя загадочных аномалокарисов, крупных хищников, бороздивших океаны более 500 млн лет назад. Оказалось, что эти существа были ближе к бархатным червям, чем к членистоногим. Отпечаток АномалокарисаРезультаты исследования, проведенного…
Неожиданной удачей увенчались раскопки европейских палеонтологов в музейных фондах. Окаменелости, найденные еще в 1890 году, внезапно оказались остатками первой в Европе птицы-террориста – представителя знаменитого семейства Phorusrhacidae, ранее называвшегося фороракосами. Поздний…
Во время эпохи плейстоцена Мертвое море полностью пересыхало два раза. К этому выводу пришли ученые, проанализировав добытые со дна керны. Группа ученых из Колумбийского университета, Университета Тель-Авива, Геологической службы Израиля и…
Больше всего государство Перу известно своими горными массивами, однако 60% его территории занимает бассейн Амазонки. Благодаря богатству флоры и фауны амазонских джунглей и самой реки в Перу представлено 25 тыс.…
Новое теоретическое исследование, посвящённое страусам, показало, что компьютерная модель длинношеих зауроподов, использованная для моделирования движений динозавров в документальном фильме Би-би-си «Прогулки с динозаврами» и ставшая основой для экспозиции в Американском музее…