Уникальная пустыня Намиб, расположившаяся прямо на берегу Атлантического океана, сформировалась благодаря пескам реки Оранжевая. Она так и росла с юга на север вдоль побережья.
Пустыня Намиб на юго-западном побережье Африки – одна из самых древних и загадочных песчаных пустынь на Земле. Само по себе существование прибрежных пустынь – интересное явление. Холодное Бенгельское течение, которое проходит как раз недалеко от пустыни, создает особые условия атмосферной циркуляции, когда холодный и влажный воздух смешивается с горячим и сухим. Этот процесс, как показали исследования, блокирует вертикальные потоки воздуха, поэтому осадки формируются очень слабо. И лишь иногда побережье покрывается слоем густого тумана. Тогда из своих укрытий выползает множество насекомых. Для питья они используют влагу, которая конденсируются на поверхности их тела. Причем этого количества им оказывается достаточно для того, чтобы продержаться несколько дней и даже вывести потомство.
Хотя современные экосистемы пустыни Намиб достаточно хорошо изучены, в ее прошлом ученые находят множество загадок. Поэтому исследователи из Лондонского университета (University of London), Геологического института и института геохимии и петрологии (Цюрих, Швейцария) и Оксфордского университета под руководством Питера Вермиша (Piter Vermeesch) выясняли, как именно формировалась эта пустыня. «Неизвестно, образовались ли пески Намиб в результате выветривания местных горных пород или же они попали в этот район из какого-то другого удаленного источника», — пишут авторы исследования.
Чтобы ответить на этот вопрос, ученые применили U-Pb метод датировки цирконового песка, из которого состоит пустыня. Метод основан на том, что исследователи определяют в минерале содержание урана (U) и свинца (Pb). Естественно, содержание обоих элементов в разных минералах разное. Оно зависит и от концентрации элементов в момент образования минерала, и от времени его образования (со временем уран распадается с образованием свинца). Оказалось, что образцы песка, взятые на севере пустыни Намиб и в районе Оранжевой реки (на юге пустыни), по соотношению U-Pb абсолютно идентичны. А образцы других пород — нет. Это значит, по словам Вермиша, что источник песков пустыни Намиб и есть пески реки Оранжевая.
«Пески на территории пустыни занимают площадь примерно 34 тыс. км2 . По последним данным, климат на этой территории стал сухим и жарким еще в миоцене – примерно 23−5 млн лет назад. Скорее всего, сухая погода воцарилдась здесь сразу после формирования Атлантического океана. А песчаные дюны пустыни Намиб сформировались намного позже», — поясняют авторы. Чтобы выяснить точно, когда это произошло, Вермиш проанализировал содержание в песке изотопов 10 Be, 26Al и 21Ne. Дело в том, что когда песок выходит на поверхности земли, на него начинает оседать изотоп алюминия 26Al, который образуется из атмосферного аргона под действием протонов космического излучения. Под действием другой ядерной реакции из атмосферных кислорода и азота образуется и изотоп бериллия — 10Be. А из тяжелого кислорода 18О под действием альфа-частиц получается 21Ne. Если последний изотоп стабильный, то бериллий и алюминий обладают периодами полураспада — 720 тысяч и 1600 тысяч лет соответственно. Поэтому со временем соотношение алюминия и бериллия становится 6,8:1 – на каждые 5 изотопов 10Be приходится 34 изотопа 26Al. Это свойство даже используют для датировки предметов, попавших в замкнутые помещения вместе со старыми (долго лежавшими на солнце) песками. Ведь там радиоактивные изотопы продолжают распадаться, а новые не образуются. И равновесие нарушается.
В случае с пустыней Намиб ситуация получилась совершенно обратная — попав на поверхность, песчинки больше не лишались Солнца. Однако изотопный анализ показал, что самым древним пескам пустыни Намиб, которые прошли 400 км и составляют ее северный край, не более одного миллиона лет. Причем, двигались песчинки параллельно Бенгельскому течению вместе с формируемыми течением ветрами.
Статья доктора Вермиша «Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides» опубликована в последнем номере журнала Nature Geoscience.
Источник: infox.ru
На западе Индии ученые нашли уникальный янтарь. Он образован смолой деревьев семейства диптерокарповых. В янтаре ученые обнаружили множество насекомых, растений и грибов. Особые свойства янтаря позволили аккуратно выделить эти включения, совершенно не повредив их.
Международная группа исследователей под руководством профессора Йеса Руста (Jes Rust) из Университета Бонна обнаружила в камбейских сланцах в штате Гуджарат на западе Индии 150 кг янтаря. Этот камбейский янтарь, возраст которого составил, по подсчетам ученых, примерно 50 млн лет, оказался удивительно богат ископаемыми останками животных, растений и грибов. Проанализировав их видовой состав, палеобиологам удалось сделать несколько важных открытий относительно происхождения индийской флоры и фауны.
Биота Индии всегда считалась уникальной. Ведь, как думали ученые, Индия долгое время находилась в изоляции — после того, как произошло ее отделение от Африки, и до момента присоединения к Азии. «У Индии богатая геологическая история. Индийская плита вместе с Мадагаскаром отделилась от Африки в середине юры примерно 160 млн лет назад, Индия же отделилась от Мадагаскара в середине мелового периода, примерно 90 млн лет назад. И тут же Индийская плита начала стремительное движение в сторону Азии (со скоростью 15−25 см в год). Момент столкновения двух плит, который привел к образованию крупнейшего горного массива Гималаев, произошел примерно 50 млн лет назад», — напоминает Руст.
Анализ химического состава янтаря позволил ученым выяснить, что он образован смолой деревьев семейства диптерокарповых (Dipterocarpaceae), которые, по словам авторов, доминировали 50 млн лет назад в лесах Индии, впрочем, так же, как и сейчас. Этот янтарь отличается невысокой степенью полимеризации, его поверхность часто может быть мягкой и даже липкой. Но что особенно важно, он растворим в хлороформе. Это свойство камбейского янтаря очень помогло исследователям. Опустив находку в растворитель, они смогли выделить все включения биоты, абсолютно не повредив их. «Насекомые прекрасно сохранились. Это все равно, что обнаружить целого динозавра, а не только отдельные его кости. Мы могли увидеть все детали. Это просто поразительно», — говорит Руст.
Всего из камбейского янтаря ученые достали 700 особей членистоногих, которых отнесли к 100 видам и 55 семействам. Прекрасная сохранность образцов позволила ученым провести их филогенетический анализ. Как утверждают авторы, все виды имеют близкое родство с азиатскими и даже европейскими представителями. По мнению профессора Руста, по мере того, как индийская плита двигалась к Азии, ее осколки формировали небольшие острова, через которые виды из Европы и Азии попадали на Индийскую плиту. «Мы считаем, что до того, как произошло столкновение Индии и Азии, образовался целый архипелаг. Наше исследование показывает, что именно тогда началось перемешивание европейской, азиаткой и индийской флоры и фауны», — подчеркнул Руст.
Статья профессора Руста и его коллег Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India опубликована в последнем номере журнала PNAS.
Источник: infox.ru
Новокаледонские вóроны (Corvus moneduloides) не первый раз привлекают внимание специалистов, изучающих познавательные навыки животных и их умение рассуждать. О новом наблюдении рассказала группа биологов из университетов Оксфорда (University of Oxford) и Бирмингема (University of Birmingham).
учиться использованию инструментов друг у друга, что они умеют применять набор из двух предметов и даже осваивать сложную последовательность работы тремя разными прутками.
Учёные давно установили, что вóроны в дикой природе применяют палочки и листики (в данном контексте вполне можно сказать — инструменты) для выуживания насекомых из трещин и глубоких отверстий в дереве. Однако до сих пор самые яркие трюки птицы демонстрировали в лабораторных условиях. Именно таким образом выяснилось, что Corvus moneduloides могутПоследний опыт дал неоднозначную оценку уровню интеллекта чёрных пернатых, но было ясно: птицы умеют достаточно осмысленно подбирать инструмент, лучше подходящий для того или иного шага в цепочке действий. Оставалось неясным, насколько пернатые того же вида, обитающие в дикой природе, глупее или умнее своих собратьев в неволе.
Чтобы это выяснить, Алекс Касельник (Alex Kacelnik) и его коллеги установили в естественных условиях камеры, включающие запись при движении в кадре. Аппаратурой оснастили семь "рыбных" мест — у старых гниющих деревьев, изъеденных жуками. Так было получено почти 1800 часов записей.
За 111 дней эксперимента по меньшей мере 14 индивидуально опознанных птиц разного пола и возраста посетили данные участки 317 раз, при этом в 150 визитах использовались "орудия лова" (разные прутки, стебельки и тростинки).
Анализ кадров показал, что питающиеся уже самостоятельно, но ещё совсем юные вóроны очень много времени проводят у деревьев с палочками в клювах, но при этом данные особи оказались в разы менее результативны в добыче личинок, чем их взрослые собратья, также применявшие "подручные средства", но сделавшие меньше подходов.
Это, по мнению авторов исследования, говорит о большой роли индивидуального и социального обучения в овладении данным навыком. Кроме того, оказалось, что при применении инструментов менее чем в половине всех попыток с их помощью все птахи на круг раздобыли 25 личинок, против 10 штук, вытащенных при помощи клюва.
После съёмок биологи собрали те инструменты воронов, что были оставлены в отверстиях деревьев. Анализ 193 таких предметов открыл закономерность: в более глубоких ходах жуков в среднем применялись и более длинные орудия. По мнению авторов работы, это свидетельствует об определённом уровне рассуждений.
При этом птицы не перебирали в случайном порядке весь мусор около места охоты, а предпочитали чаще брать стебли, нежели прутки. В таком придирчивом выборе, что любопытно, вóроны очень похожи на шимпанзе, собирающих своими усовершенствованными инструментами "урожай" термитов.
Британцы утверждают, что эта работа — первое количественное описание "промысла" у воронов. Детали открытия изложены в статье в Proceedings of the Royal Society B. (Читайте также об интеллекте грачей.)
Источник: MEMBRANA
Аллигаторы используют свои лёгкие весьма необычным и притом высокоэффективным способом. Больше всего он напоминает дыхание динозавров и современных птиц, считают биологи из университета Юты (University of Utah).
Следует пояснить, что в отличие от аллигаторов у млекопитающих каждый вдох несёт воздух в пузырьковидные образования в лёгких – так называемые альвеолы. У птиц альвеол нет. Кислород поступает в их кровь через стенки тонких трубок, известных как парабронхи (parabronchi). Причём благодаря разветвлённой системе воздушных каналов и дополняющих лёгкие воздушных мешков воздух через парабронхи движется фактически непрерывно и всегда однонаправлено, что на вдохе, что на выдохе. Это помогает птицам получать больше кислорода в высотном и длительном полёте.
Новое исследование доказывает, что своего рода "суперлёгкие" трудятся и в груди аллигаторов. Известно, что у них имеются парабронхи, но детали работы этих органов, как теперь выяснилось, до сих пор учёные представляли неточно.
Открытие описывается в опубликованной журналом Science статье: воздух внутри лёгких аллигаторов движется по своеобразной петле, а его однонаправленное перемещение обеспечивает некий "аэродинамический клапан". В отличие от птиц, впрочем, у данных рептилий нет специальных воздушных мешков, но это с лёгкостью компенсируется многокамерной структурой самих лёгких.
Скорее всего, дыхательный аппарат такого типа, рассуждают авторы исследования, возник ещё у общих предков птиц, динозавров и аллигаторов – группы ящеров, известных как архозавры, живших в триасовом периоде от 251 до 199 миллионов лет назад.
Примерно в то же время в воздухе Земли было меньше кислорода, и очевидное преимущество тогда имели те живые существа, чья дыхательная система была более эффективна и экономична. Она позволяла сравнительно крупным созданиям вести подвижный образ жизни, утверждает ведущий автор исследования Колин Фармер (Colin Farmer). Так, например, можно объяснить появление очень схожей системы дыхания у некоторых динозавров. И, как было установлено совсем недавно, аналогичная птицам "однонаправленная" система газообмена позволила завоевать воздушное пространство огромным птерозаврам.
Источник: MEMBRANA
Древняя птица, жившая около 125 млн лет назад, овулировала, когда встретила свою смерть.
Одни окаменелости обнаружены вместе с длинным (размером почти с тело птицы) декоративным хвостовым оперением, а другие — нет. Учёные предположили, что эти различия указывают на половую принадлежность пернатых: так, самцы современных птиц (скажем, павлина) зачастую выглядят очень импозантно, привлекая самку, тогда как павы имеют тусклую расцветку, которая, вероятно, помогает им вместе с выводком не бросаться в глаза хищникам.
Однако это лишь гипотеза: выяснить напрямую пол конфуциосорниса не было никакой возможности. Но пришло время, и специалисты обратили внимание на определённые детали скелета, которые помогли доказать, что эффектные птицы и впрямь были самцами.
Речь идёт о костномозговой полости — губчатой ткани, уникальной у самок птиц, находящихся в репродуктивном возрасте. Она принимает участие в выработке яичной скорлупы. Но чтобы палеонтологи миллионы лет спустя смогли понять, что кость действительно принадлежит самке, птица должна умереть в период овуляции или сразу же после того, как отложила яйца.
Такой образец наконец-то был найден (скажем спасибо китайским крестьянам, которые его откопали) и проанализирован. И он не имеет декоративных перьев.
Любопытно, что иногда костномозговая полость такого типа присутствует в незрелых скелетах. Это говорит о том, что ранние птицы могли успешно спариваться, когда кости ещё не оформились как следует. Между прочим, этой особенностью они больше напоминают динозавров, чем современных птиц.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
Многие организмы, обитающие у гидротермальных источников на морском дне, зависят от довольно специфических энергетических ресурсов вроде метана или сероводорода. Обычно такие животные сожительствуют с бактериями-симбионтами, которые и перерабатывают эту малоаппетитную «химию» в более доступные для усвоения формы. Однако такие участки, на которых из толщи земли в воду выходят метан, сероводород и т. п., могут отстоять друг от друга на сотни километров. И тогда возникает вопрос: как животные, которые зависят от таких источников, распространяются между ними?
Эксперимент, как видим, весьма незатейлив, однако он позволил понять, как происходит освоение мёртвой органики в морских экосистемах. Как пишут исследователи в веб-журнале
Эти сульфат-редуцирующие бактерии производят сероводород, который служит ресурсом для тех, кто обитает у подземных геотермальных источников. И действительно, учёным удалось на экспериментальном куске дерева обнаружить моллюска, обычно живущего только в специфической, обогащённой серой среде. То есть чехарда бактерий на затонувшем куске дерева постепенно делала его пригодным для обитания специфических видов, которые для получения энергии предпочитают особые химические ресурсы.
Очевидно, на морском дне такие обломки дерева не редкость, и обитатели геотермальных источников вполне могут перемещаться по ним от одного источника к другому. Скорее всего, таким «мостиком» может служить и другая мёртвая органика, но учёным, понятно, удобней было использовать в эксперименте кусок дерева, нежели китовую тушу.
Источник: КОМПЬЮЛЕНТА
Международная группа исследователей секвенировала ядерную и митохондриальную ДНК из ноги раннего современного человека из пещеры Тяньюань, расположенной неподалёку от Пекина (КНР).
Люди с морфологией, напоминающей современную, появляются в летописи окаменелостей в Евразии 40−50 тыс. лет назад. Генетические связи между ними и современными популяциями до конца не выяснены. Цяомэй Фу, Маттиас Мейер, Сванте Пээбо из
Затем исследователи реконструировали геном владельца ноги. «Этот индивид находился на важном промежуточном этапе эволюции, когда ранние современные люди приходили на смену неандертальцам и денисовцам, с которыми имели некоторые сходные черты», — поясняет г-н Пээбо.
Реконструкция показала, что этот человек был генетически связан с предками многих современных жителей Азии и коренными американцами, но уже разошёлся с предками современных европейцев, то есть можно корректировать представления о миграции древних людей. А тот факт, что в его геноме не больше материала неандертальцев и денисовцев, чем у современных азиатов, говорит о давно закончившихся на тот момент контактах с нашими эволюционными родственниками.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
Деревья девонского периода были похожи на современные древовидные папоротники, пальмы и саговники. Высота их достигала 8 метров, а на его верхушках располагались тонкие листовидные отростки отвечавшие за фотосинтез и больше походившие на палочки, чем на листья.
Эукарио́ты, или Я́дерные (лат. Eucaryota от греч. εύ- — хорошо и κάρυον — ядро) — надцарство живых организмов, клетки которых содержат ядра. Все организмы, кроме бактерий и археев, являются ядерными.
Животные, растения, грибы, а также группы организмов под общим названием протисты — все являются эукариотическими организмами. Они могут быть одноклеточными и многоклеточными, но все имеют общий план строения клеток. Считается, что все эти столь несхожие организмы имеют общее происхождение, поэтому группа ядерных рассматривается как монофилетический таксон наивысшего ранга. Важную роль в эволюции эукариот сыграл симбиогенез — симбиоз между эукариотической клеткой, видимо, уже имевшей ядро и способной к фагоцитозу, и проглоченными этой клеткой бактериями — предшественниками митохондрий и хлоропластов.
Существует несколько вариантов деления надцарства эукариот на царства. Первыми были выделены царства растений и животных. Затем было выделено царство грибов, которые из-за биохимических особенностей, по мнению большинства биологов, не могут быть причислены ни к одному из этих царств. Также некоторые авторы выделяют царства простейших, миксомицетов, хромистов. Некоторые системы насчитывают до 20 царств.
Сейчас каталогизировано 1 124 516 видов эукариотических организмов и предпологается, что на нашей планете обитает около 9,92 млн эукариотов из них в морях и океанах обитает около 2 150 000 видов среди 171 082 известных (табл.1). [1]
Табл. 1. Количество открытых и проживаемых видов эукареотических организмов.
Царство | Место обитания | |||||
---|---|---|---|---|---|---|
На планете | В океане | |||||
Статус | Каталогизировано | Предполагаемое к-во | ± видов | Каталогизировано | Предполагаемое к-во | ± видов |
Животные | 953 434 | 7 770 000 | 958 000 | 171 082 | 215 0000 | 145 000 |
Грибы | 43 271 | 611 000 | 30 500 | 4 859 | 7 400 | 9 640 |
Растения | 215 644 | 298 000 | 8 200 | 8 600 | 16 600 | 9 130 |
Протисты | 8 118 | 36 400 | 6 690 | 8 118 | 36 400 | 6 690 |
Хромисты | 13 033 | 27 500 | 30 500 | 4 859 | 7 400 | 9 640 |
Всего | 1 233 500 | 8 740 000 | 1 300 000 | 193 756 | 2 210 000 | 182 000 |
Эукариотические клетки в среднем намного крупнее прокариотических, разница в объёме достигает тысяч раз. Клетки эукариот включают около десятка видов различных структур, известных как органоиды (или органеллы, что, правда, несколько искажает первоначальное значение этого термина), из которых многие отделены от цитоплазмы одной или несколькими мембранами. В прокариотических клетках всегда присутствуют клеточная мембрана, рибосомы (существенно отличные от эукариотических рибосом) и генетический материал — бактериальная хромосома, или генофор, однако внутренние органоиды, окруженные мембраной, встречаются редко. Ядро — это часть клетки, окружённая у эукариот двойной мембраной (двумя элементарными мембранами) и содержащая генетический материал: молекулы ДНК, «упакованные» в хромосомы. Ядро обычно одно, но бывают и многоядерные клетки.
Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищен ядерной оболочкой (по-гречески "эукариот" значит имеющий ядро). ДНК эукариот линейная (у прокариот ДНК кольцевая и свободно плавает в цитоплазме). Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий. В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза и диплофаза). Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро), содержащую двойной (диплоидный) набор хромосом. Спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.
Третье, пожалуй, самое интересное отличие, — это наличие у эукариотических клеток особых органелл, имеющих свой генетический аппарат, размножающихся делением и окруженных мембраной. Эти органеллы — митохондрии и пластиды. По своему строению и жизнедеятельности они поразительно похожи на бактерий. Это обстоятельство натолкнуло современных ученых на мысль, что подобные организмы являются потомками бактерий, вступившими в симбиотические отношения с эукариотами. Прокариоты характеризуются малым количеством органелл, и ни одна из них не окружена двойной мембраной. В клетках прокариот нет эндоплазматического ретикулума, аппарата Гольджи, лизосом.
Не менее важно, описывая различия между прокариотами и эукариотами, сказать о таком явлении у эукариотических клеток, как фагоцитоз. Фагоцитозом (дословно "поедание") называют способность эукариотических клеток захватывать и переваривать самые разные твёрдые частицы. Этот процесс обеспечивает в организме важную защитную функцию. Впервые он был открыт И.И. Мечниковым у морских звезд. Появление фагоцитоза у эукариот скорее всего связано со средними размерами (далее о размерных различиях написано подробнее). Размеры прокариотических клеток несоизмеримо меньше и поэтому в процессе эволюционного развития перед эукариотами возникла проблема снабжения организма большим количеством пищи, и как следствие в группе эукариот появляются первые хищники.
Разнообразен и обмен веществ у бактерий. Вообще всего выделяют четыре типа питания, и среди бактерий встречаются все. Это фотоавтотрофные, фотогетеротрофные, хемоавтотрофные, хемогетеротрофные (фототрофные используют энергию солнечного света, хемотрофные используют химическую энергию). Эукариоты же либо сами синтезируют энергию из солнечного света, либо используют готовую энергию такого происхождения. Это может быть связано с появлением среди эукариотов хищников, необходимость синтезировать энергию, для которых отпала.
Ещё одно отличие — строение жгутиков. У бактерий они тонкие — всего 15—20 нм в диаметре. Это полые нити из белка флагеллина. Строение жгутиков эукариот гораздо сложнее. Они представляют собой вырост клетки, окруженный мембраной, и содержат цитоскелет (аксонему) из девяти пар периферических микротрубочек и двух микротрубочек в центре. В отличие от вращающихся прокариотическох жгутиков жгутики эукариот изгибаются или извиваются. Две группы рассматриваемых нами организмов, как уже было сказано, сильно отличаются и по своим средним размерам. Диаметр прокариотической клетки составляет обычно 0,5—10 мкм, когда тот же показатель у эукариот составляет 10—100 мкм. Объём такой клетки в 1000—10000 раз больше, чем прокариотической. У прокариот рибосомы мелкие (70S-типа). У эукариот рибосомы более крупные (80S-типа). [2]
Первые эукариоты появились более 2 млрд лет назад. Последующие 1,5 млрд лет шло усложнение эукариотической клетки и примерно 630 млн. лет назад в эдикарском периоде появились первые многоклеточные существа.
Предположительно первоначально в многоклеточные структуры объединялись простейшие хоанофлагеллаты, которые, как полагают, стоят на грани между одноклеточностью и многоклеточностью, образуют зародышеобразные колонии только с помощью бактериального липида, который получают из съеденных бактерий (прокариот). Следующим щагом было появление в этом же периоде первых настоящих многоклеточных макроогранизмов - эти организмы появились на Земле сразу после Мариноанского оледенения – одной из стадий глобального оледенения, когда нашу планету в течение многих миллионов лет сплошь покрывали льды. Первые многоклеточные существа были мягкотелыми организмами, состоящими из отдельных фракталов. Размеры их тела варьировались от одного сантиметра до одного метра. Выглядели они настолько необычно, что долгое время ученые спорили, к какому царству – растений или животных их можно отнести.
Около 480-460 млн лет назад в силурийском периоде на суше появились первые растения (по другим данным это произошло в верхнем кембрии 499-488 млн. лет назад), а еще спустя 50 млн лет в девонском периоде вслед за растениями на сушу вышли и первые животные (хотя существуют некоторые данные, показывающие, что первые сухопутные животные жили в силурийском (рис. 3) или даже вендском периодах). После этого начало бурное развитие всевозможных живых существ потомками, которых являемся и мы. [3]
Подимперия: | Клеточные организмы | ||||
Надцарство: | Эукариоты | ||||
Царство: | Животные | Грибы | Растения | Протисты |
Источники: | 1 | Мир дикой природы |
2 | Википедия | |
3 | Клеточные организмы |
В девонском периоде около 400 млн лет назад, на нашей планете обитал самый высокий из известных грибов, его высота достигала почти 9 метров, а диаметры некоторых экземпляров доходили 1,4 метров.
29-01-2011 Просмотров:12597 Новости Антропологии Антоненко Андрей
Анализ орудий, найденных на Аравийском полуострове, показал, что люди перебрались туда из Африки еще 125 тысяч лет назад. Но не по Нилу, а через сузившийся Баб-эль-Мандебский пролив. Новые археологические данные свидетельствуют...
15-03-2011 Просмотров:12552 Новости Микробиологии Антоненко Андрей
Недокормленный одноклеточный слизевик Dictyostelium discoideum может образовывать многоклеточные структуры, сходные с эпителием высших организмов. Спороносная «ножка» Dictyostelium discoideum (фото Richard kessel & Gene Shih / Visuals Unlimited)Простой одноклеточный организм, амебоидный слизевик...
09-09-2012 Просмотров:9737 Новости Зоологии Антоненко Андрей
Тиграм, живущим рядом с непальскими деревнями, пришлось резко ограничить свою дневную активность. Center for Systems Integration and Sustainability, Michigan State UniversityАмериканские зоологи из Университета штата Мичиган установили, что бенгальские тигры перешли...
12-02-2016 Просмотров:6678 Новости Зоологии Антоненко Андрей
Самка темноспинного альбатроса (Phoebastria immutabilis) по кличке Уиздом (Wisdom) также считается самой старой из числа ныне живущих окольцованных птиц. На острове Мидуэй ее окольцевали в 1956 году; тогда Уиздом было около 5 лет. Таким образом,...
05-09-2014 Просмотров:7797 Новости Зоологии Антоненко Андрей
Биологи впервые за последние полвека обнаружили организмов, относящихся к ранее неизвестному типу живых существ. Не исключено, что они являются живыми ископаемыми, чьи родичи существовали на Земле более 550 миллионов лет...
Рыбы, продолжая жить в воде, могли приобретать детали анатомического строения, свойственные наземным животным. Из отложений каменноугольного периода Шотландии (их возраст составляет около 345 млн лет) был описан угорь с необычным строением…
Как показал эксперимент, обезьяны-капуцины не хотят принимать угощение из рук тех людей, которые не помогают окружающим. Следовательно, обезьяны способны оценивать социальное поведение других видов. Обезьяны-капуциныОб этом говорится в статье, опубликованной британскими…
Палеомагитолог Анна Чернова и ее коллеги из лаборатории геодинамики и палеомагнетизма Центральной и Восточной Азии Института нефтегазовой геологии и геофизики СО РАН (Новосибирск) вернулись из экспедиции на Новосибирские острова в…
Японские учёные обещают года через четыре (ну пять) явить миру живого мамонта. Плейстоценовый парк на Колыме? Между прочим, он уже существует! (Иллюстрация Wikimedia.) Предыдущие (предпринятые в 1990-е годы) попытки выделить ядра…
Пчёлы, как известно, ориентируются по солнцу. А если облачно? Оказывается, они угадывают положение светила по поляризованному свету, подобно викингам! Дети солнца (фото jon.noj)В отличие от последних, пчёлам не нужны никакие…
Супервулкан на архипелаге Санторин резко активизировался в начале 2011 года - в январе прошлого года под вулканом внезапно появился гигантский "пузырь" из свежей магмы, чье появление привело к повышению высоты…
Исследователи подтвердили, что за пределами Африки около 30 тысяч лет назад жили не только Homo sapiens и неандертальцы, но и третья группа гоминидов. Денисова пещераМеждународная группа исследователей, возглавляемая Сванте Паабо (Svante…
В нашем кишечнике живёт множество полезных бактерий, и потому перед иммунной системой при появлении патогенного чужака встаёт непростой вопрос: как отличить полезную бактерию от вредной? Причём иммунитет должен быть очень…
Американские палеонтологи продолжают наращивать число известных видов рогатых динозавров – цератопсов. На сей раз они описали раннего хасмозавра из Монтаны, назвать которого решили почему-то в честь большой кайнозойской кошки –…