Мир дикой природы на wwlife.ru
Вы находитесь здесь:Заповедники>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Исследователи постоянно пытаются заставить бактерии производить какие-нибудь вещества, от белков до топливных углеводородов, и самая типичная технологическая проблема при этом — малый выход требуемых молекул. Обычно такие молекулярно-биотехнологические манипуляции сводятся к тому, что в геном бактерии вставляют ген, кодирующий нужный белок; таких генов может быть несколько, и эти белки могут иметь самые разные свойства. Однако синтез мРНК на ДНК и последующий синтез белковой молекулы на мРНК подчиняются множеству факторов, влияющих, разумеется, на активность всей этой машинерии. И необходимость их учёта является постоянной головной болью тех, кто занимается подобными молекулярно-генетическими работами. 

Рибосомы на двух нитях мРНК; от рибосом отходят фрагменты синтезируемой полипептидной цепи. (Фото Visuals Unlimited / Corbis.)Рибосомы на двух нитях мРНК; от рибосом отходят фрагменты синтезируемой полипептидной цепи. (Фото Visuals Unlimited / Corbis.)Один из таких факторов связан с редкими кодонами — триплетами нуклеотидов, соответствующих тем или иным аминокислотам. Как известно, все аминокислоты, использующиеся при синтезе белка, кодируются в генетическом коде «словами» из трёх нуклеотидных букв; однако таких «слов» в коде гораздо больше, чем аминокислот, то есть, получается, одной и той же аминокислоте соответствует больше одного кодона. Эти кодоны используются в генах с разной частотой, одни чаще, другие реже; последние поэтому и называются редкими. 

Некоторое время назад исследователи заметили, что у бактерий такие редкие кодоны тяготеют к началу кодирующей области в гене, и на мРНК рибосома, стало быть, сталкивается с ними в первую очередь. Более того, чем больше редких кодонов оказывалось в начале, тем больше белка синтезировалось на такой матрице. Никто не знал, почему так происходит, но предположения выдвигались самые разные. По одной гипотезе, редкие кодоны служат тормозами рибосомам: на таких кодонах рибосоме приходится ждать, когда к ней придёт аминоацилированная транспортная РНК с соответствующей кодону аминокислотой. Потом, на обычных кодонах, рибосома постепенно разгоняется. Если же в начале редких кодонов нет, то рибосомы сразу ускоряются, и случается так, что сзади идущая нагоняет переднюю, сталкивается с ней, и эта авария прекращает биосинтез. А если в начале мРНК стоят редкие кодоны, то они, как регулировщики скорости, делают так, что все рибосомы добираются до конца мРНК, тем самым увеличивая продукцию белка. 

По другим предположениям выходило, что редкие кодоны как-то меняют пространственную укладку мРНК, но эти изменения опять же влияют на скорость движения рибосом.

 Проверить эти гипотезы экспериментально попробовали трое исследователей изИнститута Вайса при Гарвардском университете (США). Сначала они выяснили, как сильно редкие кодоны увеличивают продукцию белка. Для этого редкие и обычные кодоны вставлялись в зелёный флюоресцентный белок, который вводился в бактерию. По тому, как бактерия светилась, можно было понять, как работают начальные кодоны.

Как пишут авторы работы в Science, появление лишь одного редкого кодона могло усилить синтез белка в 60 раз.

Во-вторых, исследователи сравнили скорость эффективность синтеза белка на мРНК с редкими кодонами и на мРНК без редких кодонов, но обладающих пространственной структурой, замедляющей рибосомы. В итоге оказалось, что и то и другое действительно увеличивает эффективность синтеза, но редкие кодоны работают сами по себе и их эффект от структуры мРНК не зависит. 

Фундаментальные и практические выводы из полученных результатов очевидны: удалось не только экспериментально подтвердить гипотезу, касающуюся одной из самых общих проблем в молекулярной биологии, но и показать, с помощью каких уловок можно заставить бактерии производить больше биотехнологического продукта.

 


Источник: КОМПЬЮЛЕНТА


Почти у всех живых организмов, от бактерий до млекопитающих, есть биологические часы, синхронизирующие биохимию, физиологию и поведение с суточной сменой дня и ночи. Но не нужно большого труда, чтобы заметить, что многие виды живут ещё и по другим, несуточным часам, следя за приливами или, например, сменой времён года. Можно, конечно, предположить, что приливно-отливные или сезонные часы управляются тем же механизмом, что и обычные суточные. Однако до сих пор учёные не знали, так ли это или же разные виды циклической активности имеют свои часы.

Eurydice pulchra (фото bathyporeia).Eurydice pulchra (фото bathyporeia).Ясность в этот вопрос внесла пара морских членистоногих... точнее, две группы учёных, которые исследователи их и независимо пришли к одинаковым выводам, касающимся присутствия у организмов разных часов для разных надобностей.

Караламбос Кириаку из Лестерского университета (Великобритания) и его коллеги изучали поведение Eurydice pulchra, маленького (менее 1 см в длину) веслоногого рачка, который плавает и кормится в прибрежных морских водах во время прилива, а при отливе прячется в песок. То есть активность Eurydice pulchra подчинена приливно-отливному циклу с периодом 12,4 ч. Кроме того, панцирь рачка покрывают тёмные пятна, которые служат чем-то вроде защиты от солнца и узор которых меняется днём и ночью. К суточной — не приливно-отливной — активности относятся и некоторые особенности поведения Eurydice pulchra: если прилив днём, рачки плавают шустрее, чем во время ночного прилива.

Platynereis dumerilii (фото Douglas P. Wilson).Platynereis dumerilii (фото Douglas P. Wilson).Исследователи держали рачков месяц в темноте, чтобы рассинхронизировать циклы дня и ночи и периодичность в поведении и узоре пятен у Eurydice pulchra. А чтобы рачки чувствовали «приливы и отливы», сосуд, в котором они жили, вибрировал в течение 10 минут каждые 12,4 часа. В журнале Current Biology авторы пишут, что при расстроенных суточных часах приливно-отливные часы у Eurydice pulchra прекрасно работали. Более того, когда у рачков отключали гены циркадного ритма, на их приливно-отливных часах это никак не сказывалось.

Другая научная группа под руководством Кристин Тессмар-Райбле из Венского университета (Австрия) работала с червём нереидой Platynereis dumerilii (который, в частности, известен тем, что у него есть фоторецепторы, независимые от глаз, но при этом похожие на фоторецепторы человека). Некоторые особенности поведения Platynereis dumerilii подчинены лунному циклу: икрометание, к примеру, происходит у этих червей в новолуние.

Исследователи смещали лунный ритм червей, по-разному освещая их по ночам, и это влияло на поведение животных и днём, и ночью. Однако у Platynereis dumerilii есть не только лунный, но и обычный суточный ритм, и, как и в случае с E. pulchra, его нарушение не влияло на «лунные» изменения в поведении червей. То есть лунный ритм сказывался на суточном, но не наоборот. Результаты экспериментов исследователи опубликовали в Cell Reports.

Хронобиолог Марта Мерроу из Мюнхенского университета Людвига — Максимилиана (Германия) надеется, что эти работы помогут учёным перестать зацикливаться исключительно на суточных ритмах, пытаясь объяснить с их помощью все циклические перемены, происходящие с живыми организмами.

Если у морских ракообразных для лунного и приливного цикла есть свои биологические часы, то, наверное, стоит поискать отдельные часы и у человека — скажем, для менструального цикла. Кроме того, по некоторым сведениям, даже сон, который, как считается, подчиняется циркадным ритмам, испытывает сильное воздействие лунного цикла, что, возможно, тоже говорит о взаимовлиянии друг на друга похожих, но всё же разных биологических «часовых механизмов».


Источник: КОМПЬЮЛЕНТА


Растения должны точно знать время, когда цвести: чуть раньше положенного или чуть позже — и можно потерять все цветы, остаться без семян, уступить конкурентам в эволюционной гонке. Чтобы вовремя зацвести, нужно учесть множество внутренних и внешних факторов, увязать гормональный статус с продолжительностью светового дня, температурой и пр. Стоит ли удивляться, что цветение у растений контролируется целой сетью генов? 

A. thaliana, не цветущий при низкой температуре (слева) и цветущий при высокой (справа) (фото авторов работы).A. thaliana, не цветущий при низкой температуре (слева) и цветущий при высокой (справа) (фото авторов работы).Исследователи довольно долго изучали эту самую сеть, но молекулярные механизмы, отвечающие, в частности, за «температурные датчики», оставались во многом неясными. Ясность тут удалось внести группе учёных из Института биологии развития Общества Макса Планка (Германия), которые сосредоточились на двух температурных генах — FLM (Flowering Locus M) и SVP (Short Vegetative Phase). А модельным объектом послужил старый добрый Arabidopsis thaliana, сиречь резуховидка Таля.

Как пишут Маркус Шмид и его коллеги в Nature, мРНК, считываемая с гена FLM, претерпевает альтернативный сплайсинг, то есть при созревании новосинтезированной мРНК из неё в зависимости от ситуации вырезаются те или иные куски, а оставшиеся монтируются друг с другом, так что в результате с одного гена можно получить разные матрицы для синтеза белка. У FLM есть два основных варианта мРНК — FLM-β и FLM-δ, и их соотношение как раз зависит от температуры: при низкой преобладает одна мРНК FLM, при высокой — другая. Молекулярная подгонка осуществляется довольно быстро: при возрастании температуры с 16 до 27 °C растению достаточно суток, чтобы сменить соотношение видов мРНК. Но регуляцию цветения разные варианты FLM выполняет в союзе с белком SVP. Когда холодно, белок FLM-β связывается с SVP, и этот белок-белковый комплекс взаимодействует с регуляторными областями в ДНК, которые отвечают за цветение. Комплекс FLM-β с SVP подавляет активность этих зон, и растение на холоде не цветёт. Если же температура повышается, то вслед за ней растёт и уровень FLM-δ, который вытесняет «холодовый» вариант из комплекса с SVP. «Тепловой» комплекс FLM-δ и SVP с регуляторами цветения в ДНК связывается плохо, и эти регуляторы активируются и запускают формирование цветков. 

То есть термодатчиком тут служит один и тот же ген, который при разных температурах даёт два разных, конкурирующих друг с другом белка, а конкретным молекулярным инструментом выступает альтернативный сплайсинг.

Очевидно, существует и какой-то механизм или особенность гена FLM, от которых зависит переключение сплайсинга с одного варианта на другой. Не секрет, что один и тот же вид растения может цвести в тех или иных широтах в разное время. И, скорее всего, это связано с вариациями в гене FLM, который переключается на разные варианты при разных пороговых температурах.

 


 

Источник: КОМПЬЮЛЕНТА


 

Специалисты по климатическому моделированию обожают воспроизводить интересные периоды в истории земного климата — и чтобы изучить, как в то время обстояли дела, и ради проверки самих моделей. Одна из таких эпох —плиоцен: тогда, около 3 млн лет назад, концентрация CO2 в атмосфере была в последний раз так же высока, как сегодня. 

Арктик-Бей, Нунавут, Канада (фото Phyllis Harris). Арктик-Бей, Нунавут, Канада (фото Phyllis Harris). В какой-то мере по плиоцену можно судить о результатах эксперимента, который мы сейчас нечаянно проводим. Вопрос ставится так: на что похожа Земля, когда атмосферное содержание углекислого газа равно 400 частям на миллион? Обратите внимание: речь идёт не о том, насколько теплее станет через три–четыре десятилетия, а о том, в какой точке медлительная климатическая система наконец-то закончит реагировать на уровень CO2 и установится новое долгосрочное равновесие.

Итак, в плиоцене на планете было теплее, чем сейчас, в среднем на 2–3 °C, а уровень моря — выше сегодняшнего где-то на 30 м. В самую тёплую фазу плиоцена Западно-Антарктический ледяной щит приказал долго жить, и низменную часть континента, освободившуюся ото льда, затопило. В Арктике жили верблюды. 

Новое исследование посвящено сравнению показаний нескольких климатических моделей, которые попытались воспроизвести температурные и экосистемные характеристики плиоцена. Естественно, прежде чем мы сможем доверять моделям, их результаты должны совпасть с палеоклиматическими реконструкциями. Несовпадения могут означать одно из трёх: либо модели врут (и на то мириады причин), либо неверны реконструкции (то ли температура в действительности была другой, то ли с температурой всё в порядке, но напутали с временем), либо, наконец, ошибаются и те и другие. Разобраться, кто прав, кто виноват, нелегко. 

В данном случае опирались на реконструкции, в основе которых лежит анализ растений из осадочных кернов. Если комфортный диапазон того или иного вида известен, можно рассчитать среднюю температуру и тем самым представить себе, какой была экосистема в данном месте в данный период. 

Хотя среднемировые значения моделей не промахнулись мимо плиоцена, они недооценили (в разной степени) потепление в окрестностях Арктики. Например, с реконструкциями температуры в Сибири они разминулись на целых 10 °C и больше. По-видимому, в плиоцене арктическая амплификация (различные виды обратной связи, из-за которых полюса, и особенно Арктика, нагреваются намного сильнее тропиков) была сильнее, чем показали модели. 

Рост концентрации CO2 до плиоценового максимума и возня с фазами орбитального цикла, от которых зависит, какое количество солнечного излучения достигает Земли, дали больше похожие на правду результаты для температуры в Арктике, но ухудшили ситуацию в остальных регионах. 

Исследователи сетуют на неопределённость климатических реконструкций, из-за которой сложно выявить причину несовпадений между этими последними и моделями. Реконструкции, которые представляют стоящие рядом временные точки, дают обманчивую картину тенденций мировой температуры, смешивая данные тёплых и холодных периодов. Авторы заключают: «В будущем, сравнивая наличные данные о плиоцене с показаниями моделей, следует опираться на временные отрезки, очерченные орбитальным циклом». 

В общем, на этот раз учёные не смогли понять, куда движется наш климат, ограничившись техническими указаниями, которые понятны и полезны только разработчикам моделей. Тем не менее получен ещё один намёк на то, как Арктика реагирует на потепление, и это важно, ибо она оказывает огромное влияние на климат всей планеты. Модели, которые ближе всех подошли к реконструкциям арктического климата в плиоцене, обладали наибольшими показателями чувствительности климатической системы к парниковому эффекту. Эта чувствительность остаётся одной из самых спорных тем климатической науки, и то, что она ближе к максимальным значениям вероятного диапазона, — очень тревожный сигнал. Иначе говоря, температура воздуха в ответ на рост уровня углекислого газа увеличивается катастрофически. 

Результаты исследования опубликованы в журнале Nature Climate Change.

 


Источник: КОМПЬЮЛЕНТА

24 сентября на западе Пакистана произошло землетрясение магнитудой 7,7. Погибло более 260 человек, сотни тысяч остались без крова. Одновременно у берегов страны со дна моря поднялся остров, который сразу же стал объектом всеобщего любопытства. 

Ищут рыбу. (Фото Gwadar Government / AP.) Ищут рыбу. (Фото Gwadar Government / AP.) Учёные, однако, считают, что новая суша просуществует недолго. «Быть может, пару месяцев, — полагает геофизик Билл Барнхарт из Геологической службы США. — Это просто большая куча грязи, которая поднялась вместе с морским дном».

Подобные острова порой создаются так называемыми грязевыми вулканами, возникающими тут и там по всему свету. По-видимому, этот случай не исключение. 

Информационные агентства сообщают, что пакистанский остров внезапно появился близ порта Гвадар после землетрясения. В высоту он 18–21 м, в ширину — 91 м, в длину — 37 м, если верить Франс Пресс. Одни говорят, что он в двух шагах от берега, другие — в двух километрах. До эпицентра землетрясения — 400 км. 

Хотя на фотографиях видны камни, г-н Барнхарт настаивает, что в основном остров сложен илом с морского дна. На нём нашли мёртвого осьминога и множество рыбы. Похожее грязевое сооружение возникло у берегов Пакистана после землетрясения в 2011 году. Оно просуществовало один или два месяца, а потом его просто смыло. 

Грязевые вулканы далеко не всегда порождают сушу. Г-н Барнхарт вспоминает калифорнийское землетрясение 2010 года, после которого со дна поднялись крупные пузыри углекислого газа, но, помимо активного бульканья, не было ничего интересного, никаких новых островов. 

Нет сомнений, пакистанские учёные вскоре измерят остров и расскажут, как он сформировался. Пока можно только предполагать, что сейсмические волны, порождённые землетрясением, заставили некий жидкий материал под морским дном расшириться. Кора треснула, и грязь поднялась на поверхность. 

Процесс аналогичен сжижению: сейсмические волны превращают обычно твёрдые слои в текучую жидкость, зачастую с катастрофическими результатами для зданий и людей на поверхности Земли. Г-н Барнхарт скептически относится к сообщениям СМИ о том, что той самой жидкостью были гидраты метана. Свободный метан, углекислый газ, вода — что угодно, но гидраты метана залегают гораздо глубже, подчёркивает специалист. 

Эпицентр землетрясения располагался слишком далеко от береговой линии, чтобы вызвать широкомасштабные изменения, да и само землетрясение было не того типа, чтобы привести к крупному поднятию. В 1960 году землетрясение в Чили магнитудой 9,5 вознесло целые деревни на несколько метров ввысь, но то было землетрясение с вертикальным смещением по краям литосферных плит, а в Пакистане пласты сместились только горизонтально.

 


Источник: КОМПЬЮЛЕНТА


С первого взгляда, конечно, не поймёшь, но на самом деле у нас, людей, есть фамильное сходство с Entelognathus primordialis. Рыба, жившая 419 млн лет на территории нынешнего Китая, — самое раннее из известных животных с современной челюстью. 

Передняя-правая часть образца. Видны защитные пластины, верхняя и нижняя челюсти. (Изображение авторов работы.)Передняя-правая часть образца. Видны защитные пластины, верхняя и нижняя челюсти. (Изображение авторов работы.)Это новейшее дополнение к классу панцирных рыб, существовавшему 430–360 млн лет назад. Подобно большинству позвоночных одни из них обладали костистым черепом и челюстями, а другие — простой клювообразной челюстью из костяных пластин. Палеонтологи убеждены, что челюсти этих рыб не имеют никакого отношения к нашим.

Считается, что лицевая анатомия плакодерм оказалась потерянной для эволюционной истории, что последний общий предок современных челюстных позвоночных не обладал ясно выраженными челюстными костями и был похож скорее на акулу, со скелетом в основном из хрящей и самое большее — покрытием из маленьких костяных пластин. Общепринятая теория утверждает, что костные рыбы возникли позже и независимо приобрели крупные лицевые кости, а также «современную» челюсть. Случилось так, что именно эти рыбы стали господствовать в морях и в конце концов дали начало сухопутным позвоночным. 

Только что описанная бронированная рыба жила 419 млн лет назад, но уже обладала костной челюстью, как у современных рыб и большинства остальных позвоночных. (Реконструкция Brian Choo.)Только что описанная бронированная рыба жила 419 млн лет назад, но уже обладала костной челюстью, как у современных рыб и большинства остальных позвоночных. (Реконструкция Brian Choo.)Однако новое исследование переворачивает теорию с ног на голову. Палеонтолог Минь Чжу из Института палеонтологии позвоночных и палеоантропологии Китайской академии наук и его коллеги описали Entelognathus primordialis по образцу, который сохранился намного лучше, чем большинство других панцирных рыб. И этот экземпляр обладает челюстью, которая напоминает челюсть костных рыб, хотя он старше самых ранних акул и костных рыб. 

Принимая это во внимание, авторы пересматривают родословную челюстных позвоночных. По их мнению, вполне возможно, что современное костистое лицо возникло ещё у предков Entelognathus primordialis. Иными словами, люди больше похожи на последнего общего предка современных челюстных позвоночных, чем считалось. И акулы не такие уж примитивные существа, как привыкли думать палеонтологи: вероятно, акулы расстались с костями ради адаптации. 

Однако перегруппировка генеалогии ещё не завершена, предупреждают авторы в сопутствующем комментарии. Остаётся шанс на то, что Entelognathus primordialis приобрела свою челюсть независимо от костных рыб, то есть ни от кого её не унаследовала. Возможно также, что обнаруженное сходство — всего лишь иллюзия.

 Результаты исследования опубликованы в журнале Nature.

 


 

Источник: КОМПЬЮЛЕНТА


 

Британские и немецкие палеонтологи сообщили о находке древнейшего представителя клювоголовых – предка современных гаттерий – возрастом 240 млн лет. Это открытие удлиняет историю надотряда Lepidosauria сразу на 13 млн лет и вносит значительные коррективы в современные научные представления об истории развития пресмыкающихся.

250913nbcgfxchvb Доктор Марк Джонс из Университетского колледжа Лондона вместе с коллегами из университета Гетеборга исследовал две ископаемые челюсти, обнаруженные в триасовых отложениях близ южногерманского города Веллберг (Vellberg). Ученые смогли достаточно точно определить их возраст – он составляет 238-240 млн лет назад и соответствует среднему триасу. По мнению ученых, обе челюсти принадлежат древнейшим представителям отряда клювоголовых (Sphenodоntida), который вместе с ящерицами и змеями образует надотряд лепидозавров (Lepidosauria).

Таким образом, можно считать установленным, что лепидозавры впервые выходят на историческую сцену вскоре после Великого пермского вымирания, когда фауна только начинала восстанавливаться в новых для себя условиях. "Средний триас представлял собой время, когда мир уже пришел в себя после пермского вымирания, но динозавры еще не успели захватить господство над ним. Именно тогда впервые появились такие хорошо знакомые современному человеку группы, как лягушки и ящерицы", – рассказал Марк Джонс.

 Мелкие зубы и изящные очертания обеих найденных в Германии челюстей указывают на то, что самые древние гаттерии охотились главным образом на насекомых. Напомним, что их современные родственники, обитающие на островах близ Новой Зеландии, также питаются жуками, пауками, мелкими ящерицами и, иногда, птицами.

 Эволюционная история лепидозавров долгое время являлась сложным вопросом для современной науки, поскольку данные палеонтологической летописи и теоретические модели, построенные на основании "молекулярных часов", плохо увязывались между собой. "Некоторые оценки, основанные на молекулярных данных, предполагали, что ящерицы впервые появились около 290 млн лет назад, – отметила соавтор исследования Лиза Андерсон. – По мнению палеонтологов, это слишком давно".

 До открытия немецкой триасовой гаттерии самые ранние остатки лепидозавров были  известны из среднего триаса (227 млн лет назад), и принадлежали уже не совсем примитивным видам, явно не годящимся на роль общего предка всех Lepidosauria. Среди них можно назвать, например, Brachyrhinodon, детали строения которого подразумевают уже некоторый период эволюции от более примитивных форм.

 В то же время по данным "молекулярных часов", рассчитывающих сроки появления тех или иных новых групп по количеству накопившихся в геномах их потомков мутаций, общий предок лепидозавров жил в период с 226 до 289 млн лет назад. В то же время для кроун-группы чешуйчатых (ящериц и змей) эти данные составляют от 179 до 294 млн лет. Этот разнобой в датировках вносит заметную неопределенность в модель эволюции лепидозавров в целом.

 Как обычно, на помощь теории пришла практика. Обнаружение в среднем триасе вполне сформировавшегося клювоголового вынуждает отнести время формирования всех лепидозавров еще дальше – в пермский период. При этом окрестности Веллберга должны стать важным ресурсом для прояснения эволюционной истории этой группы рептилий. Что касается эволюции змей и ящериц, до основное их разнообразие, в том числе гекконы и сцинки, появились не ранее 150 млн лет назад, уже после того, как суперконтиненты Гондвана и Лавразия распалась на отдельные континенты, пишет PhysOrg.

 Статья "Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)" доступна на сайте BMC Evolutionary Biology

 


Источник: PaleoNews


Лесной конёк, или лесная шеврица (лат. Anthus trivialis)

Лесной конёк, или лесная шеврица (лат. Anthus trivialis)Лесной конёк, или лесная шеврица (лат. Anthus trivialis), фото википедия

Голос  Лесной шеврицы (лесного конька)

Лесной конёк, или лесная шеврица (лат. Anthus trivialis)

Лесной конёк, или лесная шеврица (лат. Anthus trivialis)Лесной конёк, или лесная шеврица (лат. Anthus trivialis), фото википедия

Голос  Лесного конька (лесной шеврицы)

Вторник, 24 Сентябрь 2013 21:16

Конёк краснозобый (лат. Anthus cervinus)

Краснозобый конёк (лат. Anthus cervinus)

Краснозобый конёк (лат. Anthus cervinus)Краснозобый конёк (лат. Anthus cervinus), фото википедия

Голос  Краснозобого конька

Страна

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Сенсация: торозавр – это не трицератопс!

10-10-2013 Просмотров:10212 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Сенсация: торозавр – это не трицератопс!

Дискуссии о систематике рогатых динозавров-цератопсов в Соединенных Штатах пошли на новый виток. Специалист Йельского университета Николас Логрич опубликовал работу, доказывающую, что Torosaurus и Triceratops представляют собой два разных рода и...

Птерозавры помогли цветам завоевать мир

18-07-2012 Просмотров:15804 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Птерозавры помогли цветам завоевать мир

 Недавно палеонтологи из Испании смогли разгадать загадку, решить которую оказалось не под силу даже Дарвину. Они выяснили, каким образом миллионы лет тому назад цветковые растения смогли быстро расселиться по всей...

Открыта любопытная деталь формирования косяков рыб

26-06-2011 Просмотров:8980 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Открыта любопытная деталь формирования косяков рыб

Оказывается, положение особи внутри косяка может меняться в зависимости от её физической подготовки. Как выяснили британцы, оптимальное размещение сильных и слабых рыбок позволяет всему косяку развивать большую скорость. В эксперименте были...

В Испании обнаружен гигантский непрыгающий кролик

23-03-2011 Просмотров:12957 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В Испании обнаружен гигантский непрыгающий кролик

Останки крупного животного обнаружили на острове Менорка палеонтологи из Испании. Позже выяснилось, что принадлежат они вымершему примерно 3-5 миллионов лет назад кролику, вес которого достигал 12 килограммов. Реконструкция гиганта: существо показано...

Панцирные динозавры питались рыбой

07-09-2016 Просмотров:6553 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Панцирные динозавры питались рыбой

Анкилозавры, тяжело бронированные древние ящеры, немного напоминающие танки, традиционно воспринимаются нами как классические травоядные – медленные, массивные, неповоротливые. Находка китайскими палеонтологами скелета анкилозавра с остатками рыб на месте кишечника переворачивает...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.