Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Микробиологии


Новости Микробиологии (110)

Примерно пятая часть земной биосферы сосредоточена в глубоких слоях земной коры. На днях ученые подсчитали, что масса подземных микроорганизмов, обитающих при высоких давлениях и температурах, без кислорода, солнечного света, в бедной питательными веществами среде, превышает 23 миллиарда тонн. Не исключено, что подобные формы жизни существуют и на других планетах.

Кто любит погорячее

НематодаНематодаЧетыре миллиарда лет назад, когда Земля только сформировалась как твердое тело, ее окружала атмосфера из ядовитых газов. На поверхности, стерилизованной солнечным излучением, температура доходила до 78 градусов Цельсия, не было ни кислорода, ни органики. Сложно представить, что в таких экстремальных условиях зародилась жизнь. Тем не менее это произошло.

Ученые полагают, что первыми обитателями нашей планеты стали одноклеточные бактерии, способные размножаться при температуре выше пятидесяти градусов. Их называют термофильными — любящими тепло.

Термофильные микроорганизмы обитают на Земле и сейчас — в горячих источниках, вокруг гейзеров, на вулканах, черных курильщиках в глубоководных частях океана. В 1980-х их обнаружили в горных породах, поднятых из скважин. Возможно, биосфера не ограничивается поверхностью и тонким слоем почвы, предположили ученые. Подземные обитаемые слои назвали глубинной биосферой. В то время думали, что ее населяют только сообщества бактерий и архей. Вопрос был в том, насколько глубоко она простирается.

Сейчас считается, что глубинная биосфера начинается примерно с пятидесяти метров, куда уже не проникает биологическое вещество с поверхности, и заканчивается где-то на четырех или даже пяти километрах. Температура там может превышать сто градусов Цельсия.

Глубокие недра горячие, но не всегда сухие. По трещинам циркулирует жидкость в виде флюидов. Вода просачивается с поверхности, из артезианских источников или имеет магматическое происхождение.

Как и чем питаются глубинные микроорганизмы, ученые еще не до конца разобрались. Известно, что некоторые группы способны перерабатывать железо и серу. Углерод для строительства организма поступает из сероводорода, аммиака, нефти, природного газа, источников которых под землей множество. Вместо фотосинтеза у подземных жителей хемосинтез — то есть энергию они получают не от Солнца, а в результате химических реакций.

Живая темная материя

Ученые полагают, что часть термофильных микробов скрылась в недрах, когда природные условия на поверхности изменились. Именно этим микроорганизмам планета обязана кислородной атмосферой, в которой образовались существа нового поколения, изобретшие фотосинтез.

Микроорганизмы, обитающие в глубинной биосфереМикроорганизмы, обитающие в глубинной биосфереТермофилы найдены в шахтах глубиной несколько километров, в подземных хранилищах газа, пластовых водах нефтяных месторождений и гидротермальных источниках глубинного происхождения. Многие такие микроорганизмы изолированы от внешнего мира в течение тысяч и даже миллионов лет. Это доказали, к примеру, российские ученые из Центра биоинженерии РАН, расшифровавшие геном археи Thermococcus sibiricus из нефтяного месторождения Самотлор.

Бактерии, проведшие под землей около двадцати миллионов лет, обнаружили в 2012 году японские ученые. В скважине, пробуренной на глубину 2,5 километра под дном океана, нашли тонкие угольные пласты, погруженные в газовый резервуар. Гипотеза о том, что природный метан произвели бактерии, обитающие в угле, подтвердилась в лабораторных опытах.

По всей видимости, в глубинной биосфере есть и вирусы — доклеточные формы, паразитирующие на бактериях. Как полагают американские ученые, вирусы регулируют численность популяций бактерий и влияют на их эволюцию.

Самое удивительное, что на большой глубине встречаются и многоклеточные организмы. В 2015 году бельгийские ученые взяли пробы флюида в золотых рудниках Копананг в ЮАР на глубине 1,4 километра. По их данным, жидкость представляла собой реликт возрастом более 12 тысяч лет. Увиденное исследователи описали "как очень населенное место". Среди обитателей флюида обнаружили нематоду — похожее на червя существо.

Марсианские хроники

Биотехнологи используют термофильные микроорганизмы для практических нужд. Производят ферменты, выдерживающие высокие температуры, что востребовано в молекулярной биологии, медицинской диагностике, сельском хозяйстве. Специально выведенные штаммы, поедающие тяжелые металлы, радионуклиды, применяют как очистители промышленных стоков. Глубокоземные микробы способны перерабатывать большие объемы бытовых отходов в сырье, которое затем идет на биотопливо.

Глубинная биосфера Земли навела ученых на мысль о том, что и на других планетах жизнь могла скрыться в недрах. Например, на Марсе. К тому моменту как Земля стала обитаема, парниковый эффект создал на Красной планете невыносимые условия. Если там была жизнь, скажем, принесенная, как и к нам, кометами, древние микроорганизмы могли уйти под поверхность, где выжить проще.

Некоторые исследователи допускают существование на глубине жидкой или замерзшей воды.

На Марсе не так много мест с признаками водных потоков или океана, однако ученые из Великобритании и США предположили, что в кратере Маклафлин — одном из самых глубоких на планете — есть глина, обогащенная магнием, железом и карбонатами. Это может указывать на локальный выход подземных вод на поверхность. Значит, искать жизнь имеет смысл в более глубоких слоях.
 


Источник: РИА Новости

Заражение крови приводит к быстрой гибели организма и массовым нарушениям в его работе из-за того, что некоторые болезнетворные бактерии умеют "перепрограммировать" клетки иммунитета и заставляют их атаковать живые ткани, говорится в статье, опубликованной в журнале PLoS Biology.

Стрептококки "перепрограммируют" иммунные клеткиСтрептококки "перепрограммируют" иммунные клетки"Мы обнаружили, что так называемые MAIT-клетки не помогают бороться с инфекцией, а наоборот, являются ее пособниками. Они являются главным источником интерферона-гамма, сигнальной молекулы, связанной с воспалениями и являющейся одной из главной причин наступления смерти. Соответственно, подавление этих клеток может помочь людям избегать развития воспалений и смерти", — рассказывает Мансур Хаерифар (Mansour Haeryfar) из Западного университета в Лондоне (Канада).

Заражение крови, как объясняют ученые, возникает в результате того, что иммунные клетки массово гибнут  от токсинов, содержащихся в оболочке микробов, проникших в кровоток. Попав в кровь и иммунные клетки, эти вещества вызывают воспалительную реакцию и насыщают ее химически агрессивными молекулами. В результате этого работа всей кровеносной и иммунной системы нарушается, и в некоторые органы кровь перестает поступать вообще.

Организм человека и других животных пытается защититься от подобного исхода, вырабатывая набор противовоспалительных белков, помогающих клеткам поддерживать жизнедеятельность в стрессовых условиях. Они помогают далеко не всегда, и примерно в половине случаев человек не переживает подобных нарушений и гибнет.

Хаерифар и его коллеги обнаружили, что у бактерий есть "пособники" внутри организма, так называемые MAIT-клетки. Они считаются своеобразной скорой помощью организма, первой реагирующей на появление инфекций. Как правило, они концентрируются в кровеносных сосудах, коже и других точках, куда бактерии попадают чаще всего, и управляют работой других иммунных клеток, вырабатывая большой набор химических сигналов при встрече с патогенами.

Наблюдая за их реакцией на колонии обычных стафилококков и стрептококков, ученые заметили, что эти клетки начинали вести себя крайне необычно – они как будто сходили с ума и начинали выделять гигантское количество белковых сигнальных молекул, которые заставляли другие иммунные клетки атаковать все подряд, а не только микробов.

Подобное "распыление внимания" иммунной системы приводит к последствиям, крайне благоприятным для микробов, в том числе к тому, что иммунитет фактически начинает уничтожать зараженный организм и при этом быстро истощается. Когда воспалительная реакция заканчивается, то MAIT-клетки почти полностью перестают обращать внимание на микробов, что дополнительно облегчает им жизнь и открывает дорогу для вторичных инфекций.

Соответственно, блокировка или подавление работы MAIT-клеток при развитии заражения крови может спасти жизнь человеку и помочь избежать ослабления иммунитета после выхода из кризисного состояния. Сейчас ученые работают над созданием антител, которые бы могли временно "отключать" MAIT-клетки при наступлении сепсиса.



Источник: РИА Новости


Группа исследователей из Университетского колледжа Лондона раскрыла механизм, с помощью которого возникли отдельные элементы РНК – рибонуклеотиды. Этот процесс был необходим для возникновения РНК – предшественницей жизни на Земле. Пресс-релиз исследования доступен на сайте Phys.org.

200517 1485685925Нуклеотиды – это молекулы, делящиеся на два класса: пурины и пиримидины. Считалось, что они не могли образоваться вместе из-за того, что условия их синтеза несовместимы. Однако результаты нового исследования показали, что они могут формироваться вместе. Речь идет о являющихся пуринами молекулах 8-оксо-аденозин и 8-оксо-инозин. Ученые установили возможность их образования в той же среде, что и пиримидины.

Теперь исследователи намерены выяснить, могут ли цепочки из 8-оксо-пуринов кодировать последовательность белка, что подтвердит их возможное участие в формировании РНК-мира.

РНК-мир – гипотетический этап возникновения жизни, в ходе которого хранение генетической информации реализовывали ансамбли рибонуклеиновых кислот. В дальнейшем на основе РНК-мира появились ДНК и белки, а РНК стала нести посредническую функцию.


Источник: РИА Новости


Один из распространенных вирусов, вызывающих простуду, люди подхватили от верблюдов. Такое неожиданное открытие сделали ученые из Университетского госпиталя Бонна (Германия), под руководством професссора Кристиана Дростена (Christian Drosten). Их статью, опубликованную в журнале Proceedings of the National Academy of Sciences, пересказывает газета The Independent.

230816Взяв анализы крови у примерно тысячи верблюдов, исследователи неожиданно обнаружили в них патогены, связанные с вирусом HcoV-229E. В 6% случаев именно этот вирус вызывает у людей простуду. Его образцы, взятые у верблюдов, оказались способны заражать людей — так что именно таким образом, судя по всему, мы его когда-то и подхватили.

Интересно, что команда из Бонна первоначально изучала другой вирус — коронавирус, вызывающий у человека смертельно опасный ближневосточный респираторный синдром (БВРС). В крови у верблюдов он тоже встречается и, судя по всему, попал к людям опять же от них.

«Вирус БВРС — странный патоген: периодически случаются маленькие локальные вспышки заболеваемости им, например, в больницах. К счастью, этот вирус еще не адаптировался по-настоящему к людям, и потому до сих пор не способен глобально распространяться», — объяснил профессор Дростен.

Однако теперь ученые опасаются, что раз у вируса простуды HcoV-229E, подхваченного тоже от верблюдов, получилось приспособиться к нашему организму, то и возбудитель БВРС может повторить его «успех». И тогда нас ожидает эпидемия новой опасной болезни.

Если это случится, то будет уже далеко не первый случай заражения людей опасной болезнью от животных. Взять например птичий грипп, убивший в 2003-2008 годах сотни человек в разных странах (последний летальный исход был зафиксирован в 2014 году в Канаде).


Источник: Научная Россия


Биологи из Карлова университета в Праге (Чехия), под руководством постодока Анны Карнковской (Anna Karnkowska), судя по всему, обнаружили первый эукариотический (то есть имеющей в своих клетках ядра) организм, лишенный митохондрий — органелл, служащих клеткам «энергетической станцией». Статью об этом, опубликованную в журнале Current Biology, пересказывает сайт журнала Science.

МитохондрияМитохондрияУникальный организм, обнаруженный учеными — это одноклеточное животное, жгутиконосец из рода Monocercomonoides. Забавно, что чешские биологи выделили его из экскрементов шиншиллы, живущей дома у одного из сотрудников лаборатории. Поскольку жгутиконосец относился к группе микробов, по поводу которой у ученых было подозрение, что у некоторых из ее представителей нет митохондрий, Карнковская с коллегами решили его проверить.

Расшифровав полный геном эукариота, авторы статьи не нашли в нем никаких митохондриальных генов (которые, теоретически, должны были быть, поскольку митохондрии обладают собственным ДНК). Более того, углубленный анализ показал также, что у этого представителя рода Monocercomonoides нет даже ни одного из ключевых белков, которые позволяют митохондриям функционировать. Иначе говоря, у него попросту нет митохондрий.

Как же этот жгутиконосец живет без «энергетических станций» в своей клетке? Очень просто: в кишечнике грызуна, в котором он обитает, в достатке питательных веществ, которые эукариот расщепляет с помощью ферментов, содержащихся в его цитоплазме (внутриклеточной жидкой среде). Зато в кишечнике шиншиллы нет кислорода, без которого митохондрии все равно работать не могут.

Надо сказать, что митохондрии играют в клетках и еще одну важную роль: они накапливают железо и серу, которые нужны для синтеза многих важных белков. Однако Monocercomonoides и здесь нашел альтернативное решение: похоже, он «позаимствовал» некоторые гены бактерий, которые позволяют делать это без митохондрий.

Похоже, что уникальный эукариот утратил митохондрии совсем недавно (по меркам эволюции) — у его ближайших родственников эти органеллы все же есть, хотя и уменьшенного размера.

«Это открытие фундаментальной важности, — сказал об открытии коллег из Карлового университета эволюционный биолог Юджин Кунин (Eugene Koonin) из Национального центра биотехнологической информации в Бетесда, Мэриленд (США). — Теперь мы знаем, что эукариоты могут отлично жить без митохондрий».

Эволюционный генетик Франц Ланг (B. Franz Lang) из Монреальского университета (Канада) высказался более осторожно: «Результаты этой работы выглядит очень солидно. Я бы сказал, вероятность того, что они правы, составляет 90%».

Ранее одно время считалось, что митохондрий нет у эукариотического микроба Giardia intestinalis, вызывающего диарею. Однако потом выяснилось, что они у него просто очень сильно редуцированы.

Открытие первого безмитохондриального эукариота заставляет по-новому взглянуть на ранние этапы эволюции жизни на Земле. До сих пор считалось, что наличие митохондрий — непременный признак всех эукариот. Согласно господствующей сейчас теории, митохондрии когда-то были самостоятельными бактериями, но потом наши одноклеточные предки проглотили их и, вместо того, чтобы переварить, поставили себе на службу. Или, согласно другой версии, митохондрии сперва были паразитами, но потом подружились с клеткой. Так или иначе, это объясняет, почему у митохондрий до сих пор сохранилась собственная ДНК.


Источник: Научная Россия


Ученые выяснили, что некоторые разновидности вирусов обладают таким же типом иммунной системы, как и бактериальные клетки. Это делает их почти неотличимыми он настоящих живых организмов.

040316 virusК такому выводу пришли французские вирусологи, чья статья опубликована в свежем выпуске журнала Nature.

Среди ученых уже давно кипят споры о том, можно ли относить вирусы к живым существам. Эта дискуссия активизировалась после открытия гигантских вирусов, которые по размерам близки к бактериальным клеткам и обладают достаточно длинным геномом. Некоторые специалисты даже предполагают, что вирусы-гиганты произошли от клеточных организмов путем крайней редукции, когда они избрали паразитический образ жизни.

Авторы статьи сделали открытие, которое еще сильнее приближает вирусы к живым организмам. Объектом исследования стал мимивирус - гигантский вирус, атакующий амеб. Всего ученые проанализировали геном 45 штаммов мимивируса из 60 существующих, а затем заразили их вирофагом Zamilon. Вирофагами называются вирусы, которые поражают других вирусов.

Выяснилось, что у штаммов, относящихся к группе А, имеется своеобразная иммунная система, повышающая их устойчивость к вирофагу. Мимивирус добавляет к своей ДНК короткие участки генома вирофага длиной всего 15 нуклеотидов. Затем он синтезирует специальные белки, который уничтожают чужеродный генетический материал, содержащий эти участки.

Этот механизм, названный учеными MIMIVIRE, полностью аналогичен системе CRISPR-Cas, при помощи которой бактерии защищаются от проникновения вирусов. Интересно, что в 2013 году ученые показали, что холерные вибрионы могут «красть» у бактерий элементы CRISPR-Cas, чтобы подрывать их иммунитет. Но в случае мимивируса речь идет о наличии вполне самодостаточной иммунной системы.


Источник: infox.ru


Ученые проанализировали то, как сине-зеленые бактерии ощущают свет и движутся к нему, и пришли к выводу, что эти микробы используют те же принципы для работы своего зрения,  что и глаза многоклеточных существ, говорится в статье, опубликованной в журнале eLife.

Бактериальный глазБактериальный глаз"То, что микробы реагируют на свет, является одним из самых древнейших научных открытий. И то, что мы показали, что бактерии являются оптическими объектами, является очевидной вещью, если смотреть на это открытие задним числом, однако до этих опытов мы никогда не думали об этом. И никто другой не замечал этого, несмотря на 340 лет опытов с бактериями", — заявил Конрад Мулине (Conrad Moulineaux) из университета королевы Марии в Лондоне (Великобритания).

Мулине и его коллеги пришли к выводу, что бактерии обладают своеобразными "глазами", наблюдая за тем, как сине-зеленые цианобактерии из рода Synechocystis, живущие в пресноводных озерах и реках, реагировали на лучи света.

До этих опытов ученые считали, что бактерии движутся в сторону источника света фактически "наощупь" – предполагалось, что они ощущают малейшие различия в освещенности разных частей своей оболочки и двигают себя в ту сторону, где света больше.

Авторы статьи проверили, так ли это на самом деле, освещая одиночных микробов при помощи специальных ламп, позволявших им  крайне гибко управлять градиентом освещенности и задавать особые световые узоры, способные обманывать зрение микроба.

К удивлению ученых, бактерии никак не реагировали на перепады в уровне освещенности, если источник света был скрыт от них – в таком случае они двигались случайным образом, а не скапливались в самом светлом участке чашке Петри, где обитали Synechocystis.

С другой стороны, когда ученые имитировали Солнце, освещая чашку при помощи обычного светильника, чей луч был направлен под почти прямым углом к поверхности, в таком случае микробы действительно двигались в сторону "светила". Это означает, что микробы напрямую видят свет.

Подобное загадочное поведение заинтриговало исследователей, и они попытались узнать, как микроб воспринимает свет,  изучив оптические свойства его оболочки и прочих частей клетки, наполнив Synechocystis молекулами флуоресцентного белка, светящегося при облучении ультрафиолетом.

Как оказалось, оболочка Synechocystis представляет собой полупрозрачную линзу, которая фокусирует проходящий через нее свет на противоположной стенке бактерии, где находится ряд молекул фотопигментов. Фактически, это превращает микроб в миниатюрный глаз, способный видеть источники света и видеть грубые контуры предметов и крупных препятствий в среде обитания, заключает Мулине.


Источник: РИА Новости


Большой коллектив ученых из Китая обнаружил у плодовых мушек крошечные сенсоры магнитных полей, состоящие из особых белков. Они позволяют насекомым видам ориентироваться по сторонам света. Белковые сенсоры геомагнитного поля могут быть у бабочек, крыс, китов и даже человека, пишет The Guardian со ссылкой на оригинальное исследование, опубликованное в Nature Materials.

191115fruit fliesНаучное сообщество некогда отвергло гипотезу о том, что животные могут чувствовать магнитное поле Земли и по нему ориентироваться. Теперь же эта гипотеза хорошо доказана для некоторых видов животных. Было непонятно только, как именно эта способность возникает. В новом исследовании ученых под руководством профессора Цань Се (Can Xie) из Пекинского университета завеса тайны над этим явлением приоткрылась. Они провели скрининг генома плодовой мушки дрозофилы и обнаружили, что в клетках этих насекомых белок MagR вместе с криптохромными белками Cry образует своего рода стерженьки, которые выстраиваются вдоль линий магнитного поля Земли. В принципе, эти белковые кластеры чувствительны к направлению магнитных линий и интенсивности магнитного поля, считают авторы работы. По их гипотезе, любое возмущение магнитного поля улавливается белковыми сенсорами (или как их еще называют — биокомпасами) и передается клеткам, а оттуда в нервную систему.

О существовании биокомпаса заявлял ранее биолог Клаус Шультен (Klaus Schulten). Он предположил, что белки сетчатки — криптохромы — при падении на них света реагируют на квантовое поведение электронов и начинают чувствовать геомагнитное поле. Авторы нового исследования использовали эту идею, но решили, что одних криптохромов для биокомпаса недостаточно, нужен еще агент, и это — белок MagR, который содержит железо. Они смоделировали образование магниточувствительного комплекса из этих двух белков.

В серии биохимических и биофизических экспериментов ученые показали, что компас из белков MagR и Cry может образоваться у бабочек-монархов, голубей, крыс, китов-полосатиков и людей.

Это открытие выходит далеко за рамки понимания законов навигации животных по геомагнитному полю. Оно способно дать новые знания для создания технологий контроля над клетками и поведением животных с помощью магнитных полей.

Профессор Се в интервью изданию заявил, что открытый им биокомпас может служить универсальным механизмом для восприятия животными магнитного поля. Ведь чувствуют же магнитное поле Земли самые разные животные от бабочек и лобстеров до летучих мышей и птиц.

Ученые еще не знают, есть ли похожая система у людей. Чувство направления у человека очень сложное, но авторы работы считают, что восприимчивость к геомагнитному полю может играть ключевую роль в объяснении того факта, что некоторые люди действительно очень хорошо ориентируются в пространстве.


Источник: Научная Россия


Микробиологи установили, что бактерии могут координировать свои действия подобно нервным клеткам в мозгу. Открытие заставляет пересмотреть взгляд на бактерий как на одиночек, не способных к сложной коммуникации.

Bacillus subtilisBacillus subtilisОб этом говорится в статье американских специалистов из Калифорнийского университета в Сан-Диего, чья статья опубликована в журнале Nature.

Как известно, нейроны в мозгу работают как единое целое, сообщая друг другу свои мембранные (электрические) потенциалы. Ключевую роль в этом процессе играют ионные каналы - мембранные белки, которые запускают в клетки заряженные частицы, например кальций и калий. Авторы статьи выяснили, что аналогичный процесс наблюдается и у бактерий, несмотря на их кажущуюся примитивность.

Открытие было сделано, когда ученые наблюдали за ростом бактерий Bacillus subtilis в чашках Петри - эти микроорганизмы образуют на поверхности субстрата бактериальные пленки. Сначала авторы работы заметили, что в пленках наблюдаются волны метаболической активности - бактерии на краях пленки периодически переставали потреблять глутаминовую кислоту (глутамат), которая служила пищей Bacillus subtilis в эксперименте. Благодаря этому глутамат просачивался к внутренним участкам пленки, что обеспечивало питанием находящихся там бактерий, чтобы они не погибли и в центре колонии не образовалось дыры.

Затем исследователи выяснили, что в бактериальной пленке возникают перепады концентрации калия, которые совпадают по времени с колебаниями метаболической активности в центре и на краях. Когда ученые лишили бактерий ионных каналов, такие колебания прекратились. Из этого ученые сделали вывод, что электрические потенциалы помогают бактериям координировать свои действия.

«В точности так же, как нейроны в нашем мозгу, бактерии используют ионные каналы, чтобы контактировать друг с другом посредством электрических сигналов. В этом смысле бактерии в биопленках функционируют подобно микробному мозгу», -- пояснил Гурэл Сьюэл, соавтор статьи.


Источник: infox.ru


Относительно безобидная бактерия, вызывающая диарею и лихорадку, стала "бичом Божиим" средневековой Европы благодаря одной незначительной мутации и "воровству" короткого фрагмента ДНК у другого микроба, заявляют генетики в статье, опубликованной в журнале Nature Communications.

Жертвы чумыЖертвы чумы"Полученные нами данные показывают, что вставка чужой ДНК и ее небольшая мутация впоследствии стала причиной появления нового, стремительно эволюционирующего штамма микробов, вызывающего болезнь. Это говорит о том, что опасные патогены, вызывающие эпидемии острых респираторных инфекций, могут возникать даже после малейших генетических изменений", — рассказывает Уиндхэм Латем (Wyndham Lathem) из Северо-Западного университета в Чикаго (США).

Латем и его коллеги выяснили, как возникла знаменитая средневековая бацилла "черной смерти", сравнивая и изучая древние штаммы чумной палочки, существующие сегодня и "воскрешенные" путем сборки обрывков ДНК из останков жертв чумы, погребенных в крупных городах Европы, а также геном ее предположительного предка – псевдотуберкулезной палочки.

Данная бактерия — Yersinia pseudotuberculosis, достаточно широко встречается в почве, и ее попадание в кишечный тракт вызывает лихорадку, боли в животе, острую диарею и прочие симптомы, которые почти никогда не заканчиваются смертью. Предположительно, примерно 10 тысяч лет назад она приобрела несколько новых генов, сильно мутировала и дала жизнь первым штаммам Yersinia pestis, чумной палочки.

Как выяснила группа Латема, эти изменения были на самом деле относительно небольшими и скоротечными. Самые первые штаммы чумной палочки могли проникать в легкие людей, но не могли вызывать мощнейшего воспаления и массовой смерти клеток легочной ткани, что сегодня заканчивается смертью почти со 100%.

Подобную способность они достаточно быстро приобрели в результате замены одной "буквы" в ключевом гене Pla, который помогает им разлагать молекулы белков в заражаемых легких и крови, размножаться в этой среде, вызывать гибель их клеток и распространяться по организму через лимфатическую систему, формируя печально известные "бубоны".

В свою очередь, этот ген был "украден" бактерией у какой-то другой бациллы в результате так называемого "горизонтального" обмена генами. Пока ученые не знают, откуда будущая чумная палочка взяла этот ген, однако они предполагают, опираясь на характерные особенности в структуре Pla, что его источником были микробы, обитающие в кишечнике человека или других млекопитающих.

Оба этих шага произошли в рамках всего нескольких первых поколений Yersinia pestis, после чего микроб начал интенсивно мутировать и развиваться, в результате чего возник возбудитель "черной смерти", чумы Юстиниана и прочих эпидемий античности и средневековья.

Ранее уже высказывались другие теории возникновения чумы.


Источник: РИА Новости


 

Страница 1 из 8

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Мантийный расплав волнуется на порядок быстрее

12-05-2016 Просмотров:6368 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

Мантийный расплав волнуется на порядок быстрее

Ученые обнаружили значительное расхождение между теоретическими расчетами вертикальных движений мантийных плюмов и наблюдениями. Оказалось, что потоки мантии совершают вертикальные колебания на порядок быстрее, чем предполагалось. Работа опубликована в журнале Nature Geoscience, коротко о...

Динозавров всё-таки убили вулканы

11-12-2012 Просмотров:13551 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Динозавров всё-таки убили вулканы

В споре о причинах мел-палеогенового вымирания очередной залп сделали сторонники гипотезы об извержениях вулканов на Деканском плато в Индии, которые продолжались десятки тысяч лет. По их мнению, дело вовсе не...

Угри выпрыгивают из воды, чтобы бить жертв электрошоком

07-06-2016 Просмотров:6042 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Угри выпрыгивают из воды, чтобы бить жертв электрошоком

Биолог из США неожиданно подтвердил натуралистическую байку 19 века о том, что электрические угри умеют выпрыгивать из воды и убивать сухопутных животных и крупных водных хищников электрошоком, говорится в статье, опубликованной в журнале PNAS. Прыжки угря из водыЗнаменитый немецкий...

Американские палеонтологи нашли окаменелости миоценового кашалота

17-12-2015 Просмотров:7121 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Американские палеонтологи нашли окаменелости миоценового кашалота

Гигантский белый кашалот, описанный в классическом романе Германа Мелвилла "Моби Дик", на самом деле имел вполне реального предшественника. Возможно даже, что писатель видел окаменелости этого животного, хотя прославившая его книга...

Дипротодонов уличили в склонности к миграциям

28-09-2017 Просмотров:3575 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Дипротодонов уличили в склонности к миграциям

Не успели мы поразиться находке роддома неогеновых японских китов, как палеонтологи спешат предложить нам не менее удивительную новость – оказывается, гигантские австралийские дипротодоны были мигрирующими животными и 300 тысяч лет...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.