Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Нейробиологии>>Скорость реакции нервной цепи не зависит от её размеров

Вторник, 04 Февраль 2014 14:27

Скорость реакции нервной цепи не зависит от её размеров

Автор 

Работу нервной цепи обычно описывают скоростью реакции: это один из краеугольных параметров любой «науки о мозге», будь то психология или нейробиология. С помощью скорости реакции удалось построить весьма эффективные модели, объясняющие различия в поведении индивидуума: в таких моделях скорость отклика зависит от накопления единичных раздражителей, информационных единиц. То есть мозг, грубо говоря, работает аккумулятором данных, и когда их количество превосходит некий порог, запускается отклик. Сидя на диване, мы можем думать, что нам нужно сделать то-то и то-то, и когда количество (или навязчивость) этих «то-то» достигает некоего уровня, мы с дивана встаём. А различия в скорости реакции можно объяснить тем, насколько быстро и специфично мозг собирает информацию для того или иного действия. 

Нейроны коры мозга, растущие в культуре (фото Dennis Kunkel Microscopy, Inc.). Нейроны коры мозга, растущие в культуре (фото Dennis Kunkel Microscopy, Inc.). С другой стороны, нейробиологи заметили, что психологическая скорость реакции сопоставима с поведением отдельного нейрона. Активация нервной клетки тоже происходит после преодоления определённого порога раздражения, которое может приходить к ней от соседних клеток, и работу нервной цепи, казалось бы, тоже можно было охарактеризовать скоростью реакции. Но в нервной цепи может быть много, очень много нейронов; точных цифр пока никто не знает, однако, по примерным оценкам, в глазном движении могут участвовать приблизительно 100 тысяч нервных клеток. Вопрос в том, как этот огромный коллектив нейронов аккумулирует сигнал, чтобы потом выдать результат — в полном соответствии с теорией накопления? 

Если, допустим, система нейронов ждёт, чтобы каждый её член накопил достаточно входящих сигналов, то скорость реакции будет тем меньше, чем больше сеть. Если же активация нейронного ансамбля определяется только каким-то одним «пусковым» нейроном, то большая сеть будет отзываться быстрее, чем маленькая, так как в большой на «пусковой» нейрон будет приходить больше сигналов. 

Другой вопрос — координация нейронного ансамбля. Чем сильнее скоординирована система, тем больше она похожа на единый информационный накопитель. То есть в пределе много нейронов будут работать как один, накапливая раздражение и реагируя на него, подобно одной клетке. Но насколько глубокой должна быть координация нейронов в ансамбле, чтобы все они работали в унисон? 

Чтобы ответить на эти вопросы, исследователи из Университета Вандербильта (США) разработали виртуальную модель, в которой можно было сопоставить поведение разного количества информационных аккумуляторов и интенсивность впитывания ими входящих сигналов. Модель оказалась весьма ресурсоёмкой: Джеффри Шеллу (Jeffrey Schall) и его коллегам пришлось ограничиться сетью в 1 000 виртуальных нейронов, большего количества не выдерживал даже сверхмощный компьютер. 

Исследователей интересовало, в какой момент происходит запуск ответной реакции, что является тем последним камешком, который вызывает обвал. Происходит ли это, когда «камешек» падает на какой-то один нейрон, или же такие «камешки» должны упасть на всех участников цепи? Оказалось, что ни в первом, ни во втором случае скорость реакции никак не соотносится с тем, что можно наблюдать в настоящей нервной системе. Такой же отрицательный результат учёные получили, когда попытались сделать разные нейроны слишком по-разному накапливающими раздражение. 

Однако реальных значений скорости реакции всё же можно было добиться, более или менее уравняв все нейроны по способности накапливать информационные «камешки» и снабдив всю систему ограничительными правилами, которые регулировали бы работу нейронов так, чтобы они выступали в унисон. То есть входящее раздражение падает на нейронный ансамбль так, как будто его воспринимает не набор из ста, тысячи или миллиона нейронов, а как один нейрон. На практике это означает, что время реакции не зависит от размера нейронной цепи: в ней может быть 10 или 1 000 нейронов, но время отклика у них всё равно будет примерно одинаковым. И то же самое, очевидно, верно и для более масштабных цепей. 

При этом, конечно же, характеристики нейронов в 10-клеточной и в 1 000-клеточной цепи будут различаться, как и правила, которые ограничивают их общение друг с другом. Мы возьмём на себя смелость сравнить всё это с двумя системами — из 10 и из 1 000 сообщающихся сосудов. Как сделать так, чтобы одним и тем же количеством воды наполнить и ту и другую? Очевидно, уменьшив размер сосудов в той системе, где их больше. Разумеется, тут будет играть роль, во сколько кувшинов мы одновременно льём воду, какого размера перемычки между ними и т. д., но дальше мы фантазировать не будем. 

Так или иначе, исследователям удалось теоретически согласовать данные психологии и нейробиологии, и теперь стоит дождаться экспериментов, направленных на проверку именно этих теоретических данных. 

Результаты исследования опубликованы в журнале PNAS.


Источник: КОМПЬЮЛЕНТА


 

Прочитано 7726 раз

Авторизуйтесь, чтобы получить возможность оставлять комментарии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Люди позаимствовали часть генов у грибов

16-03-2015 Просмотров:8072 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Люди позаимствовали часть генов у грибов

Генетики пересчитали чужеродные гены в геноме человека. Выяснилось, что некоторые из них наши предки получили непосредственно от грибов. Филогенетическое древо человеческого гена HAS1Об этом говорится в статье британских специалистов из Кембриджского...

Пещерные львы питались северными оленями и исчезли из Европы вместе…

22-11-2011 Просмотров:10760 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Пещерные львы питались северными оленями и исчезли из Европы вместе с ними

Необыкновенно сложный анализ костей пещерных львов показал, чтó эти существа ели и почему исчезли. Европейский пещерный лев (иллюстрация Jagroar)Термин «пещерный лев» не вполне корректен. Самые крупные представители семейства кошачьих своего времени...

В Индии найдены останки самого примитивного примата, жившего 54,5 млн…

18-08-2016 Просмотров:6043 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В Индии найдены останки самого примитивного примата, жившего 54,5 млн лет назад.

Останки самого примитивного в мире примата, жившего 54,5 млн лет назад и ставшего родоначальником двух последующих ветвей эволюции, приведшей к появлению человека, найдены на западе Индии. При вскрытии очередного пласта угольной...

Палеонтологи нашли в Германии останки пираньи, пожиравшей динозавров

19-10-2018 Просмотров:2525 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи нашли в Германии останки пираньи, пожиравшей динозавров

Ученые обнаружили на территории Баварии останки одной из первых пираний Земли, чьи зубы были приспособлены для обдирания мяса с костей рыб, динозавров и других крупных животных юрского периода. Ее описание было представлено в журнале Current Biology. Найденная...

В Аргентине нашли «саблезубую белку»

06-11-2011 Просмотров:10487 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В Аргентине нашли «саблезубую белку»

В Аргентине обнаружены останки странного млекопитающего, жившего 95 млн лет назад. Оно вполне могло бы оказаться прототипом саблезубой белки из мультфильмов о ледниковом периоде. О мезозойских млекопитающих, существовавших в тени динозавров,...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.