Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Эволюции>>Хлоропласты появились благодаря постоянному "пищеводу" древних эукариот

Понедельник, 01 Июль 2013 14:10

Хлоропласты появились благодаря постоянному "пищеводу" древних эукариот

Автор 

Самой известной и, пожалуй, самой популярной теорией происхождения митохондрий и хлоропластов является теория эндосимбиоза (или симбиогенеза). По ней, хлоропласты и митохондрии прежде были самостоятельными прокариотическими организмами (какими-нибудь древними бактериями или цианобактериям), которыми питались далёкие предки эукариот. В какой-то момент поедание бактерий сменилось симбиотическими отношениями: жертвы стали жить внутри охотника, обеспечивая его энергией, и в итоге превратились в знакомые всем хлоропласты и митохондрии. 

В общих чертах тут всё более-менее понятно, но что при этом происходило на клеточном уровне? Какими, например, характерными особенностями обладали клетки древнейших эукариот, которые первыми начали налаживать симбиотические отношения с поглощёнными бактериями? Почему вообще получилось так, что бактерии перестали расщепляться пищеварительными ферментами и оставались плавать в теле хозяина целыми и невредимыми? На эти и на многие другие вопросы ответов пока нет, хотя учёные интенсивно их ищут. Главная проблема, разумеется, в том, что все гипотезы и теории приходится строить на современном материале, на изучении нынешних простейших, так как ископаемых останков с тех далёких времён почти нет.

Но как можно узнать, что происходило миллионы и миллиарды лет назад, наблюдая за современным одноклеточными? Считается, что какие-то особенности структуры, какие-то особенности поведения нынешних простейших отчасти повторяют то, как вели себя их древнейшие предки. И здесь нужно добавить, что эндосимбиоз — по крайней мере тот, который привёл к появлению хлоропластов, — возникал в истории жизни несколько раз. Сначала были так называемые первичные эндосимбионты: древнейшие эукариоты, которые первыми поняли, что фотосинтезирующие цианобактерии можно использовать, так сказать, живьём. Из таких первичных эндосимбионтов впоследствии появились растения, зелёные и красные водоросли, а также своеобразная группа водорослей, называемых глаукофитами, чьи фотосинтезирующие органеллы чрезвычайно напоминают цианобактерии. 

Роль фагоцитоза древних эукариот в происхождении хлоропластов. (Рисунок авторов работы.) Роль фагоцитоза древних эукариот в происхождении хлоропластов. (Рисунок авторов работы.) Но были и такие организмы, которые использовали для эндосимбиоза не сами бактерии, а первичных эндосимбионтов. То есть другие древнейшие эукариоты поглощали других эукариот, у которых уже были приручённые фотосинтезирующие цианобактерии. Из таких вторичных и третичных эндосимбионтов получились криптофитовыегаптофитовые и гетероконтофитовые водоросли, а также эвгленоидеи. У потомков вторичных эндосимбионтов мембрана хлоропластов состоит не из двух, а из трёх слоёв. Считается, что самая внутренняя мембрана досталась хлоропластам от бактерии, а вторая, внешняя — от древнего эукариота, который, поглощая бактерию, заворачивал её в свою мембрану. В случае с трёхмембранными хлоропластами третья (самая внешняя) мембрана, как считается, досталась хлоропластам от нового хозяина, который заворачивал в свою мембрану другого эукариота с фотосинтезирующими элементами внутри. 

Однако в любом случае один из ключевых этапов — поглощение одного одноклеточного другим. Исследователи из Университета Далхаузи (Канада) и Американского музея естественной истории (США) утверждают, что древние эукариоты, которые впервые использовали хлоропластный симбиоз, поглощали бактерии не любой частью клетки, как амёбы, а с помощью специализированных структур. Учёные наблюдали за Cymbomonas, относящейся к одним из наиболее простых и древних зелёных водорослей. Хотя, как и все зелёные водоросли, Cymbomonas произошла от первичных эндосимбионтов, при этом, как оказалось, у неё сохранилась способность питаться бактериями. 

В статье, опубликованной в Current Biology, исследователи описывают пищеварительный аппарат водоросли Cymbomonas. Пища попадает в клетку через специальное отверстие, после чего по пищеводообразному каналу движется к постоянной пищеварительной вакуоли, аналогу желудка, причём пищевод может сокращаться, помогая пище продвинуться к «желудку». 

Такой способ поглощения не похож на то, что мы наблюдаем у других простейших, вроде амёб или инфузорий. Авторы работы полагают, что он достался Cymbomonas от предков, которые с его помощью приобрели первые хлоропласты. Сейчас бактерии, пойманные Cymbomonas, перевариваются в пищеварительной вакуоли, однако весь процесс поглощения пищи может быть моделью для изучения того, как бактерии в один прекрасный день избежали расщепления в вакуоли и превратились в домашних фотосинтетиков. 

В данном случае трудно сказать, что именно благодаря такому пищеварительному аппарату стало возможным «приручение» бактерий — тут могли сыграть свою роль и другие особенности физиологии древних эукариот. Но если именно такая схема поглощения пищи осуществлялась в каждом случае появления эндосимбиоза, это наводит на мысль, что это неспроста, что, очевидно, именно такой путь бактерии в клетку давал ей шанс уцелеть и развить симбиотические отношения.

 


Источник: КОМПЬЮЛЕНТА


Дополнительная информация

  • Эон: Архей (3,9 - 2,5 млрд лет назад)
Прочитано 9475 раз

Авторизуйтесь, чтобы получить возможность оставлять комментарии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Тело морского конька изогнул сидячий образ жизни

27-01-2011 Просмотров:11701 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Тело морского конька изогнул сидячий образ жизни

Биологи выяснили, почему у морского конька изогнулась шея. Изменение оказалось действительно полезным, хотя плавать с такой формой тела коньку намного труднее. Морской конек Морской конек – это рыба. Но далеко не...

Общий предок всех живых существ жил на вулкане

26-07-2016 Просмотров:6292 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Общий предок всех живых существ жил на вулкане

Генетики реконструировали образ жизни последнего общего предка всех живых организмов. Оказалось, что он проводил жизнь у подводных вулканов, окисляя выделяющийся из них водород. К такому выводу пришли немецкие специалисты из Университета Дюссельдорфа, чья статья опубликована в...

2.13. Животный мир четвертичного периода

22-04-2013 Просмотров:51473 Животные (Animalia) Антоненко Андрей - avatar Антоненко Андрей

2.13. Животный мир четвертичного периода

Оглавление 1. Общие сведения о животных 1.1. Разделение классификации животных 2. Появление и эволюция животных 2.1. Протерозой. Довендская биота. Животный мир вендского периода (эдикария) 2.2. Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв 2.3. Животный мир ордовикского периода 2.4. Животный мир силурийского периода 2.5. Животный мир...

Бронежилет для гиганта. Зачем титанозаврам костяная броня?

20-08-2014 Просмотров:7872 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Бронежилет для гиганта. Зачем титанозаврам костяная броня?

Испанские палеонтологи восстановили детали строения кожной брони титанозавров – последних гигантских ящеров в истории Земли. По их данным, эти огромные животные были покрыты несколькими рядами костяных щитков, прикрывавших их спину...

Учёные прояснили происхождение опоссумов и всех сумчатых

09-06-2010 Просмотров:10794 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Учёные прояснили происхождение опоссумов и всех сумчатых

Эволюцию современных опоссумов со времён вымирания динозавров отследила международная команда исследователей из США, Германии и Швейцарии. Среди прочего полученные данные показывают, что Северная Америка, возможно, является родиной всех ныне живущих...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.