Мир дикой природы на wwlife.ru
Вы находитесь здесь:Мир дикой природы>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Суббота, 06 Апрель 2013 22:36

Завирушка лесная (лат. Prunella modularis)

Лесная завирушка (лат. Prunella modularis)

Лесная завирушка (лат. Prunella modularis)Лесная завирушка (лат. Prunella modularis), фото википедия

Голос  Лесной завирушки

Суббота, 06 Апрель 2013 22:26

Ученые извлекли мозг мамонта

Российские ученые впервые рассказали о том, как им удалось извлечь мозг мамонта. «Нервная ткань мамонта сохранилась в целостности, несмотря на прошедшие 40 тысяч лет», -- пояснила корреспонденту Infox.ru Анастасия Харламова, одна из исследователей.

МамонтМамонтПодробности уникальной операции Анастасия Харламова и ее коллега, палеонтолог Евгений Мащенко, сообщили 4 апреля на семинаре Палеонтологического института в Москве. В обсуждении доклада также принял участие Сергей Савельев из Института морфологии человека РАМН, под чьим руководством проходили работы.

Мозг, извлеченный в феврале этого года, принадлежит молодой самке мамонта. Она была найдена в 2009-м году общиной юкагиров в отложениях позднего плейстоцена на берегу Северного Ледовитого океана. Находка, получившая известность как мамонт Юка, отличается хорошей сохранностью шкуры, мышц, хобота и других мягких тканей.

Исследователи обнаружили, что у животного уцелел еще и мозг, когда делали ему томографию нижней челюсти. Чтобы сохранить нервную ткань, ученые в течение3 недель заливали в череп раствор фиксирующей жидкости на основе формалина. После того, как мозг ей пропитался, ученые сделали мамонту трепанацию.

Вся операция проходила в Якутске, но для дальнейшего изучения мозг был перевезен в специальном контейнере в Москву, где сейчас хранится в замороженном состоянии в Институте морфологии человека. Сейчас исследователи планируют изучить структуру борозд и извилин мамонта, чтобы сопоставить его с близким родичем - азиатским слоном.

По словам специалистов, если бы мозг попал им в руки сразу же после находки мамонта, то они могли бы изучить его более детально. Однако, пока мамонт хранился у юкагиров, он подвергся частичной разморозке, так что тонкие структуры нервной ткани оказались повреждены. Несмотря на это, ученые планируют создать 3D-реконструкцию мозга.

После того, как все слои мозга будут изучены на томографе, одно из его полушарий будет пущено на срезы. Возможно, образцы мозговой ткани подвергнутся и биохимическому исследованию. Сергей Савельев пообещал, что трехмерная реконструкция мозга мамонта пополнит число экспонатов московского Палеонтологического музея.

Мозг, извлеченный российскими специалистами – это первый в истории древний мозг из мягких тканей, ставший достоянием науки. Ранее мозг мамонтов изучали лишь по слепкам их черепов. Однако, по словам Савельева, можно надеется, что это будет не последней находкой такого рода в Сибири: главное, чтобы ученые вовремя получали к ним доступ.


Источник: infox.ru


Ученые обнаружили на спутнике Юпитера Европе большие запасы перекиси водорода — потенциального источника энергии для бактерий-экстремофилов, которые могут обитать в подледном океане этого небесного тела, сообщает пресс-служба Лаборатории реактивного движения НАСА.

Спутник Юпитера ЕвропаСпутник Юпитера Европа"Жизнь в тех формах, в которых мы ее знаем, нуждается в жидкой воде, в таких элементах, как углерод, азот, фосфор и сера, а также в некоторых типах химических соединений или энергии излучения для обеспечения жизненных процессов. На Европе есть жидкая вода и эти элементы, и мы думаем, что такие соединения, как перекись водорода, могут играть важную роль в обеспечении энергией (живых организмов). Доступность веществ-оксидантов, таких как перекись, на Земле сыграли важную роль в появлении сложной многоклеточной жизни", — сказал сотрудник лаборатории Кевин Хэнд (Kevin Hand), ведущий автор исследования, опубликованного в Astrophysical Journal Letters.

На Европе — одном из четырех крупнейших спутников Юпитера, открытых еще Галилеем, под многокилометровым слоем льда существует океан жидкой воды. Ученые считают океан Европы одним из вероятных прибежищ внеземной жизни.

Хэнд и и его коллега Майк Браун (Mike Brown) из Калифорнийского технологического института изучали инфракрасный спектр излучения, отраженного от ледяной поверхности Европы, с помощью телескопа Keck II на гавайской обсерватории имени Кека. В результате они обнаружили, что в том полушарии Европы, которое постоянно обращено в сторону ее движения по орбите вокруг Юпитера, концентрация перекиси водорода относительно воды достигала 0,12% (в 20 раз меньше, чем в аптечной перекиси). В то же время в противоположном полушарии количество перекиси оказалось почти нулевым.

Ученые отмечают, что присутствие перекиси может быть важным фактором для жизни, поскольку перекись, смешиваясь с водой, выделяет кислород. Реакция разложения перекиси водорода может служить источником энергии для некоторых организмов, отмечает Хэнд.


Источник: РИА Новости


1498 карт. Масштаб 1:50 000

Топографические карты России. Диск №9. Масштаб 1:50 000
Топографические карты России. Диск №9. Масштаб 1:50 000


 

 

«Батарейками» для первой жизни на Земле могли стать метеориты, которые принесли с собой молекулы, позволившие запасать энергию.

Обед подан! (Фото Wally Pacholka / Barcroft Media / Getty Images.)Обед подан! (Фото Wally Pacholka / Barcroft Media / Getty Images.)У каждого организма есть такие встроенные «батарейки», ведь энергия, полученная с пищей, не всегда требуется сразу и полностью. В основе таких молекул — фосфор, но у ранних форм жизни не было к нему доступа, ибо этот элемент был спрятан глубоко в минералах. Решить проблему помогли камни, сыпавшиеся с неба.

Сегодня самым распространённым хранителем энергии выступает аденозинтрифосфат (АТФ), которым пользуются миллионы сложных организмов. Откуда взялась эта молекула? Для её создания и освобождения энергии требуются ферменты, но первые организмы ещё не были настолько сложны, чтобы выполнять подобные операции. Вероятно, была какая-то молекула попроще.

По словам Терри Ки из Лидсского университета (Великобритания), первым накопителем энергии мог быть пирофосфит, состоящий из фосфора, кислорода и водорода. Это вещество схоже по своим химическим свойствам с АТФ и при этом более реактивно, то есть ему не нужны ферменты.

Г-н Ки и его коллеги изучили один сибирский метеорит, содержащий много фосфора. Фрагменты небесного камня окунули в кислую воду из вулканических прудов Исландии, которая считается аналогом воды, существовавшей на первобытной Земле. Четыре дня спустя образцы метеорита выделили большое количество фосфита. Высохнув, он превратился в пирофосфит. Как видим, это вещество образуется очень просто.

Идея этого исследования пришла учёным после того, как в 2009 году в геотермальных прудах Калифорнии был обнаружен избыток фосфита.

Выводы, к сожалению, вызвали неоднозначную оценку. Самая большая проблема заключается в том, что все современные организмы пользуются для накопления энергии фосфатами, а не фосфитами, отмечает Уильям Мартин из Университета Генриха Гейне (ФРГ). Животные и растения используют АТФ, а большинство микроорганизмов приспособили пирофосфат. «И я ставлю на то, что так было всегда», — подчёркивает учёный.

По этой причине многие полагают, что древним накопителем энергии скорее всего служил пирофосфат. Но и с ним не всё гладко. Ему надо было образовываться из фосфатов, а они химически очень активны, поэтому никакому фосфату не удалось бы продержаться на поверхности планеты сколько-нибудь долго. К тому же пирофосфат реагирует с водой, а не растворяется в ней, как пирофосфит. «Учёные отдают предпочтение пирофосфату, потому что он проще», — говорит Стивен Беннер из Фонда прикладной молекулярной эволюции (США). По его словам, нет никакого другого аргумента в пользу такого выбора.

Г-н Ки считает, что пирофосфит мог быть предшественником пирофосфата: им пользовались до тех пор, пока жизнь не приобрела молекулярное «оборудование», позволившее ей работать с фосфатами. В ходе дальнейших экспериментов, результаты которых ещё не опубликованы, его группа выяснила, что пирофосфит легко превращается в пирофосфат.

Отчёт об исследовании опубликован в журнале Geochimica et Cosmochimica Acta.


Источник: КОМПЬЮЛЕНТА


Спутник Юпитера Ио — наиболее вулканически активное тело в Солнечной системе: там сотни вулканов, и некоторые из них выбрасывают фонтаны лавы на высоту до 400 км.

Гигантский выброс магмы из вулкана Тваштар на Ио. Анимация составлена из пяти фотографий, сделанных космическим аппаратом New Horizons. (Здесь и ниже изображения NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute.)Гигантский выброс магмы из вулкана Тваштар на Ио. Анимация составлена из пяти фотографий, сделанных космическим аппаратом New Horizons. (Здесь и ниже изображения NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute.)Однако эта деятельность концентрируется вовсе не там, где должна, если верить моделям внутреннего нагрева луны.

Группа исследователей из НАСА и Европейского космического агентства пришла к такому выводу на основании данных космических аппаратов «Вояджер» и «Галилео». Проанализированы показания и других станций, а также наземных телескопов, но бóльшая часть информации о поверхности Ио исходит от этих двоих. Один из «Вояджеров» обнаружил вулканы на Ио в 1979 году. «Галилео» пролетал мимо спутника в 1999 и 2000 годах.

Прогноз теплового потока на поверхности Ио, сделанный двумя моделями приливного нагрева.Прогноз теплового потока на поверхности Ио, сделанный двумя моделями приливного нагрева.Ио — словно канат, который перетягивают мощный Юпитер и его спутники Европа и Ганимед. Притяжение последних сравнительно невелико, но точно выверено: Ио облетает планету вдвое быстрее Европы и вчетверо — Ганимеда. В результате гравитационного воздействия соседних спутников в одних и тех же местах орбита Ио приобрела овальную форму. Это, в свою очередь, заставляет Ио деформироваться то так, то эдак.

Например, когда Ио приближается к Юпитеру, гигантская планета искривляет её поверхность по направлению к себе, а затем, когда Ио отходит подальше, притяжение слабеет и луна может вздохнуть с облегчением. Такая деформация приводит к приливному нагреву точно так же, как вы можете нагреть участок проволоки, несколько раз согнув его. Трение во внутренней части спутника становится причиной выработки огромного количества тепла, что вызывает активный вулканизм.

Без ответа остаётся вопрос о том, как именно этот приливный нагрев действует на внутреннюю часть луны. Некоторые учёные полагают, что таким образом нагреваются самые глубокие недра, но преобладает мнение о том, что в основном нагрев происходит в относительно неглубоком слое сразу под корой — в астеносфере. Там порода ведёт себя подобно пластилину, медленно деформируясь под действием тепла и давления.

Поверхность Ио постоянно обновляется, поэтому на ней трудно обнаружить ударные кратеры.Поверхность Ио постоянно обновляется, поэтому на ней трудно обнаружить ударные кратеры.«Наш анализ поддерживает эту точку зрения, но в то же время мы обнаружили, что вулканическая деятельность расположена в 30–60° восточнее от того места, где мы ожидали её увидеть», — отмечает ведущий автор Кристофер Гамильтон из Мэрилендского университета (США) и Годдардовского центра космических полётов НАСА.

Г-н Гамильтон и его коллеги осуществили пространственный анализ с помощью новой геологической карты Ио, составленной Дэвидом Уильямсом из Университета штата Аризона (США) и его помощниками. Это самая полная опись вулканов Ио на сегодня, позволяющая изучить картину местного вулканизма в беспрецедентных деталях. Предположив, что вулканы расположены над местами наиболее интенсивного внутреннего нагрева, учёные протестировали ряд моделей внутреннего строения Ио, сравнив расположение вулканов с предсказанными участками приливного нагрева.

Вид на Ио с корабля «Галилео».Вид на Ио с корабля «Галилео».Почему же происходит смещение на восток? Возможные объяснения таковы: Ио вращается вокруг своей оси быстрее, чем мы думаем; внутреннее строение позволяет магме проходить значительное расстояние от места максимального нагрева к точке, где она сможет вырваться на поверхность; в моделях приливного нагрева чего-то не хватает — например, приливов в подповерхностном океане магмы.

Действительно, магнитометр «Галилео» в своё время обнаружил магнитное поле вокруг Ио, намекающее на существование такого океана, охватывающего весь спутник. Логично предположить, что магма проводит электричество и генерирует магнитное поле, перемещаясь под поверхностью Ио под действием силы притяжения Юпитера в процессе орбитального движения.

Только не надо думать, что он такой же жидкий, как земные океаны. По словам г-на Гамильтона, он скорее напоминает губку с менее чем 20-процентным содержанием силикатного расплава, текущего внутри своего рода «скелета» из медленно деформирующейся породы.

Ио на фоне Юпитера. Монтаж из изображений, полученных станцией New Horizons в 2007 году.Ио на фоне Юпитера. Монтаж из изображений, полученных станцией New Horizons в 2007 году.Приливный нагрев, по-видимому, несёт ответственность и за существование океанов жидкой воды под ледяной коркой Европы и Энцелада, спутника Сатурна. Поскольку жидкая вода — необходимый ингредиент жизни, некоторые исследователи не исключают того, что там могут находиться живые организмы — при наличии, конечно, подходящего источника энергии и прочего материала, без которого жизнь не жизнь. Эти миры чересчур прохладны для существования жидкой воды на поверхности, а потому лучшее понимание приливного нагрева поможет разобраться в том, каким образом он мог бы обеспечить жизнь даже в не самых гостеприимных местах Вселенной.

Кроме того, вулканизм на Ио настолько активен, что поверхность спутника полностью обновляется каждый миллион лет или около того. Поэтому для написания истории этой луны необходимо хорошо знать её внутреннее строение.

«Неожиданный восточный сдвиг в расположении вулканов на Ио намекает на то, что мы чего-то пока не понимаем, — подчёркивает г-н Гамильтон. — В определённом смысле это очень важное открытие».


Источник: КОМПЬЮЛЕНТА


В сентябре прошлого года ледяной покров Северного Ледовитого океана сократился до самого низкого показателя в истории, продолжив долгосрочную тенденцию. Во время холодной и тёмной арктической зимы море вновь замёрзло, и площадь распространение льда опять выросла. По данным НАСА, максимум был достигнут 28 февраля, и он оказался пятым с конца за последние 35 лет. 

15,09 млн км² тоже соответствуют неутешительной тенденции: девять из десяти самых маленьких максимумов были зарегистрированы за последнее десятилетие. Нынешняя площадь распространения льда на 374 тыс. км² меньше среднего максимума трёх последних зим.

Спутниковые данные, полученные с конца 1970-х, говорят о том, что площадь районов Северного Ледовитого океана, где лёд покрывает не менее 15% поверхности, уменьшается. Некоторые моделипредсказывают, что Арктика будет освобождаться ото льда в летний период уже через несколько десятилетий. 

Зимний максимум не коррелирует с летним минимумом: бывали случаи, когда после большого максимума происходило очень сильное таяние, и наоборот. Не стоит думать, что большой максимум означает особенно холодную зиму и толстый лёд, устойчивый к летнему теплу, ведь на Арктику, к примеру, может налететь буря, которая отколет большие куски льда от общей массы и погонит их на юг, где они преспокойно растают. 

Параллельно с НАСА площадь распространения льда по несколько иной методике оценивается Национальным центром данных по исследованию снега и льда (США). Это учреждение считает, что максимум был достигнут 15 марта и составил 15,13 млн км². Как видим, разница — менее половины процента. 

Наряду с площадью распространения льда (sea ice extent), то есть площадью геометрической фигуры, образованной южной границей льда, измеряется также чистая площадь (area) поверхности океана, занятой льдом. В этом смысле зимний максимум 2013-го равен 14,3 млн км², что тоже являет собой пятое месте с конца, начиная с 1979 года. 

Хотя распространение зимнего морского льда уменьшается не так быстро, как летнего, доля морского льда, который пережил как минимум два сезона таяния, сегодня намного меньше, чем в начале спутниковой эры. Этот старый, толстый многолетний лёд, благодаря которому Северный полюс ещё сохраняет свою белую шапку, нынешней зимой слегка вырос и теперь занимает 2,67 млн км². Это вдвое с лишним меньше, чем в начале 1980-х. 

Кроме того, этой зимой негативная фаза Арктической осцилляции удерживала температуру выше среднего показателя в самых северных широтах. Ряд штормов в феврале и начале марта открыл крупные трещины в ледяном покрове моря Бофорта вдоль северных берегов Аляски и Канады, то есть в области тонкого сезонного льда. Трещины вскоре замёрзли, но этот новый слой тонкого льда, скорее всего, моментально растает, как только над Арктикой взойдёт солнце.

Черноголовая завирушка (лат. Prunella atrogularis)

Черноголовая завирушка (лат. Prunella atrogularis)  Черноголовая завирушка (лат. Prunella atrogularis), фото birds.kz

Голос  Черноголовой завирушки

Оглавление

1.

Общие сведения о животных

1.1.

Разделение классификации животных

2.

Появление и эволюция животных

2.1.

Протерозой. Довендская биота. Животный мир вендского периода (эдикария)

2.2.

Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв

2.3.

Животный мир ордовикского периода

2.4.

Животный мир силурийского периода

2.5.

Животный мир девонского периода

2.6.

Животный мир каменноугольного периода

2.7.

Животный мир пермского периода

2.8.

Животный мир триасового периода

2.9.

Животный мир юрского периода

2.10.

Животный мир мелового периода

2.11.

Животный мир палеогенового периода

2.11.1.

   Животный мир палеоценовой эпохи

2.11.2.

   Животный мир эоценовой эпохи

2.11.3.

   Животный мир олигоценовой эпохи

2.12.

Животный мир неогенного периода

2.13.

Животный мир четвертичного периода


2.11. Животный мир палеогенового периода

   Палеогенный период (95,5 ± 0,3 - 23 млн. лет назад)

Палеогенный период (Палеоцен)
Рис. 2.11.1. Палеогенный период (Палеоцен)
Палеогенный период, Палеоге́н 
первый период кайнозоя (рис. 2.11.1). Палеогеновый период начался 65 миллионов лет назад, закончился — 24,6 млн. лет назад. Продолжался палеоген 40 миллионов лет. Этот период разделяется на три эпохи - Палеоцен продолжительность 10 млн лет (65,5 - 55,8 млн. лет назад), Эоцен продолжительность 22 млн лет (55,8 - 33,9 млн. лет назад) и Олигоцен продолжительность 11 млн лет (33,9 - 23 млн. лет назад).

В палеогене климат становится более континентальным, появляются ледяные шапки на полюсах.

Увеличивается разнообразие цветковых растений и насекомых.

В морях процветают костистые рыбы. Появляются примитивные китообразные, новые группы кораллов, морских ежей. Мелководные моря палеогенового периода населяло огромное множество нуммулитов, монетообразные раковины которых нередко переполняют палеогеновые отложения. Сравнительно мало было головоногих моллюсков. Из некогда многочисленных родов остались лишь некоторые, в основном живущие и в наше время. Вымирают последние белемниты, начинается расцвет головоногих с редуцированной или вовсе исчезнувшей раковиной — осьминогов, каракатиц и кальмаров, вместе с белемнитами объединяемых в группу колеоидей. [1] Было множество брюхоногих моллюсков, радиолярий, губок. Вообще большинство беспозвоночных палеогенового периода отличается от беспозвоночных, живущих в современных морях.

В этом периоде начался бурный расцвет млекопитающих. После вымирания большого количества рептилий возникло множество свободных экологических ниш, которые начали занимать новые виды млекопитающих. Были распространены яйцекладущие, сумчатые и плацентарные. В лесах и лесостепях Азии возникла так называемая «индрикотериевая фауна».

В начале палеогенового периода значительно распространились яйцекладущие млекопитающие. Они имели много общих черт с пресмыкающимися: размножались, откладывая яйца; нередко их тело покрывала чешуя; строение черепа напоминало строение черепа пресмыкающихся. Но в отличие от пресмыкающихся они имели постоянную температуру тела и выкармливали своих детенышей молоком.

Сумчатый саблезубый тигрРис. 2.11.2. Сумчатый саблезубый тигрСреди сумчатых млекопитающих были травоядные. Они напоминали современных кенгуру и сумчатых медведей. Были и хищники: сумчатый волк и сумчатый тигр (рис. 2.11.2). Много насекомоядных селилось вблизи водоемов. Некоторые сумчатые приспосабливались к жизни на деревьях. Сумчатые рождали недоразвитых детенышей, которых затем продолжительное время вынашивали в кожных сумках на животе. Многие из них питались лишь одним видом пищи, например, коала - только листьями эвкалиптов. Все это, наряду с другими примитивными чертами организации, привело к вымиранию сумчатых. Более совершенные млекопитающие (плацентные) рождали развитых детенышей и питались разнообразной растительностью. Кроме того, в отличие от неуклюжих сумчатых, они легко спасались от хищников. Землю начали заселять предки современных млекопитающих. Только в Австралии, рано отделившейся от других материков, эволюционный процесс как бы замер. Тут царство сумчатых сохранилось до наших дней. 

    Палеогеновый период характеризуется неравномерным распределением фауны по материкам. Тапиры, титанотерии развились преимущественно в Америке, хоботные и хищные - в Африке. В Австралии продолжают жить сумчатые. Таким образом, постепенно фауна каждого материка приобретает индивидуальный характер.

Палеогеновые земноводные и пресмыкающиеся ничем не отличаются от современных.

ФороракосРис. 2.11.3. ФороракосПоявилось много беззубых птиц, характерных и для нашего времени. Но наряду с ними жили огромные нелетающие (бегающие) птицы, полностью вымершие в палеогене,- диатрима и фороракос.

Так, например диатрима была 2 м в высоту с длинным, до 50 см клювом. На сильных лапах у нее имелось по четыре пальца с длинными когтями. Жила диатрима в засушливых степях, питалась мелкими млекопитающими и пресмыкающимися.

Фороракос достигал 1,5 м в высоту (рис. 2.10.3). Его острый крючковатый полуметровый клюв был весьма грозным оружием. Поскольку у него были маленькие, неразвитые крылья, он не мог летать. Длинные, сильные ноги фороракосов свидетельствуют о том, что они были прекрасными бегунами. По мнению некоторых исследователей, родиной этих огромных птиц была Антарктида, покрытая в то время лесами и степями. [2]

 


 

 

2.11.1. Животный мир палеоцена (65,5 - 55,8 млн. лет назад)

ПалеоценРис. 2.11.1.1. ПалеоценПалеоцен ознаменовал собой начало кайнозойской эры (рис. 2.11.1.1). В то время материки все еще находились в движении, поскольку "великий южный материк" Гондвана продолжал раскалываться на части. Южная Америка оказалась теперь полностью отрезанной от остального мира и превратилась в своего рода плавучий "ковчег" с уникальной фауной ранних млекопитающих. Африка, Индия и Австралия еще дальше отодвинулись друг от друга. На протяжении всего палеоцена Австралия располагалась вблизи Антарктиды. Уровень моря понизился, и во многих районах земного шара возникли новые участки суши.

Солнечникообразные (Zeiformes)Рис. 2.11.1.2. Солнечникообразные (Zeiformes)В палеоцене постепенно место вымерших аммонитов (ранее самой распространенной группы моллюсков) заняли в Мировом океане новые виды брюхоногих и двустворчатых моллюсков доля родов которых в этот период достигла 7% (против было 3% в меловом периоде), но такое разнообразие связано не с их увеличением разновидностей, а с общим снижением разнообразия биосферы – динозавры вымерли, а примитивные улитки и устрицы при этом почти не пострадали. Головоногие моллюски балансировали на грани вымирания, известен лишь один род палеоценовых наутилоидов. Больше всего в палеоцене было брюхоногих моллюсков, т.е. улиток. В палеоцене появились первые джулииды – пожалуй, самые интересные улитки в природе, они по виду и образу жизни ничем не отличаются от двустворчатых моллюсков, и даже их панцирь состоит из двух створок, увидев ее неспециалист и не поймет, что перед ним улитка, а не устрица. Появились новые разновидности морских ежей и фораминиферов. Исчезновение ихтиозавров, плезиозавров и других морских форм жизни, вымерших в конце мелового периода, оставило в пищевых цепях морей и океанов множество пробелов. Постепенно эти пробелы заполнились новыми группами плотоядных костных рыб и акул, которые сменили вымерших рептилий — основных океанских хищников.

    Среди палеоценовых рыб доминируют лучеперые рыбы (15% всех родов), вымирание аммонитов и морских рептилий явно пришлось им по нраву, их разнообразие выросло почти на порядок (рис. 2.11.1.2). Среди них присутствуют уже почти современные окуни, селедки, сомики и щуки.

Акулы палеоцена становятся все более похожи на современных. Появились первые современные роды: леопардовая акула и ржавая акула-нянька. Самой большой палеоценовой акулой являлся отодус, достигавший в длину 9 м (рис. 2.11.1.3), тогда, как другие палеоценовые акулы были гораздо меньше – 1,5-3,2 м. 

Отодус (Otodus)Рис. 2.11.1.3. Отодус (Otodus)Некоторые палеонтологи предполагают, что в первый миллион лет палеоцена кое-где еще встречались единичные виды динозавров, например, критозавр, чьи кости нашлись в палеоценовых отложениях на юго-западе США. Хотя одно из объяснений этой находки – кости динозавров занесло в более верхние слои осадочных пород каким-то геологическим процессом уже после окаменения. Но даже если динозавры реально жили в начале палеоцена, длилось это недолго.

Мир палеоцена был на пороге века млекопитающих. Три их основные группы — однопроходные, сумчатые и плацентарные млекопитающие — начали занимать экологические ниши, освобожденные динозаврами. Несмотря на то, что первые зверообразные животные появились на Земле еще в конце триаса (около 200 млн. лет назад), эти протомлекопитающие были не в состоянии соперничать с господствовавшими в те эпохи динозаврами и затаившись среди своих процветающих конкурентов, терпеливо в течении 150 млн. лет ожидали своего часа. И вот, с исчезновением с лица Земли их главных врагов - гигантских рептилий, они, не замедлив себя ждать, начали осваивать окружающий их мир. Впервые с пермских времен синапсиды вернули статус доминирующей группы четвероногих позвоночных и в отличие от соседнего мелового периода, где им принадлежало 6% меловых родов, к млекопитающим палеоцена уже относилось 33% всех палеоценовых родов. 

Представитель отряда Многобурчатых - Трикодонт (Triconodonta)Рис. 2.11.1.4. Представитель отряда Многобурчатых - Трикодонт (Triconodonta)Некоторые ранние млекопитающие оставались насекомоядными. Первые землеройки и ежи поедали ползающих насекомых, оспаривая пищу у таких конкурентов, как лягушки и жабы. Однако вокруг была масса других насекомых, помимо тех, что ползали по земле. Поэтому некоторые млекопитающие поднялись в воздух и принялись охотиться за летающими насекомыми, представлявшими собой поистине неограниченные пищевые ресурсы. Но ведь исчезновение динозавров означало, что в распоряжении млекопитающих оказалось, и огромное количество прочей пищи, ранее недоступной. Внезапная гибель динозавров оставила пустующими многие "пищевые ниши". В результате часть ранних млекопитающих перешла к дневному образу жизни и изрядно разнообразила свой рацион. Появились также похожие на грызунов животные, именуемые многобугорчатыми, и живущие на деревьях приматы величиной с белку — по всей видимости, всеядные. Очень быстро ранние млекопитающие эволюционировали во множество групп животных самого различного облика и размеров, что позволяло им заселять практически любую среду обитания. Самыми маленькими, вероятно, по-прежнему оставались насекомоядные. Более крупные животные стали активными охотниками или питались падалью. Появились и по-настоящему крупные травоядные и хищники. Неуклюжие травоядные млекопитающие, амблиподы, поедали листья и прочую растительность. Бивни и странные рога некоторых из них служили для защиты от хищников. Плоскостопные плотоядные млекопитающие, креодонты, по размерам были либо не крупнее горностая, либо: больше самого огромного медведя. Аллотерии (отряда Многобугорчатые), доминировавшие среди млекопитающих в мезозое, также являлись одними из наиболее разнообразных животных палеоцена, к ним относятся 7% всех палеоценовых родов. Они сильно подросли по сравнению с мезозоем, крупнейшие из них достигали весом 30 кг (рис. 2.11.1.4).

УтконосРис. 2.11.1.5. УтконосПервые однопроходные, или клоачные, появились еще в середине мелового периода. Это наиболее примитивная группа ныне живущих млекопитающих. Со времен палеоцена до наших дней дожили лишь три их вида: два вида ехидн, или колючих муравьедов, и один вид утконосов (рис. 2.11.1.5). Все они встречаются только в Австралии и на Новой Гвинее. Однопроходные, хотя относятся к млекопитающим, сохранили одну из основных черт рептилий - откладывать яйца.

Интересно, что о существовании утконоса европейские ученые впервые узнали только в 1978 г., когда из Австралии в Англию прислали его высушенную шкуру. Поначалу неизвестного таксидермиста заподозрили в том, что он приделал утиный клюв к телу какого-то зверька. А что могли подумать ученые, увидев очень странный нос зверька, сегодня даже трудно себе представить! В общем, это необыкновенное животное вызвало горячие споры среди зоологов. В конечном итоге им пришлось согласиться, что они имеют дело с очень необычным представителем ранней группы млекопитающих.

Первые сумчатые обитали в Северной Америке с середины и до конца мелового периода (около 100 млн лет назад). Позже, в эоцене, они распространились по всем материкам, за исключением Африки и Азии, и через Антарктиду перебрались в Австралию. Сумчатые более высокоорганизованные животные, чем однопроходные, но, не смотря на это, сумчатые палеоцена были представлены исключительно опоссумами. 

    В то время как однопроходные и сумчатые вырабатывали собственные способы размножения, еще одна группа млекопитающих (плацентарные) начала производить на свет потомство совсем иным путем. В основе их "метода" лежал особый орган — такназываемая плацента. Главная же "идея" состояла в том, чтобы детеныш оставался внутри материнского организма, пока не достигнет сравнительно высокого уровня развития (в отличие от сумчатых, чье потомство появляется на свет крайне неразвитым). У этого нового способа размножения были вполне очевидные преимущества. Рождаясь куда более "созревшими", детеныши плацентарных млекопитающих имели гораздо лучшие шансы выжить. Кроме того, плацентарные значительно усовершенствовали методику выкармливания своих новорожденных отпрысков и выработали новый тип поведения, рассчитанный на длительные периоды ухода за молодняком.

CimolestaРис. 2.11.1.6. CimolestaВ палеоцене многие плацентарные млекопитающие оставались маленькими животными, чем-то похожими на своих меловых предков. Однако вскоре они начали составлять серьезную конкуренцию сумчатым. Плацентарные очень быстро эволюционировали, и среди них возникали все новые виды животных разнообразие которых, к концу палеоцена инасчитывало уже около 23% всех живших в эту эпоху родов животных. Способность поддерживать постоянную температуру тела, прогрессивный способ размножения и крупный головной мозг позволили им стать процветающей группой животных и постепенно установить свое господство на всей поверхности земного шара. 

Самый большой надотряд плацентовых – лавразиотерии (17% всех родов) являвшиеся потомками мезозойских млекопитающих, обитавших в Евразии и Северной Америке. Начнем рассматривать основные отряды лавразиотериев с наиболее представительного – cimolesta (рис. 2.11.1.6). Этот отряд возник во второй половине мелового периода и вымер в середине кайнозоя. Эти животные были очень разнообразными, их размеры варьировались от 12 см до 2,5 м, вес – от 60 г до 650 кг. Мелкие симолесты были насекомоядными, крупные – растительноядными, несмотря на то, что имели клыки и когти. Дело в том, что в эволюционной гонке палеоцена побеждали не те животные, которые лучше приспособились к своим экологическим нишам, а те, кто первыми успели эти ниши занять. Копытные хищники, а так же когтистые и клыкастые козлы являлись обычным делом для палеоцена.

Кондилартры (Condylarthra)Рис. 2.11.1.7. Кондилартры (Condylarthra)Второе место по численности родов занимал отряд мезонихий, это предки современных парнокопытных, а также китов. Несмотря на копыта на лапах, первые мезонихии были хищниками, самые крупные достигали 1,5 м в длину. Синоникс входящий в этот отряд и имевший много мелких признаков, присутствующих у китообразных, и не присутствующих больше ни у кого считается непосредственным предком китов.

Кондилартры – видимо, именно они были предками парнокопытных (к ним относят свиней, оленей, антилоп и др.) и непарнокопытных (лошади, тапиры, носороги), хоботных и даже наземных предков китов и сирен. Некоторые кондилартры преобразовали когти на пальцах в копыта, некоторые по-прежнему жили с когтями (рис. 2.11.1.7).

Диноцераты (Dinocerata)Рис. 2.11.1.8. Диноцераты (Dinocerata)Южноамериканские копытные, в полном соответствии со своим названием, жили в Южной Америке. В начале кайнозойской эры она была изолирована от других континентов, и так получилось, что среди местных млекопитающих не нашлось достаточно продвинутых, чтобы быстро занять освободившиеся экологические ниши зауроподов, орнитоподов и цератопсов. Пришлось местным землеройкам срочно расти и специализироваться в козлов, коров и носорогов, это был долгий и мучительный процесс, в конце концов, все эти звери вымерли, когда Южная Америка соединилась с Северной и южноамериканским копытным пришлось конкурировать с «настоящими» копытными. В палеоцене отряд южноамериканских копытных только-только начал формироваться. Эти звери были невелики (до 1,5 м в длину), у некоторых были клыки, как у современных кабанов.

Карнивораморфы – предки современных хищных зверей, а также виверр. В палеоцене это были мелкие хищники, 30-80 см в длину, типа хорьков и мангуст, многие жили на деревьях.

Другими представителями палеоценовых лавразиотериев представленных по одному роду, являлись диноцераты – большие носорогоподобные травоядные (рис. 2.11.1.8), креодонты – альтернативный отряд специализированных хищников и панголины.

Вторым большим надотрядом палеоценовых плацентарных были Euarchontoglires – это общее название для грызунов, приматов и шерстокрылов. Они были маленькими (вес до 2,1 кг) и всеядными, многие жили на деревьях. У некоторых появился противопоставленный большой палец, эти существа разделились на два отряда, один из которых – приматы.

ПелагорнитидыРис. 2.11.9. ПелагорнитидыТеперь давайте перейдем к следующему классу хордовых - завропсидам. Завропсиды – ветвь четвероногих позвоночных, в которую входят пресмыкающиеся и птицы. К ним относятся 30% палеоценовых родов, самая большая их группа (13% всех родов) – крокодиломорфы. Почти все они входили в современный отряд крокодилов, размеры палеоценовых крокодилов составляли от 1 до 4,5 м, не все они были водными хищниками, некоторые бегали по земле, а pristichampsus умел даже бегать на двух ногах, как динозавр. Цератозух – единственный известный науке крокодил с рогами, зачем ему нужны были рога – науке неизвестно.          

Титанобоа (Titanoboa)Рис. 2.11.1.10. Титанобоа (Titanoboa)Другие 13% палеоценовых родов – птицы. Сюда входят гуси, утки, пингвины, совы, журавли, фламинго, пеликаны, бакланы, буревестники, ржанки, казуары и пелагорнитиды – типа альбатросов, но очень большие и с зубами в клюве (рис. 2.11.1.9). а так же пресбиорнис – нечто вроде журавля, построенного на генетической базе гуся, гигантскую птицу диатриму – нелетающая птица ростом до 2 м и весом до 100 кг, вайману являвшимся предком всех пингвинов и страуса эму, этот род возник как раз в палеоцене.

Чешуйчатые пресмыкающиеся породили в палеоцене самую большую змею за всю историю Земли – титанобоа длиной до 15 м, диаметром один метр в самом широком месте и весом до 1135 кг (рис. 2.11.1.10). Один из представителей чешуйчатых млекопитающих дожил до наших дней - двуходка rhineura.

Среди палеоценовых завропсид, упомянем еще небольших водных рептилий хористодер (choristodera), похожих на крокодилов, но не родственных им. [3]

Животный мир палеогена. Животный мир палеоцена

<< Животный мир мела<<

|>> Животный мир эоцена>>


А.С.Антоненко


 

Источники: 1. Википедия
2. Как развивалась жизнь на Земле. Выпуск 19
3. LiveJournal

Учёные давно изучают способность гекконов бегать по вертикальным поверхностям. И в общих чертах удалось понять, как им это удаётся. Однако в лабораторных экспериментах гекконы легко бегают по сухой поверхности, но падают с мокрой. Между тем в своей естественной среде, в тропическом лесу, они легко прилипают лапами к мокрым листьям, не испытывая с этим никаких трудностей.

Геккона тянут за постромки по мокрому и сухому стеклу. (Фото авторов работы).Геккона тянут за постромки по мокрому и сухому стеклу. (Фото авторов работы).Чтобы узнать, в чём тут дело, исследователи из Акронского университета (США) поставили довольно забавный эксперимент. Они надевали на гекконов постромки, сажали рептилий на мокрую поверхность и тянули за эти постромки к себе (естественно, всё делалось так, чтобы не причинить вреда самим животным). Подопытных сажали на стекло, плексиглас, прозрачный пластик и тефлон. Легко заметить, что все эти поверхности по-разному смачивались водой. Из них лишь плексиглас и пластик были похожи по свойствам на листья, по которым гекконам приходится бегать в своих лесах (у тефлона, понятно, сильно несмачиваемая поверхность).

Лапа геккона (фото Thomas Kitchin & Victoria Hurst).Лапа геккона (фото Thomas Kitchin & Victoria Hurst).Когда геккона тянули по сухому стеклу, его лапы оставались прилеплены к поверхности; если же стекло было мокрым, лапы рептилии скользили вместе с ней. Но на пластике и плексигласе эта разница исчезала: лапы прочно держались на поверхности, даже если до этого геккон наступил в воду.

Как пишут исследователи в журнале PNAS, если поверхность смачивалась плохо, это позволяло сохранять сухими некоторые участки между пальцами геккона и его опорой. Благодаря тому что тут не было водной плёнки, геккон мог крепко прилипнуть: именно так, по-видимому, эти рептилии передвигаются по мокрым листьям, которые из-за воскового налёта смачиваются тоже лишь частично. Если бы листья смачивались подобно стеклу, никакой геккон по ним в дождь не побегал бы.

Точно такой же механизм используют некоторые жуки, которые могут ходить под водой благодаря воздушной подушке между лапкой и поверхностью. Интерес исследователей такого рода природным биоинженерным находкам понятен: если удастся полностью раскрыть секрет того, как гекконы бегают по вертикальным поверхностям, это позволит создать новые материалы и сконструировать новых роботов, способных ползать по стенам.


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Эпигенетическими модификациями ДНК растений управляют малые регуляторные РНК

22-09-2012 Просмотров:10296 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Эпигенетическими модификациями ДНК растений управляют малые регуляторные РНК

Учёным удалось отчасти понять, как растениям удаётся передавать эпигенетический код из поколения в поколение. Схематический портрет молекулярного комплекса ДНК и фермента ДНК-метилтрансферазы (рисунок Laguna Design)Про эпигенетический код наука знает давно, но...

Прототип научно-фантастического червя нашли в кембрийском море

01-12-2015 Просмотров:6609 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Прототип научно-фантастического червя нашли в кембрийском море

Ископаемые остатки животного, напоминающего песчаного червя Шаи-Хулуда из фантастической эпопеи "Дюна", обнаружили в кембрийских отложениях китайские палеонтологи. Древнее существо тоже было покрыто броней и шипами и тоже предпочитало жить в...

Биологи открыли насекомых, выращивающих антибиотики для своих нужд

20-01-2017 Просмотров:5934 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Биологи открыли насекомых, выращивающих антибиотики для своих нужд

Гусеницы хлопчатниковых совок выработали необычную стратегию защиты от паразитов и болезней, "приручив" бактерий, которые вырабатывают антибиотики в их кишечнике в обмен на питательные вещества, говорится в статье, опубликованной в журнале Cell Chemical Biology. "Мы долгое время подозревали, что...

Акулам отказали в умении различать цвета

19-01-2011 Просмотров:12852 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Акулам отказали в умении различать цвета

Группа биологов из Университета Западной Австралии и Университета Квинсленда во главе с доктором Нейтаном Скоттом Хартом (Nathan Scott Hart) пришла к выводу, что акулы не различают цветов. Статью об этом...

Корейские ученые отобрали образцы пещерного львенка для клонирования

04-03-2016 Просмотров:6298 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Корейские ученые отобрали образцы пещерного львенка для клонирования

Корейские ученые из университета Соам отобрали образцы ткани у пещерного львенка для эксперимента по клонированию. Об этом ТАСС в пятницу сообщил профессор Хванг из корейского вуза. Пещерный лев"Согласно трехстороннему соглашению между...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.