Мир дикой природы на wwlife.ru
Вы находитесь здесь:Геохронология>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Мышьяк


Авторы сенсационной статьи, подтверждающей, что возможна жизнь с ДНК на мышьяке вместо фосфора, поделились подробностями своей работы, чтобы отбиться от вала критики. И призвали коллег повторить их необычные результаты.

Бактерия GFAJ-1 Бактерия GFAJ-1 История нашумевшей статьи в Science о бактерии, которая оказалась способна замещать фосфор на мышьяк в своей ДНК, получила продолжение. Первый автор статьи — Фелиса Вольф-Симон из Института астробиологии NASA (Felisa Wolfe-Simon, NASA Astrobiology Institute), а также Роналд Оремленд из Геологической службы США (Ronald S. Oremland, U.S. Geological Survey) публично ответили на критику. Редакция Science опубликовала ответы в интернете, подчеркнув, что они не могут считаться официальной публикацией, так как не прошли рецензирование. Официальные комментарии к статье и ответы исследователей будут опубликованы в журнале в следующем месяце.

Напомним, что ученые культивировали в лаборатории бактерию GFAJ-1 из калифорнийского озера Моно. Питательная среда не содержала фосфатов, но к ней добавляли все большее и большее количество соединений мышьяка – арсенатов. Бактерия успешно росла на такой среде. Анализ показал, что мышьяк содержится в клетках, и что он в форме арсенатов встроился в молекулу ДНК вместо фосфора. Результаты ученые получили в эксперименте с радиоактивной меткой, а также методом рентгеновской спектрометрии.

Критика, в основном, сводилась к тому, действительно ли бактерии могли расти при отсутствии фосфатов, и могли ли соединения мышьяка встраиваться в ДНК, поскольку они очень нестабильны. Ученые ответили на три вопроса методического характера и на один вопрос общего характера. Чтобы не загружать читателей техническими деталями эксперимента, перечислим вопросы и кратко остановимся на сути ответов.

1. Многие спрашивают, очищали ли ДНК с использованием гелевого электрофореза, чтобы избавить ее от всех иных молекул.

На это ученые отвечают, что все манипуляции с ДНК они проводили точно по протоколу с необходимой очисткой. Эксперимент с радиоактивно меченым арсенатом показал, что метка ассоциирована с ДНК/РНК фракцией. Спектрометрия продемонстрировала, что атом мышьяка химически связан с углеродом, а не находится в растворе в виде иона. Судя по длине химических связей, говорят ученые, мышьяк встроен в структуру ДНК в виде арсената, аналогично тому, как фосфор – в виде фосфата.

2. Другие уверены, что ДНК с мышьяком при помещении в воду должна была развалиться на куски. Что Вы можете ответить на это?

Ученые говорят, что низкомолекулярные соединения мышьяка менее стабильны, чем соответствующие соединения фосфора, и быстрее подвергаются гидролизу. Но есть данные, что с увеличением углеродной цепочки их устойчивость возрастает. Поэтому можно предположить, что связанные с биополимерами арсенаты будут более устойчивы к гидролизу. Тем более — в ДНК благодаря ее структуре двойной спирали.

3. Возможно ли, что в культуральной среде содержалось незначительное, но достаточное количество фосфора для жизни бактерий?

Исследователи отвечают, что максимальное остаточное содержание фосфора в среде составляло около 3 μM (микромоль). Они поставили контрольный эксперимент, который показал, что если не добавлять в среду арсенаты, бактерии не выживают при такой микроконцентрации фосфатов. Содержание фосфора внутри клеток при этом недостаточно для того, чтобы покрыть ее потребности.

4. Хотели ли бы Вы сказать еще что-нибудь о Вашем исследовании?

«Мы, группа ученых, собравшихся, чтобы пытаться исследовать действительно интересную проблему, — отвечает Фелиса Вольф-Симон. — Каждый из нас внес вклад в проведение экспериментов и в обсуждение результатов, чтобы объективно определить, с каким явлением мы столкнулись. Мы опубликовали свои результаты в статье и представили их для прессы. Одна из задач публикации состояла в том, чтобы представить данные научному сообществу для совместного поиска ответов на вопросы». Ученые считают, что попытка экспериментально проверить и повторить эти результаты – необходимый механизм для того, чтобы они стали частью научного знания. «Мы рассчитываем работать в сотрудничестве с другими учеными, либо непосредственно, либо предоставляя наши клетки и образцы ДНК для анализа», — добавила Фелиса Вольф-Симон.

Ранее в своем твиттере Фелиса Вольф-Симон высказала свое негативное отношение к PR-акции NASA, вызвавшей ажиотаж и ожидание открытия внеземной жизни: «Мы не можем контролировать пресс-релизы. Я участвовала в создании пресс-релизов, но участвовать — не значит контролировать. Я могу контролировать только свою научную деятельность. РR-машина – это РR-машина. А мы ученые».

«Как молодой ученый, я расцениваю это как опыт, который надо пережить… и обратно в лабораторию!» — говорит Фелиса Вольф-Симон.


Источник: Infox.ru


Опубликовано в Новости Микробиологии

NASA предъявило научному сообществу "астробиологическое открытие, которое повлияет на поиск свидетельств внеземной жизни". Учёные обнаружили и изучили микроорганизмы, которые в своём рационе полагаются на мышьяк и используют этот токсичный элемент для строительства клеток. Получается, если земная жизнь закусывает смертью, внеземная может выкинуть чего и похлеще?

Бактерия, обожающая мышьяк,  перевернула привычные представления  о "живности" (фото NASA,  Jodi Switzer Blum) Бактерия, обожающая мышьяк, перевернула привычные представления о "живности" (фото NASA, Jodi Switzer Blum) Все живые организмы нашей планеты строятся из шести "кирпичиков": углерода, водорода, азота, кислорода, фосфора и серы (CHNOPS). Фосфор внутри фосфат-иона (PO43-) входит в основу структур ДНК и РНК, определяет транспорт веществ через мембрану клетки, играет важную роль в обмене энергии.

Герои нынешнего исследования, стойкие бактерии, обитали в  калифорнийском озере Моно (Mono Lake), известного своими  ужасными условиями: высокой солёностью и щёлочностью, а также  повышенным содержанием мышьяка (фото NASA) Герои нынешнего исследования, стойкие бактерии, обитали в калифорнийском озере Моно (Mono Lake), известного своими ужасными условиями: высокой солёностью и щёлочностью, а также повышенным содержанием мышьяка (фото NASA) Биологи полагали, что CHNOPS – основа жизни во Вселенной. Однако некоторые учёные всё же задавались вопросом: почему на место "первой шестёрки" не могут встать другие химические элементы. Так, мышьяк (As), химически близкий к фосфору, мог бы выполнять его функции. Другое дело, что этот элемент для любой формы жизни является ядом.

Тем не менее AsO43- имеет ту же структуру, что и фосфат-ион, образует похожие связи. А значит, он теоретически может внедриться на чужое место.

Твёрже других эту позицию отстаивала геомикробиолог Фелиса Волф-Саймон (Felisa Wolfe-Simon) из NASA. "Мы знаем, что некоторые микробы дышат мышьяком", — заявила она ещё в 2006 году. В 2008-м учёные обнаружили червей, питающихся тяжёлыми металлами. В 2009-м гипотезу существования "жизни на мышьяке", выдвинутую Фелисой со товарищи, опубликовал International Journal of Astrobiology.

Дальнейшие выступления позволили "железной Лизе" собрать вокруг себя единомышленников, которые искали не просто толерантных к мышьяку существ, но тех, что могли извлечь из его использования биологическую выгоду. Так началось изучение самых странных уголков планеты, одним из которых было озеро Моно.

По-своему уникальное озеро стало таким из-за изоляции:  пресная вода не поступала в него последние 50 лет. Зато водоём  постоянно подпитывали мышьяком минералы, входящие в  состав пород соседних гор.  Внизу: Фелиса и доктор Рональд Ормленд (Ronald Oremland)  из геологического центра США собирают коллекция грязи  (фото Henry Bortman)По-своему уникальное озеро стало таким из-за изоляции: пресная вода не поступала в него последние 50 лет. Зато водоём постоянно подпитывали мышьяком минералы, входящие в состав пород соседних гор. Внизу: Фелиса и доктор Рональд Ормленд (Ronald Oremland) из геологического центра США собирают коллекция грязи (фото Henry Bortman)Группа Фелисы собирала ил на берегах и дне водоёма, затем образцы помещались в искусственную среду, в которой преобладали арсенаты и почти отсутствовали фосфаты. Постепенно биологи довели концентрацию соединений фосфора до минимальной, однако даже в таких условиях одна группа бактерий из общей смеси продолжала процветать.

Микробы изолировали и поселили в раствор арсенат-ионов. Дальнейшие наблюдения показали, что в такой среде культура развивалась на 60% быстрее, чем в присутствии того самого жизненно необходимого фосфора. Когда же её лишили и мышьяковой подпитки, колония расти перестала.

Внизу слева бактерии, выращенные на фосфоре, справа – на мышьяке.  Учёные отмечают, что в ближайшем будущем они хотят расшифровать  геном GFAJ-1 и выяснить, как штамм ведёт себя в естественных  условиях, когда его не вынуждают менять "диету"  (фото Henry Bortman, Jodi Switzer Blum) Внизу слева бактерии, выращенные на фосфоре, справа – на мышьяке. Учёные отмечают, что в ближайшем будущем они хотят расшифровать геном GFAJ-1 и выяснить, как штамм ведёт себя в естественных условиях, когда его не вынуждают менять "диету" (фото Henry Bortman, Jodi Switzer Blum) Новый штамм назвали GFAJ-1. Учёные определили, что необычные микроорганизмы принадлежат семейству Halomonadaceae, относящемуся к гамма-протеобактериям (gammaproteobacteria), большая часть которых является патогенами.

Чтобы выяснить, как бактерии используют мышьяк, биологи "подсветили" раствор радиометками. Выяснилось, что "съеденный" элемент присутствует внутри органелл клеток, в нуклеотидах ДНК и РНК. При этом содержание арсенат-ионов было таким же, как и ожидаемое количество фосфат-ионов.

Эти данные натолкнули учёных на мысль, что токсичный элемент используется микробами так же, как и фосфор в работе клеточных механизмов. А раз на такое способен штамм GFAJ-1, то и другие микроорганизмы в ходе эволюции вполне могли перейти на подобный "корм". "Нынешнее открытие может стать окном в новый неизведанный мир", — считает Фелиса.

Другие учёные тем временем отмечают, что хорошо бы определить положение мышьяка в молекулах, выполняющих в клетке определённые функции. Например, надо выяснить, к чему приводит замена фосфора на мышьяк в молекуле АТФ. Страдает ли эффективность переноса энергии? Как влияет арсенат-ион на связи с белками и метаболические процессы? В общем, химики жаждут разобраться в деталях не меньше биологов.

Тем временем исследователи NASA твердят, что раз столь неожиданное для науки поведение существует на Земле, то космос может быть наводнён и более фантастическими существами.

Анализ, проведённый на синхротроне национальной лаборатории  Стэнфорда (SLAC National Accelerator Laboratory), показал, что мышьяк  содержится внутри клеток в форме арсената, а также, что эти  ионы образуют связи с углеродом и кислородом подобно фосфату  (фото Brad Plummer/SLAC). Анализ, проведённый на синхротроне национальной лаборатории Стэнфорда (SLAC National Accelerator Laboratory), показал, что мышьяк содержится внутри клеток в форме арсената, а также, что эти ионы образуют связи с углеродом и кислородом подобно фосфату (фото Brad Plummer/SLAC). "Мы расширили понятие "жизнь". Чтобы найти её вне Солнечной системы, нам необходимо думать шире, разнообразнее", — говорит доктор Эдвард Вейлер (Edward Weiler), руководитель одной из научных программ NASA.

Формулировка "много шума из ничего" в данном случае  была бы слишком пренебрежительной. Учёные действительно  открыли невиданную ранее способность микроорганизмов  (хотя их выводы ещё предстоит проверить).  Однако и новой формой жизни GFAJ-1 можно назвать с  большой натяжкой. Ведь микроорганизмов, обитающих в  экстремальных условиях, биологам известно немало. К  примеру, мы рассказывали о любителях глубины,  невероятных высот, холода, подводного жара и даж  е радиоактивных руд (фото Henry Bortman).  Формулировка "много шума из ничего" в данном случае была бы слишком пренебрежительной. Учёные действительно открыли невиданную ранее способность микроорганизмов (хотя их выводы ещё предстоит проверить). Однако и новой формой жизни GFAJ-1 можно назвать с большой натяжкой. Ведь микроорганизмов, обитающих в экстремальных условиях, биологам известно немало. К примеру, мы рассказывали о любителях глубины, невероятных высот, холода, подводного жара и даж е радиоактивных руд (фото Henry Bortman). Раньше мысли о том, что основой жизни может стать не только шестёрка CHNOPS, встречались разве что в фантастических книгах. Правда, частым "гостем" был вовсе не мышьяк, а кремний, который заменял углерод. Теперь же "альтернативная форма жизни" описана в Science.

Но эта история вовсе не о том, что в озере Моно нашли бактерии на мышьяке, — подытоживает Фелиса. – Наше открытие – это напоминание: формы жизни могут быть более непредсказуемы".


Источник: MEMBRANA


Опубликовано в Новости Микробиологии

Первооткрыватели "внеземных" бактерий, использующих мышьяк вместо фосфора для строительства молекул ДНК, опровергли свои собственные выводы, попытавшись вырастить колонию таких микробов при полном отсутствии фосфора в питательной среде, говорится в двух статьях, опубликованных в журнале Science.

Соленое озеро Моно в КалифорнииВ 2010 году группа биологов под руководством Роузмари Редфилд (Rosemary Redfield) из университета Британской Колумбии в Ванкувере (Канада) изучала колонии микробов на дне калифорнийского озера Моно, воды которого отличается высоким содержанием щелочей и солей, в том числе высокой концентрацией солей мышьяка. Здесь ученые обнаружили уникальный микроорганизм GFAJ-1, клетки которого содержали высокую долю мышьяка (As) и крайне низкую - фосфора (P), одного из шести "элементов жизни". Исследователи заключили, что данная бактерия использует атомы мышьяка в качестве замены фосфора, что считалось немыслимым ранее.

Многие ученые крайне скептически отнеслись к открытию "мышьяковой жизни", что побудило ее первооткрывателей проверить первоначальные выводы. Редфилд и ее коллеги провели два новых эксперимента, тщательно изучив химический состав клеток GFAJ-1 и проследив за темпами роста бактерии в питательном растворе с высоким содержанием мышьяка и полным отсутствием фосфора.

Оказалось, что ДНК бактерий содержала лишь микроскопические следы мышьяка, и ни один из атомов As не был присоединен к молекуле ДНК при помощи прочной ковалентной связи. Это означает, что мышьяк не играл существенной роли в работе генетических механизмов клетки.

Кроме того, повышение концентрации мышьяка в питательной среде, где обитали клетки, никак не влияло на темпы размножения бацилл. С другой стороны, уменьшение доли фосфора в растворе крайне негативно сказывалось на здоровье колонии - рост постепенно приостанавливался и бактерии начинали медленно погибать.

Ученые изучили химический состав продуктов метаболизма бактерии. Это помогло им понять, что все молекулы белков, сахаров и других органических веществ с включениями в виде атомов мышьяка появились в ходе реакций, не связанных с обменом веществ в клетке бактерии.

Как отмечают ученые, данные новых опытов позволяют утверждать, что GFAJ-1 обладает крайне высокой устойчивостью к мышьяку, но при этом ее жизненные процессы ничем не отличаются от метаболизма нормальных бактерий. Таким образом, авторы гипотезы "мышьяковой жизни" были вынуждены опровергнуть свое сенсационное открытие двухлетней давности.

Фосфор в форме фосфатов (солей фосфорной кислоты) образует основу нитей молекул ДНК и РНК, а также входит в состав "топлива" для живых организмов - аденозинтрифосфорной кислоты (АТФ).

Мышьяк находится точно под фосфором в таблице Менделеева и очень похож на него по своим физико-химическим свойствам. Именно это сходство обуславливает его токсичность - организм не может отличить мышьяк от фосфора и "пропускает" его в процессы обмена веществ.

 


Источник: РИАНОВОСТИ

 

Опубликовано в Новости Микробиологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Генетики составили карту человеческих различий

04-02-2011 Просмотров:11096 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Генетики составили карту человеческих различий

От малых различий в геномах разных людей исследователи перешли к большим. Они проанализировали более 28 тысяч хромосомных перестроек, нашли слабые места в геноме и связали некоторые перестройки с наследственными болезнями. Генетики...

В России впервые обнаружены останки плиозавра - крупнейшего морского ящера…

29-09-2014 Просмотров:7554 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В России впервые обнаружены останки плиозавра - крупнейшего морского ящера юрского периода

Новый вид плиозавра - крупнейшей водоплавающей рептилии юрского периода обнаружен на территории Рязанской области. Открытие сделали ученые РАН и члены кружка при палеонтологическом музее имени Ю.А. Орлова (Москва), сообщил ИТАР-ТАСС...

ДНК-рекордсмены: как соотносятся между собой геномы человека и червяка

05-07-2017 Просмотров:4766 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

ДНК-рекордсмены: как соотносятся между собой геномы человека и червяка

У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью...

Древнейшее изображение собак обнаружено в Аравийской пустыне

20-11-2017 Просмотров:3264 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Древнейшее изображение собак обнаружено в Аравийской пустыне

Археологи обнаружили в Аравийской пустыне рельефы, изображающие собак и высеченные охотниками каменного века. Возможно, находка представляет собой древнейшие дошедшие до наших дней изображения собак. Первые изображения собакОб этом говорится в статье...

Кембрийский хищник был похож на щетку

20-11-2011 Просмотров:17034 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Кембрийский хищник был похож на щетку

Канадские ученые из Университета Саскачеван (University of Saskatchewan) и Королевского музея Онтарио (Royal Ontario Museum) обнаружили след странного существа, которого они определили как кембрийского хищника, жившего полмиллиарда лет назад. Находка...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.