Мы привыкли считать суточные ритмы чем-то постоянным, незыблемым. Биологическим часам нужно подчиняться — либо будет очень плохо. Однако любой организм существует в изменчивой среде: сегодня холодно, завтра тепло, в этом году урожай, в следующем — неурожай, и т. д. То есть должна быть какая-то пластичность, чтобы к таким изменениям приспосабливаться. И очевидно, что система биологических ритмов тоже должна как-то чувствовать перемены во внешнем мире и реагировать на них. Как показали исследования учёных из
В основе вариабельности суточных ритмов лежит вырожденность генетического кода. Как известно, белки построены из двадцати аминокислот, однако четыре буквы генетического алфавита позволяют создать гораздо больше аминокислотных кодов. Аминокислоте соответствует триплет, комбинация из трёх нуклеотидов, и в итоге оказалось, что одной аминокислоте могут соответствовать несколько кодирующих слов-триплетов. (Например, аминокислоте пролину соответствуют триплеты ССА, ССG и ССС, где С — цитозин, А — аденин, G — гуанин.) Не вдаваясь в подробности, следует сказать, что разные триплеты читаются рибосомой с разной скоростью, следовательно, тот белок, в котором есть такие триплеты, будет синтезироваться легче и в бóльших количествах. В связи с этим родилась молекулярно-эволюционная идея о том, что самые важные гены в клетке используют наиболее оптимальные, то есть легкочитаемые кодоны.
Гипотеза оказалась не совсем верной. Исследователи из Университета Вандербильта попробовали оптимизировать гены биологических часов у сине-зелёных водорослей и плесневых грибков. У некоторых таких генов были трудночитаемые кодоны, и учёные заменили их на легкочитаемые (при этом, напомним ещё раз, аминокислота оставалась прежней). Так вот, после такой операции биологические часы у грибка просто останавливались! То есть, как пишут исследователи в журнале
Но более интересным оказался эффект у сине-зелёных водорослей. Когда у них оптимизировали белки биологических часов, сами часы продолжили идти, но выживаемость цианобактерий сильно упала. Оказалось, что «усовершенствованные» часы лучше работали при естественной температуре, при которой сине-зелёные живут в естественной среде. И, казалось бы, оптимизация должна была повысить приспособленность цианобактерий. Но, кроме того, у часов увеличивался период, и цианобактерия начинала жить по 30-часовому циклу. В нормальных 24-часовых сутках она впадала в стресс, что сказывалось на её жизнеспособности. То есть естественный отбор работал тут на ухудшение качества кодонов в гене.
Исследователи делают вывод, что в генах биологических часов важны именно несовершенные, медленные синонимичные кодоны. Такой способ регуляции генетической активности — на уровне трансляции с помощью трудночитаемых кодонов — известен давно, но до сих пор его недооценивали. Тем удивительнее было увидеть его в такой ответственной области, как регуляция суточного ритма. Авторы работы полагают, что клетка может «подводить часы» с учётом различных факторов, хотя для того, чтобы утверждать это с полной уверенностью, нужны дополнительные эксперименты. Пока же можно сделать два вывода: «плохой» кодон не всегда плох, а биологические часы не столь жёстки и неизменны, как может показаться.
Источник: КОМПЬЮЛЕНТА
Учёные обнаружили окаменевшие останки возрастом 2 миллиарда лет, которые могут принадлежать самым старым из известных многоклеточных организмов. Статья с сообщением об открытии появилась в журнале Nature. Коротко о работе пишет портал Nature News.
Специалисты нашли останки в Габоне (Западная Африка) в породе возрастом 2,1 миллиарда лет. Ученые исследовали находку при помощи компьютерной томографии, масс-спектрометрического и химического анализов и пришли к выводу, что она представляет собой не артефакт породы, а останки неизвестных многоклеточных организмов. Плоское тело этих существ по краям разделялось на лопасти, а его длина составляла от 7 до 120 миллиметров.
Исследователи уверены, что найденные ими существа - это именно многоклеточные организмы, в клетках которых есть ядро (ученые называют такие организмы эукариотами), а не колонии бактерий. Доказательством такой точки зрения может считаться наличие в окаменелостях следов стеролов - полициклических спиртов, которые характерны для мембран эукариот.
Авторы работы полагают, что найденные ими существа появились вскоре после насыщения атмосферы Земли кислородом, произошедшего около 2,4 миллиарда лет назад и получившего название Кислородной катастрофы. До сих пор считалось, что первые многоклеточные организмы появились намного позже - около 1,4 миллиарда лет назад (останки предположительно многоклеточного существа такого возраста - Grypania spiralis - были найдены в Индии). Ученые полагали, что расцвет и распространение многоклеточных организмов по планете произошли не ранее кембрийского периода, который начался 542 миллиона лет назад.
Ценность габонской находки признают не все специалисты. Некоторые палеонтологи считают, что обнаруженные учеными структуры - это всего лишь образования минерала пирита необычной формы.
Недавно другой коллектив исследователей опубликовал работу, в которой были приведены доводы, сдвигающие еще одну временную веху в эволюции многоклеточных на 40 миллионов лет назад. Ученые обнаружили в Китае эмбрионы, строение тела которых являлось более сложным, чем строение тела большинства других многоклеточных того времени.
Источник: Lenta.ru
Считается, что первые простейшие животные возникли в конце протерозойской эры - 700 млн лет назад (в некоторых публикациях указывается дата 1,4 млрд. лет назад или даже 2 млрд.лет назад).
В следствии большой распростроненности цианобактерий и водорослей резко возростает содержание кислорода в атмосфере Земли, что приводит к возможности появления таких существ, как животные. Безконтрольный рост кислорода и уменьшение парниковых газов в криогеновом периоде приводит к череде глобальных похолоданий (в период с 750 до 580 млн. лет назад) покрывших землю слоем льда толщиной до двух километров. Каждое оледениние могло длиться от 4 до 30 млн. лет. Оледенения заканчивались катастрофически быстро, когда благодаря наземному вулканизму в атмосфере накапливалось высокое содержание углекислого газа, более чем в триста раз превышающее его современный уровень.
прокариот). Следующим щагом было появление в этом же периоде первых настоящих многоклеточных макроогранизмов - Предположительно первоначально в многоклеточные структуры объединялись простейшие хоанофлагеллаты (рис. 2.1), которые, как полагают, стоят на грани между одноклеточностью и многоклеточностью, образуют зародышеобразные колонии только с помощью бактериального липида, который получают из съеденных бактерий ( эти организмы появились на Земле сразу после Мариноанского оледенения – одной из стадий глобального оледенения, когда нашу планету в течение многих миллионов лет сплошь покрывали льды. Первые многоклеточные существа были мягкотелыми организмами, состоящими из отдельных фракталов.
Одни из самых первых появившихся на Земле животных относятся к криогеновому периоду. Эти организмы по размерам были меньше эдикарских и являются не лентовидными, а червеобразными (иногда похожи на членистых). Многие из них строили из органики сегментированные трубки бакаловидной формы. Среди этих организмов нет ни медузоподобных "дисков" как в эдикаре, так и форм похожих на губки (примитивнейших из ныне живущих групп животных). Судя по всему, довендская хайнаньская биота не может считаться предковой ни для эдикарской, ни тем более для современной - фанерозойской [1].
Родоначальником многоклеточных в настоящее время считают шаровидную колонию жгутиковых, половые клетки которых перемещались в глубь колонии, а соматические первично выполняли как функцию перемещения всей колонии в пространстве, так и пищеварения за счет переваривания фагоцитированных пищевых частиц, захваченных из воды.
Осуществление одной и той же клеткой функций движения и пищеварения малоэффективно. С этим связана последующая специализация клеток в направлении преимущественно пищеварения или обеспечения движения. Результатом является возникновение фагоцитобласта (внутреннего слоя амебовидных клеток, занимающихся пищеварением) и кинобласта (наружного слоя клеток со жгутиками, обеспечивающими движение).
Стойкая дифференцировка соматических клеток по функциям и строению, возникшая первоначально на фоне выделения двух клеточных слоев, явилась ключевым моментом в происхождении многоклеточных. Именно с двуслойностью связано появление жидкой внутренней среды, через которую клетки обмениваются химическими сигналами, а также дальнейшее обособление и специализация части поверхностных клеток в направлении восприятия внешних раздражителей и передача возбуждения на другие клетки, располагающиеся в отдалении от них. Таким образом возникают предпосылки к формированию нервной системы.
фагоцителлой (рис. 2.2). Он плавал в толще воды за счет биения ресничек кинобласта, а питался, захватывая взвешенные в среде частички пищи и переваривая их клетками фагоцитобласта. На более поздних этапах эволюции происходили многочисленные адаптации потомков фагоцителлы к многообразным условиям существования при оседании их на дно или при перемещении к поверхности, а также при изменении источников питания (захват мелких или крупных, живых или мертвых пищевых частиц). [2]
Гипотетический предок многоклеточных животных названБольшое значение в эволюции потомков фагоцителлы имели также изменения характера движения: пассивное движение или прикрепленный образ жизни обусловливают лучевой тип симметрии, в то время как активное перемещение в определенном направлении предусматривает формирование двубоковой, или билатеральной, симметрии. В результате возникло огромное многообразие форм многоклеточных животных.[4]
По другой теории первым примитивным животным является - трихоплакс (рис. 2.3).
Это плоское создание, похожее на медленно ползающую кляксу, не имеет ни осей симметрии, ни мускулатуры, ни переднего и заднего концов, не говоря уже о таких сложных устройствах, как пищеварительная, нервная, кровеносная или выделительная система. Трихоплакс по своему строению напоминает личинок кишечнополостных, и его действительно довольно долго считали личинкой медузы. Но потом оказалось, что трихоплакс образует половые клетки и размножается половым путем.
Митохондриальный геном трихоплакса по своему строению занимает промежуточное положение между «ближайшими родственниками животных» (хоанофлагеллятами и грибами) с одной стороны и всеми остальными животными (включая губок и кишечнополостных) — с другой.[5]
Следующим этапом развития животных стало появление гребневиков (рис. 2.4).Дальнейшим развитием жизни - стало появление 635 млн лет назад (по некоторым данным 850 млн. лет назад) губок (рис. 2.5) развивавшиеся на морском дне, на мелководье, а затем распространившиеся в более глубокие воды.[7]
До развития многоклеточных организмов на нашей планете повсеместно царствовали бактериальные сообщества, покрывая дно океана тонким слоем и выстраивая величественные строматолиты. Первые животные были вынуждены вести с ними жестокую борьбу за существование, получая птательные вещества с воды, им приходилось увеличивать свои габариты, что позволяло поглощать большее количества питательных веществ. [8]
а также рангеоморфы, такие, как Харния или чарния Charnia и Charnodiscus, многочисленны медузы (Beltanella, Medusinites, Cyclomedusa и проблематичные формы, близкие современным морским перьям (Rangea, Arborea) жившие в эдикарском периоде. На морском и океаническом дне в то время, обитало большое разнообразие кольчатых червей (известно 5 видов многощетинковых червей принадлежащих родам Сприггина (Spriggina) и Дикинсония (Dickinsonia), от которых в дальнейшем произошли моллюски и членистоногие. Кроме вышеперечисленных морских обитателей эдикария, встречались членистоногие-антроподы (Precambridium), являющиеся отдаленными предками ископаемых трилобитов, а также современных насекомых - пауков и скорпионов. Другими интересными животными эдикара являлись трибрахидиумы (Tribrachidium) которые до сих пор не нашли своей ниши в современой систематике. Некоторые из эдиакарских животных достигали больше метра в размере.
Одними из наиболее древних находок многоклеточных животных являются археоциаты,Вообще, в вендский период (рис. 2.6) образовалось большое количество мягкотелых животных не имеющих минерального скелета, останки которых, как уже говорилось, не дошли до наших дней. Тогда же появились первые кишечнополосные хищники.
Животные Эдиакар жили преимущественно на морском дне. Они кормились в слое органического вещества (детрита), который покрывал донный ил, образованный останками множества одноклеточных организмов, населявших толщу воды над ними. Плоские и кольчатые черви плавали над самым дном или ползали среди осадков. Спешить им было некуда, ибо хищников (животных, питающихся другими животными) здесь было очень мало.
Морские перья поднимались с морского дна (рис. 2.7), подобно неким перообразным цветкам, тщательно отфильтровывая воду в поисках пищи. Трубчатые черви лежали среди донных отложений, шевеля своими щупальцами в насыщенной детритом воде. Примитивные иглокожие, родичи современных морских звезд и морских ежей, всю свою жизнь проводили в толстом слое ила. Было там и множество крупных плоских животных в форме блина; эти похожие на медуз создания также, судя по всему, обитали на илистом дне. А над ними в морской воде медленно проплывали настоящие медузы.
В Эдиакарских отложениях встречаются многочисленные окаменевшие отпечатки мягкотелых животных, ползавших когда-то по морскому дну. В некоторых местах в иле запечатлелись парные V-образные отметины, похожие на царапины, оставленные парами крохотных ножек. Возможно, это следы вышеупомянутых примитивных артропод, или членистоногих, - отдаленных предков ископаемых трилобитов, а также современных нам насекомых - пауков и скорпионов. Правда, твердых останков этих животных пока не обнаружено: по всей видимости, они еще не обзавелись твердым панцирем. [9]
Самые первые животные возникали в холодных водах, т.к. теплые мелководные бассейны, в частности, обширные моря покрывавшие континенты в рифее, контролировались архаичной прокариотной биотой вплоть до конца венда. Древние цианобактерии, как и современные, были способны защищать себя ядами, которые угнетают рост и размножение эукариот, а в ряде случаев приводят к гибели последних. Так что, колонизация высшими организмами тепловодных бассейнов была непростой задачей.
Первую попытку животных колонизовать тепловодный карбонатный бассейн мы наблюдаем на примере карбонатных отложений Оленекского поднятия (север Якутии). Когда по окончании Варангерского оледенения морские воды начали затапливать континент, животные быстро заняли теплые мелководные обитания. Вендские беспозвоночные довольно долго «удерживали свои позиции» – остатки мягкотелых беспозвоночных, преимущественно, кишечнополостных, в изобилии встречаются в битуминозных тонкослоистых известняках хатыспытской свиты в интервале более 100 метров. Трудно сказать точно, сколько длился этот эпизод, но цианобактериальные сообщества «взяли реванш» и надолго: толща строматолитовых пород туркутской свиты имеет мощность более 200 м. Судя по современным аналогам, строматолиты растут крайне медленно. Лишь в самом конце венда (542±1 млн. лет) и, особенно, в начале кембрийского периода сообщества животных получили возможность вернуться в свободные от строматолитов обитания.
Сезонность питания, характерную для высоких широт, можно рассматривать как фактор отбора в пользу форм с большей массой. Так называемая «резервная биомасса» нужна, чтобы переживать неблагоприятные периоды. Однако рост и размеры тела ограничиваются возможностью обменных процессов – прежде всего дыханием. Развитие гетеротрофии и эффективных способов сбора пищи могло реализоваться в создание резервной биомассы (больших размеров тела) только при условии достаточно высокой концентрации кислорода в воде. Холодноводные бассейны давали такое преимущество.
Путь из холодных вод, богатых кислородом, в теплые стал возможным в связи с резким ростом содержания свободного кислорода в атмосфере. Данные изотопного анализа углерода из позднего докембрия показывают, что это событие произошло в самом конце протерозоя.
Специалистам по кораллам известна одна замечательная закономерность: виды, имеющие симбиотические водоросли (их собирательное название – зооксантеллы) формируют прочный массивный скелет, и наоборот – виды без симбиотических водорослей имеют весьма слабую минерализацию скелета или не имеют минерального скелета вовсе. Как любая закономерность в мире живого, эта имеет массу исключений. Но представим вендскую фауну холодных вод, и станет ясно, что там не могло быть мощного минерального скелета по двум причинам: одна из них – низкая эффективности ферментов, ответственных за биоминерализацию, из-за низких температур; другая связана с высокой растворимостью карбоната в холодных водах, его труднее концентрировать и сохранять. Но, возможно была и третья причина – отсутствие зооксантелл у животных, обитающих в высоких широтах – там, где существуют долгие зимние ночи одноклеточным водорослям внутри живого тела выжить трудно. Колонизация тропиков и гарантированный световой день сделал симбиоз более эффективным в двух аспектах: снабжение кислородом хозяина и расширение возможностей биоминерализации.
Животные появились в относительно холодных водах вне карбонатного пояса планеты, который контролировался прокариотами. Эра великих оледенений давала большее преимущество именно эукариотам, в том числе, животным, хотя это было время их трудной эволюции. В эту холодную пору площади карбонатных бассейнов и ареалы прокариотных сообществ резко сократились. Высшие организмы, пережившие 200 млн. лет преимущественно холодной биосферы, по окончании ледниковой эры оказались способными бросить вызов архаичной бактериальной биоте и с начала кембрия прочно заняли тепловодные бассейны карбонатного пояса планеты, колонизировав тепловодные бассейноы карбонатного пояса планеты и постепенно заменяя карбонатные постройки цианобактерий рифами. Это обстоятельство резко ускорило эволюционные процессы, в том числе – на основе сформированного минерального скелета.
Рост разнообразия животных и эвкариот в целом способствовал удлинению пищевых цепей. Однако, в тканях животных, находящихся на вершине трофической пирамиды, могли накапливаться высокие концентрации ряда элементов, в частности, Ca, P, Si. Выведение минеральных солей или детоксикация стали необходимостью. Возможность строить минеральный скелет у части беспозвоночных была следствием детоксикации в условиях тепловодных местообитаний, где растворимость биоминералов ниже и энергетические затраты на биоминерализацию не так высоки, как в холодных водах. [10]
А.С.Антоненко
О
Однако мало кто задумывался о том, зачем вообще нужны прионы. Ведь гены этих белков есть в здоровых клетках, и выполняют они, наверное, какие-то полезные функции. Нормальная, непатогенная версия прионного белка есть во всех клетках; известно, например, что в нервной системе здоровый прионный белок помогает поддерживать миелиновую оболочку на нейронах. Но сильнее всего исследователей заинтересовало то, что один из прионов, белок PrP, особенно обильно присутствует в самих нейронах, причём в то время, когда мозг ещё развивается. Нормальный PrP обычно прикреплён к клеточной мембране, и можно было бы предположить, что он как-то влияет на общение нейрона с другими клетками.
Оказалось, что прионный белок принимает самое непосредственное участие в управлении синаптической пластичностью, то есть в укреплении и в ослаблении синапсов между нейронами.
Исследователи из
Дальнейшие опыты показали, что PrP связан с протеинкиназой А: этот фермент принимает непосредственное участие в укреплении синапсов. Если же PrP отсутствовал, в дело вступал другой фермент, протеинлипаза С, который ослаблял контакты между нейронами. Таким образом, выяснилось, что прион необходим для процессов обучения и запоминания: без него просто не сформируются нейронные цепи для хранения информации. Полностью результаты экспериментов описаны в
Исследователи полагают, что прион нужен не только в гиппокампе, но и в других отделах мозга, где он также помогает устанавливать новые синапсы, и что он может заниматься этим не только у молодых животных, но и взрослых. Скорее всего, наличие или отсутствие этого белка может сильно сказываться на поведении, но чтобы установить это доподлинно, понадобятся новые эксперименты.
Источник: КОМПЬЮЛЕНТА
Мы знаем, что биоразнообразие — это хорошо, но часто это лишь следствие из сугубо теоретических рассуждений. Получить экспериментальные подтверждения положительного влияния биоразнообразия на экосистему порой нелегко. Причина этого — в огромной трудоёмкости подобных исследований: биоразнообразие лучше всего изучать на больших, сложных экосистемах, а это означает тысячи и тысячи образцов и гору статистической и аналитической работы. Однако экологи из
И они таковы: если в пруду обитает шесть видов амфибий, то вероятность получить паразита у них на целых 78% меньше, чем у лягушки или тритона, коих один вид на весь пруд. Стоит сказать, что исследователи не ограничились просто сбором статистики, хотя бы и очень большой. Они также поставили серию экспериментов с 40 искусственными водоёмами, в которые запускали амфибий и их паразитов. Удалось заметить важную закономерность, связанную с биоразнообразием: если в пруду жил один вид, то обычно это был вид, самый чувствительный к паразиту. Чтобы не исчезнуть, такая амфибия должна размножаться исключительно интенсивно. И действительно, виды, живущие в одиночку, отличались высочайшей плодовитостью. По мере заселения пруда новыми амфибиями появлялись виды, всё более устойчивые к инфекции; наконец, последним приходил тот, кого паразит меньше всего беспокоил.
Виды, которые интенсивно размножаются, быстрее всех распространяются на новые территории, однако за это им приходится платить повышенной чувствительностью к инфекциям. Позже к ним подтягиваются менее плодовитые и менее чувствительные виды, и тогда для паразита наступают не лучшие времена: биоразнообразие сильно разбавляет исходный чувствительный вид. Паразит теперь с высокой долей вероятности может попасть в устойчивую особь, где ему ничего не светит. Из-за этого общая плотность паразита падает, и экосистема становится здоровее.
Авторы работы полагают, что такая закономерность не есть частное дело амфибий и Ribeiroia ondatrae, что она выполняется для любых видов и экосистем. Многие болезни курсируют между людьми и животными, и не будет большим преувеличением сказать, что биоразнообразие птиц, зверей, рыб и пр. служит для человека щитом от разнообразнейших патогенов. В этом смысле у сохранения какого-нибудь амурского тигра есть вполне конкретная практическая — эпидемиологическая — цель: как знать, может, именно благодаря этим кошкам в Сибири и на Дальнем Востоке до сих пор не проявился какой-нибудь паразит, перед которым побледнела бы легендарная лихорадка Эбола.
Источник: КОМПЬЮЛЕНТА
В последнее время учёные начинают склоняться к тому, что падение метеорита стало coup de grace (ударом милосердия) для динозавров, и без того
С помощью техники высокоточного датирования
Разумеется, это не означает, что столкновение с неким небесным телом стало причиной массового мел-палеогенового вымирания. Падению метеорита предшествовали масштабные извержения вулканов в Индии, которые инициировали изменение климата, в одиночку сгубившее некоторые группы динозавров. Например, не найдено ни одного нептичьего динозавра, существовавшего ко времени удара.
На самом деле вулканическая гипотеза намного старше метеоритной. К тому же она хорошо согласуется с тем, что нам известно о других массовых вымираниях. Новую и, надо сказать, смелую теорию, быстро ставшую в народе популярной, предложили в 1980-х годах отец и сын Луис и Уолтер Альварес. Они обратили внимание на то, что по всему миру встречается слой глины, совпадающий по времени образования с концом мелового периода. Этот слой богат иридием — редким на Земле, но распространённым в малых космических телах.
В 1990-х годах гипотеза получила дальнейший импульс, когда на полуострове Юкатан был обнаружен кратер Чиксулуб диаметром 180 км, тоже образовавшийся на рубеже мела и палеогена. Его размеры указывают на то, что метеорит имел около 10 км в поперечнике (хотя, возможно, это общий диаметр
Столкновение с таким телом должно было иметь катастрофические последствия в виде разрушительной ударной волны, мировых пожаров, цунами и дождей из расплавленного камня (при ударе осколки могли вылететь за пределы атмосферы, а затем — вернуться). Кроме того, множество твёрдых частиц могло задержаться в атмосфере на несколько недель, месяцев и даже лет, блокируя солнечное излучение и тем самым убивая растения и приводя к снижению температуры.
На какое-то время метеоритная гипотеза стала одерживать верх, но выяснилось, что затяжной кризис надотряда динозавров начался задолго до падения незваного гостя. Постепенно выработалась гибридная гипотеза. Известно, что массовые извержения в одиночку способны вызвать вымирание видов по всей планете, но в данном случае, по-видимому, честь финального удара принадлежит метеориту.
Тем не менее вопрос никак нельзя считать решённым. Например, остаётся неясным, в какую сторону и как сильно изменили климат вулканы. Одни кивают на извержение вулкана Пинатубо в 1991 году и говорят, что выбросы затмили солнце, вызвав глобальное похолодание. Другие, напротив, считают, что вулканические газы привели к парниковому эффекту.
Непонятно также, каким образом формировались те самые Деканские траппы, по которым судят о силе извержений. Одни полагают, что извержения происходили равномерно в течение нескольких миллионов лет в конце мелового периода и в начале палеогена. Другим кажется, что массовые извержения занимали несколько десятков тысяч лет, после чего на долгое время наступало затишье.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
Затем моллюски отрываются друг от друга и расползаются. Пенис в этот момент растягивается и в конце концов отваливается — через 15-30 минут после спаривания. Дополнительных усилий моллюски к этому не прилагают: никаких мышечных сокращений и тому подобного. После этого наступает вынужденный перерыв, когда в течение суток моллюск не может спариваться (просто нечем). Однако на следующий день половой орган регенерирует.
Мужской половой орган Chromodoris reticulata устроен довольно сложно, он состоит из трёх сегментов, один из которых рабочий, а остальные свёрнуты и хранятся упакованными под первым. Во время спаривания моллюск теряет рабочий сегмент, а ему на смену разворачивается следующий (запасной). Когда все сегменты этого сложносоставного пениса будут израсходованы, моллюск восстанавливает всю структуру. Это можно сравнить с грифелем в автоматическом карандаше: по мере того как грифель стачивается, мы нажимаем на кнопку и выдвигаем новый фрагмент стержня, но в итоге наступает момент, когда нужно взять новый грифель.
Пенис у Chromodoris reticulata покрыт выступами, обращёнными назад, которые, по словам учёных, помогают моллюску очистить половые пути партнёра от спермы конкурента. То есть моллюск вводит свою семенную жидкость, а потом, как ершиком, вычищает чужую, когда достаёт пенис. Использованный «ёршик» он выбрасывает. Однако нельзя исключать и того, что пенис Chromodoris reticulata — это автономная совокупляющаяся система, которая может действовать независимо от хозяина. Это как дополнительная страховка на случай, если партнёр не сможет сам довести спаривание до конца. Примеры таких автономных устройств в природе
Статья с результатами исследований должна появиться в журнале
Другие голожаберные моллюски, из рода Ariolimax, также время от времени расстаются с мужским половым органом. Однако Ariolimax делают это именно что иногда, причём они откусывают совокупительный орган себе или партнёру; и то и другое можно наблюдать крайне редко. А вот это у Chromodoris reticulata это в порядке вещей, что делает их в этом смысле уникальными созданиями.
Источник: КОМПЬЮЛЕНТА
Птичья стая движется синхронно: каждый летит туда, куда летят все. При этом вряд ли возможно, чтобы каждый член стаи следил за сотнями собратьев. Кроме того, в стае обычно нет лидера, но движения птиц и их реакция, например, на появление хищника оказываются на удивление слаженными и точными.
Исследователи из
Чтобы убедиться в верности полученных результатов, исследователи создали математическую модель птичьей стаи. Симулятор позволял менять число соседей, за которыми следит каждая птица; при этом учитывались точность координации, точность слежения и количество энергии, которую особи тратили на то, чтобы следить за товарищами. Если не учитывать затраченных усилий, то, конечно, чем больше данных, тем лучше. Однако энергетические затраты сильно ограничивают возможности: чтобы двигаться вместе со стаей и не перенапрягаться при этом, птице достаточно, как уже было сказано, семи соседей. Словом, данные наблюдений оказались в полном согласии с результатами теоретического эксперимента.
Но при этом выяснилась ещё одна любопытная особенность. Как пишут исследователи в веб-журнале
Возможно, такие же закономерности действуют и среди других животных, склонных сбиваться в стаи, как это, например, можно видеть у рыб и насекомых. Однако пока исследователи хотят убедиться, что эти правила выполняются у других видов птиц и что число «семь» и определённая форма стаи не есть исключительное изобретение скворцов.
Истчоник: КОМПЬЮЛЕНТА
07-07-2017 Просмотров:4400 Новости Экологии Антоненко Андрей
Окраины и засушливые регионы Сахары могут в ближайшие сто лет позеленеть и превратиться в саванну в результате резкого повышения уровня осадков, связанного с глобальным потеплением, заявляют климатологи в статье, опубликованной в журнале Earth System Dynamics. Сахара"Глобальное потепление может вызывать...
24-10-2010 Просмотров:10101 Новости Зоологии Антоненко Андрей
Важный элемент, помогающий подстраивать под циркадный ритм различные ткани и органы, идентифицировали учёные из Северо-Западного (Northwestern) и Техасского (UT Southwestern) университетов. Детали новых опытов учёные изложили в статье...
18-04-2014 Просмотров:7990 Новости Антропологии Антоненко Андрей
В современной науке популярна гипотеза о том, что значительная часть реакций на зрительные, слуховые и прочие раздражители унаследована нами у далёких предков, которые приобрели их в процессе эволюции. Иными словами,...
15-08-2014 Просмотров:7286 Новости Палеонтологии Антоненко Андрей
Птерозавры — группа вымерших рептилий, которая была распространена на всех континентах. Однако до сих пор о большинстве их видов ученые имеют лишь отрывочные сведения. Крайне редко удается найти больше одного...
22-11-2011 Просмотров:10565 Новости Зоологии Антоненко Андрей
Учёные открыли, что креветки производят волокна, которые напоминают одновременно и паучий шёлк, и ряд других естественных нитей. Животные используют эти липкие нити для того, чтобы собирать свои домики из разного...
Необычная кость молодого абелизавра, крупного плотоядного динозавра из Африки, помогла ученым выяснить, что эти ящеры не уступали в размерах крупнейшим хищникам того времени – спинозаврам и кархарадонтозаврам, достигая девяти метров в длину и массы в две тонны,…
Бразильская светящаяся акула — один из самых своеобразных морских хищников. При своих не слишком внушительных размерах (в длину в лучшем случае она достигает полуметра), бразильская светящаяся акула нападает на животных…
Палеонтологи Сибирского отделения РАН обнаружили около поселка Кулинда Забайкальского края зуб хищного динозавра-теропода. Это первая подобная находка в истории, сообщили ученые, прежде им удавалось находить лишь зубы растительноядных ящеров. Реконструкция хищного…
Одни орхидеи распускают свои цветки и днём и ночью, а другие – только днём. Теперь ботаники впервые обнаружили вид, который опыляется только в ночное время. Почему растение выбрало такую уникальную…
Неожиданной удачей увенчались раскопки европейских палеонтологов в музейных фондах. Окаменелости, найденные еще в 1890 году, внезапно оказались остатками первой в Европе птицы-террориста – представителя знаменитого семейства Phorusrhacidae, ранее называвшегося фороракосами. Поздний…
Территория нынешнего национального морского парка в тихоокеанском районе между Гавайскими островами и Американским Самоа будет расширена в шесть раз. Новый заповедник в Тихом океанеСоединенные Штаты создают в Тихом океане крупнейший в мире морской заповедник площадью 1…
Энтомологи впервые установили, что муравьи, подобно людям, начинают прием лекарств в случае болезни. Этот феномен наблюдается, когда муравьев заражает грибок. Об этом говорится в статье финских ученых из университета Хельсинки, опубликованной в журнале…
"Зачем тебе такие большие глаза?" – такой вопрос было бы естественно задать вымершему членистоногому Dollocaris ingens, жившему около 160 млн лет назад на территории современной Франции. Действительно, органы зрения этого…
Для питания дождевыми червями зверьку хватает четырех резцов, хотя в норме грызуны имеют не менее 12 зубов. Зоологи открыли в Индонезии новый род и вид грызунов, полностью лишенный коренных зубов (моляров).…