Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Генетики


Новости Генетики (100)

Паразиты влияют на поведение тех, на ком паразитируют. Самый известный пример — грибы-зомбификаторы из рода Кордицепс, которые приказывают заражённым ими муравьям отправиться умирать туда, куда нужно самим грибам. Однако паразиту далеко не всегда удаётся полностью перехватить рычаги управления жертвой, примером чему могут послужить взаимоотношения ос-наездников рода Aphidius и тлей, в которых эти осы выводят своё потомство.

Наездник Aphidius ervi откладывает яйца в тлю. (Здесь и ниже фото Nigel Cattlin.)Наездник Aphidius ervi откладывает яйца в тлю. (Здесь и ниже фото Nigel Cattlin.)Исследователи из Манчестерского университета (Великобритания) использовали трёх самок и тринадцать самцов наездников Aphidius ervi: они знали генетический портрет всех особей, а потому могли сказать, какие генетические варианты будут представлены в их потомстве. В качестве жертвы выступали тли одной линии; поскольку размножались они партеногенетически, то все были клонами друг друга, и никаких генетических различий, которые могли бы повлиять на результат эксперимента, у них не было.

Тля здоровая (справа) и тля, заражённая наездником.Тля здоровая (справа) и тля, заражённая наездником.Ос подселяли к тлям, обитающим в специальных клетках с растениями, и наблюдали за их поведением. Заражённые тли умирали в течение десяти дней. Исследователи проанализировали расположение мёртвых тлей и пришли к выводу, что паразит влияет на поведение жертвы. Но при этом оказалось, что поведение заражённых тлей варьируется от того, кто были родители той личинки, что росла внутри тли.

Для ос важно, чтобы жертва оставалась в живых, пока личинка внутри неё не созреет. А вот заражённой тле разумнее совершить суицид, чтобы не дать личинке паразита развиться и тем самым защитить всю популяцию. Вероятность преждевременной гибели для тли резко возрастает, если она спускается на землю: тут и еды нет, и хищников больше. То есть задача тлей — почувствовав внутри «чужого», бросить растение и спуститься на землю, а задача ос — заставить тлей сидеть на растении как можно дольше.

Однако далеко не все тли после заражения оставались на растении. То есть у ос не всегда получалось подавить волю жертвы и принудить её действовать в интересах паразита. Вероятность того, останется ли тля на растении или пойдёт искать преждевременную смерть, зависела от комбинации генов в личинке осы, причём свою роль играли как отцовские, так и материнские гены. То есть по крайней мере в случае ос и тлей нельзя говорить об однозначной стопроцентной зомбификации, поскольку гены ос, отвечающие за управление поведением жертвы, не обязательно работают с идеальной эффективностью. Иными словами, осы продолжают эволюционную борьбу с тлями за контроль над поведением последних.

Особое внимание, по словам исследователей, привлекает то, что результат зависит, по-видимому, от комбинации родительских генов: для управления тлёй нужна именно эффективная комбинация генов отца и генов матери, а не какой-то конкретный вариант одного-единственного гена. Но пока что биологи не знают, что это за гены и как именно они воздействуют на поведение тлей-жертв.

Результаты экспериментов будут опубликованы в журнале Biology Letters.


Источник: КОМПЬЮЛЕНТА


Биоинженерам удалось получить клонированный эмбрион лягушки, вымершей 30 лет назад. Это дает надежду, что в будущем ученые смогут «воскрешать» исчезнувшие виды.

200313 j86jbcКлонирование было осуществлено австралийскими специалистами из Университета Нового Южного Уэльса под руководством профессора Майка Арчера.

В эксперименте использовались образцы ткани австралийской лягушки Rheobatrachus silus, замороженные еще в 1970-х годах. Эта амфибия, последние представители которой были встречены в 1983 году, отличалась необычным репродуктивным поведением. Самки лягушки заглатывали оплодотворенную икру и затем вынашивали ее у себя в желудке, так что лягушата появлялись на свет изо рта своей матери.

Чтобы «воскресить» этих необычных существ, специалисты решили использовать яйцеклетки лягушек близкого вида Mixophyes fasciolatus. Инактивировав их собственные ядра, они заменили их ядрами из замороженных тканей Rheobatrachus silus. В результате некоторые из яйцеклеток начали спонтанно делиться и достигли стадии бластулы – первого этапа эмбрионального развития, когда образуется шарик из зародышевых клеток.

Оказалось, что все зародышевые клетки содержат генетический материал вымершего вида. Несмотря на то, что эмбрионы не просуществовали и нескольких дней, ученые расценивают их создание как значительный успех на пути клонирования исчезнувших организмов. «На наших глазах Лазарь восстал из мертвых, геном вымершей лягушки заработал», -- подчеркнул профессор Арчер.

По мнению исследователей, эксперимент показал, что техника глубокой заморозки биологического материала может быть использована для спасения исчезающих амфибий: заморозив образцы тканей таких видов, в будущем их можно будет вернуть к жизни. Напомним, что в настоящее время существуют проекты клонирования таких вымерших видов, как шерстистый мамонт и птица додо.

 


 

Источник: infox.ru


 

Давно известно, что РНК в клетке не просто служит посредником между ДНК и белок-синтезирующей машинерией, но и выполняет массу других, регуляторных функций. Достаточно вспомнить про класс микрорегуляторных РНК, которые, сами ничего не кодируя, влияют на активность других, матричных РНК.

Молекула ДНК во время удвоения (вверху) и «классическая» линейная молекула РНК (внизу) (фото Dr. Gopal Murti).Молекула ДНК во время удвоения (вверху) и «классическая» линейная молекула РНК (внизу) (фото Dr. Gopal Murti).Однако до самого недавнего времени все молекулы РНК в клетке считались линейными — в том смысле, что оба конца у них свободны и любую РНК можно вытянуть в отрезок. При этом появлялись сообщения, что есть кольцевые РНК, но их считали либо молекулярными аномалиями, либо вообще экспериментальными артефактами. Кроме того, такие случаи были довольно редки. Однако год назад исследователи из Стэнфорда (США) нашли просто огромное количество натуральных кольцевых РНК. Причина, по которой этот довольно обширный класс РНК ускользал от внимания учёных, кроется в методах изъятия этих нуклеиновых кислот из биоматериала: обычно РНК «ловят» за свободные концы, а коль скоро у кольцевых РНК концов нет, то они оставались долгое время невидимыми.

Но, несмотря на всё их обилие, кольцевые РНК продолжали считать ничего не значащим молекулярным мусором: никто не мог сказать, зачем они нужны. Но после двух исследований групп Николауса Раевского из (Германия) и Йоргена Кьемса из Орхусского университета (Дания) отношение к кольцевым РНК должно измениться. И те и другие изучали крупную кольцевую РНК размером в 1 500 оснований, которая синтезируется в мозгу мыши и человека. Выяснилось, что у этой РНК около семидесяти сайтов связывания микрорегуляторной РНК (микроРНК) под названием miR-7.

МикроРНК, как мы помним, блокируют трансляцию: они связываются с матричной РНК (разным матричным РНК соответствуют свои микроРНК) и мешают рибосоме работать с этой мРНК. Значение микроРНК в регуляции молекулярно-генетической активности чрезвычайно велико, и многие из этих молекул, как считается, связаны с такими заболеваниями, как рак или синдром Паркинсона.

Исследователи из Дании обнаружили, что кольцевая РНК работает как блокатор микроРНК miR-7. Чем больше в клетке было кольцевой РНК, тем менее активной оказывалась miR-7. Как пишут учёные в журнале Nature, происходит это, по-видимому, оттого что большая кольцевая РНК собирает на себя маленькие miR-7 и не даёт им связываться с матричными РНК. С другой стороны, команда из Германии показала, что избыток кольцевой РНК у рыбки Danio rerio влияет на развитие мозга — и влияет таким же образом, как отсутствие микрорегуляторных miR-7. Свои результаты группа г-на Раевского опубликовала в том же номере Nature.

Будь эта РНК простым экспериментальным артефактом или ни для чего не нужной ошибкой клеточных ферментов, она никак не влияла бы на функции других молекул, а тем более на формирование мозга. Иными словами, кольцевые РНК в клетке нужны для выполнения определённой работы, и, как полагают исследователи, одним лишь взаимодействием с микроРНК их задачи не ограничиваются. Учёные, например, считают, что кольцевые РНК могут защищать организм от вирусов, связывая с собой вирусную РНК, или влиять на другие молекулярные процессы, взаимодействуя с белками, которые управляют биосинтезом.


Источник: КОМПЬЮЛЕНТА


Мы привыкли считать суточные ритмы чем-то постоянным, незыблемым. Биологическим часам нужно подчиняться — либо будет очень плохо. Однако любой организм существует в изменчивой среде: сегодня холодно, завтра тепло, в этом году урожай, в следующем — неурожай, и т. д. То есть должна быть какая-то пластичность, чтобы к таким изменениям приспосабливаться. И очевидно, что система биологических ритмов тоже должна как-то чувствовать перемены во внешнем мире и реагировать на них. Как показали исследования учёных из Университета Вандербильта (США), суточные ритмы действительно допускают отклонения, причём имеет смысл говорить даже не об отклонениях, а о нескольких ритмах, между которыми организм может переключаться.

Многие люди отдали бы всё за возможность управлять собственными биологическими часами. (Фото Kate Kunz.)Многие люди отдали бы всё за возможность управлять собственными биологическими часами. (Фото Kate Kunz.)В основе вариабельности суточных ритмов лежит вырожденность генетического кода. Как известно, белки построены из двадцати аминокислот, однако четыре буквы генетического алфавита позволяют создать гораздо больше аминокислотных кодов. Аминокислоте соответствует триплет, комбинация из трёх нуклеотидов, и в итоге оказалось, что одной аминокислоте могут соответствовать несколько кодирующих слов-триплетов. (Например, аминокислоте пролину соответствуют триплеты ССА, ССG и ССС, где С — цитозин, А — аденин, G — гуанин.) Не вдаваясь в подробности, следует сказать, что разные триплеты читаются рибосомой с разной скоростью, следовательно, тот белок, в котором есть такие триплеты, будет синтезироваться легче и в бóльших количествах. В связи с этим родилась молекулярно-эволюционная идея о том, что самые важные гены в клетке используют наиболее оптимальные, то есть легкочитаемые кодоны.

Гипотеза оказалась не совсем верной. Исследователи из Университета Вандербильта попробовали оптимизировать гены биологических часов у сине-зелёных водорослей и плесневых грибков. У некоторых таких генов были трудночитаемые кодоны, и учёные заменили их на легкочитаемые (при этом, напомним ещё раз, аминокислота оставалась прежней). Так вот, после такой операции биологические часы у грибка просто останавливались! То есть, как пишут исследователи в журнале Nature, белкам биологических ритмов вовсе не нужна была высокая скорость синтеза. По-видимому, из-за высокой скорости синтеза эти белки не могут правильно свернуться, не могут приобрести правильную пространственную форму и объединиться с другими.

Но более интересным оказался эффект у сине-зелёных водорослей. Когда у них оптимизировали белки биологических часов, сами часы продолжили идти, но выживаемость цианобактерий сильно упала. Оказалось, что «усовершенствованные» часы лучше работали при естественной температуре, при которой сине-зелёные живут в естественной среде. И, казалось бы, оптимизация должна была повысить приспособленность цианобактерий. Но, кроме того, у часов увеличивался период, и цианобактерия начинала жить по 30-часовому циклу. В нормальных 24-часовых сутках она впадала в стресс, что сказывалось на её жизнеспособности. То есть естественный отбор работал тут на ухудшение качества кодонов в гене.

Исследователи делают вывод, что в генах биологических часов важны именно несовершенные, медленные синонимичные кодоны. Такой способ регуляции генетической активности — на уровне трансляции с помощью трудночитаемых кодонов — известен давно, но до сих пор его недооценивали. Тем удивительнее было увидеть его в такой ответственной области, как регуляция суточного ритма. Авторы работы полагают, что клетка может «подводить часы» с учётом различных факторов, хотя для того, чтобы утверждать это с полной уверенностью, нужны дополнительные эксперименты. Пока же можно сделать два вывода: «плохой» кодон не всегда плох, а биологические часы не столь жёстки и неизменны, как может показаться.


Источник: КОМПЬЮЛЕНТА


Сотни тысяч лет назад некие генетические адаптации позволили людям выйти из Африки и расселиться по всей земле. Исследователи из Кембриджа (Великобритания) полагают, что и у современных людей можно обнаружить следы тех генетических изменений, которые проявляются в необычайно разнообразном наборе рецепторов естественных киллеров.

Эволюция иммунных клеток помогла предкам человека увеличить мозг. (Фото londonrubbish.)Эволюция иммунных клеток помогла предкам человека увеличить мозг. (Фото londonrubbish.)Естественными киллерами (NK) называют особый сорт иммунных клеток с двумя сильно различающимися функциями. Первая — находить и убивать всё чужеродное, всё, что не имеет белков главного комплекса гистосовместимости. Вторая — следить за кровоснабжением растущего плода во время беременности. Обе функции зависят от специальных рецепторов, и клетка, разумеется, должна уметь соблюдать точный баланс между ними: усиление одной означает ослабление другой, и наоборот.

Разумеется, естественные киллеры есть не только у человека. Те же самые функции они выполняют у человекообразных обезьян. Но мы сильно отличаемся от обезьян набором рецепторов на поверхности NK-клеток. Так, у человека эти белки гораздо более вариабельны, чем у орангутанга, а у шимпанзе они более разнообразны, чем у человека. Авторы статьи в Nature Reviews Immunology сравнили наборы рецепторов у человека и человекообразных обезьян и пришли к выводу, что человеческие NK-клетки сумели прийти к более или менее удачному компромиссу между обеими функциями.

С одной стороны, эти клетки позволяют сформироваться довольно большому мозгу у плода. Собственно говоря, большой мозг, по словам учёных, позволил человеку освоить новые места обитания. С другой стороны, во время становления человечество прошло через несколько циклов эпидемических болезней, которые выкашивали популяцию едва ли не целиком. В результате методом проб и ошибок, сопровождавшихся массовой гибелью, у NK-клеток остался набор рецепторов, которые позволяли нарастить мозг и при этом поддерживали популяцию на плаву в случае эпидемии. То есть в пользу мозга пришлось отчасти поступиться устойчивостью к некоторым болезням.

Эта устойчивость во многом вернулась к нашим предкам, когда они встретили неандертальцев, чьи гены позволили усовершенствовать иммунную защиту при уже развитом мозге.


Источник: КОМПЬЮЛЕНТА


В 1970-е годы британский эпидемиолог Ричард Пето из Оксфорда обратил внимание, что вероятность раковых заболеваний у крупных животных ничуть не больше, чем у мелких. Между тем всё должно было быть наоборот: чем крупнее животное, тем проще ему получить опухоль. Такое соображение кажется вполне логичным, если исходить из того, что у всех клеток примерно равная вероятность на превращение в злокачественные. А раз у крупных животных клеток больше, то и опухоли у них должны образовываться чаще. Такого, однако, не наблюдается, из чего г-н Пето сделал вывод, что большие животные обладают какими-то противораковыми механизмами, которых нет у животных мелких.

Учёные до сих пор спорят о том, почему киты болеют раком реже человека. (Фото Paul Souders.)Учёные до сих пор спорят о том, почему киты болеют раком реже человека. (Фото Paul Souders.)И вот с тех пор исследователи пытались понять, что же это за механизмы, которые защищают слонов и китов от онкозаболеваний. Вопрос, как можно понять, имеет на только отвлечённо-эволюционное значение, ведь, кто знает, вдруг эти механизмы можно поставить на службу медицине. Исследователи из Института развития в Монпелье (Франция) предприняли попытку описать устойчивость крупных животных к раку с помощью математической модели, имеющей дело с разными мутационными стратегиями. Она включала сто вариантов распределения мутаций на протяжении четырёх тысяч поколений.

Модель учитывала два класса генов — протоонкогены, которые могут вызвать злокачественное перерождение клетки, и опухолевые супрессоры, отвечающие за ремонт клетки, чтобы та не превратилась вдруг из-за повреждений в раковую. Соответственно, чтобы «включить» рак, нужно, чтобы первые гены вышли из-под контроля, а вторые — потеряли активность.

В статье, опубликованной в журнале Evolutionary Applications, авторы пишут, что протоонкогены и антионкогены по-разному реагируют в эволюции на увеличение массы тела. Чем она больше, тем труднее активировать протоонкогены. Однако за невысокий риск раковых болезней приходится платить, и плата эта часто выражается в низкой плодовитости. Предложенная модель говорит о том, что животные среднего размера попадают в трудное положение: у них много генов-супрессоров опухолей, но их работа дороже, чем конечная выгода. Крупное животное может позволить себе низкую плодовитость, так как у него мало естественных врагов, но животные среднего размера вынуждены отдать предпочтение более высокой плодовитости, нежели устойчивости к раку. В результате эволюционное преимущество у видов со средним размером тела принадлежит тем, у кого мутации подавляют активность опухолевых супрессоров и в результате берегут энергию и ресурсы для размножения.

Полученные данные помогают понять, почему у людей раковые болезни случаются у каждого третьего, а у китов белуг — только у 18% особей. В то же время авторы работы признают, что количество протоонкогенов и опухолевых супрессоров может быть далеко не единственной причиной того, почему крупные животные реже болеют раком. Например, это можно объяснить ещё и тем, что у больших зверей ниже уровень кислородных радикалов, повреждающих ДНК, так как у них вообще относительно низкий уровень метаболизма.

Сейчас исследователи заняты сравнением геномов разных животных, включая слонов и горбатых китов, чтобы подтвердить или опровергнуть свою теорию. Стоит также добавить, что далеко не все учёные вообще признают существование разницы в частоте раковых заболеваний между разными видами. Эта разница, как добавляют критики, может возникать из-за того, что при её вычислении не учитывают возрастных и других особенностей организма — в том смысле, что крупные животные на склоне лет могут болеть раком ничуть не реже человека.


Источник: КОМПЬЮЛЕНТА


ДНК способна существовать во множестве форм. Например, могут изменяться параметры двойной спирали, она может становиться более сжатой или более вытянутой, сама спираль — быть как право-, так и левозакрученной, а взаимодействия между нуклеотидами могут весьма отличаться от тех, что постулировали классики Уотсон и Крик.

Квадруплексная ДНК в поперечном разрезе, а также фотографии клеток и хромосомы с антителами, связавшимися с четверной спиралью ДНК (фото авторов работы).Квадруплексная ДНК в поперечном разрезе, а также фотографии клеток и хромосомы с антителами, связавшимися с четверной спиралью ДНК (фото авторов работы)Многие из альтернативных форм ДНК существуют в живой клетке и нужны ей для каких-то целей. Но есть и такие, которые, казалось бы, вполне могли найти себя в клетке, да только обнаружить их никак не получается. Долгое время такой формой были G-квадруплексы — участки ДНК, состоящие из четырёх цепей. Такая структура может возникать на обогащённых гуанином участках, и учёным даже удалось получить искусственным путём и охарактеризовать параметры такой четверной спирали. Но есть ли G-квадруплексы в живой клетке? В клеточной ДНК можно найти фрагменты с повышенным содержанием гуанина, однако таких структур исследователи там не нашли.

А вот учёным из Кембриджского университета (Великобритания) повезло. Они создали антитела, которые взаимодействовали только с четырёхнитевыми участками ДНК, а не с обычными двунитевыми. Эти антитела добавлялись к человеческим клеткам, и авторы работы смотрели, на какие участки хромосом они сядут. Кроме того, клетки обрабатывались особым веществом, которое «замораживало» нестандартную ДНК, не давая ей перейти в обычный двуспиральный вид. Исследователи ожидали, что антитела «приземлятся» на теломерные концы, так как они особенно обогащены гуанином. Но, как пишут учёные в журнале Nature Chemistry, участки четверной спирали были обнаружены не только на концах, но и по всей длине хромосом.

Здесь важно отметить три момента. Во-первых, G-квадруплексы нашли в человеческих клетках. Во-вторых, это были не простые клетки, а раковые. В-третьих, чаще всего G-квадруплексы попадались в S-фазе клеточного цикла, когда клетка удваивает свой генетический материал перед делением. Более того, исследователи утверждают, что к квадруплексной организации имеют склонность гены, участвующие в злокачественном перерождении. Словом, так и хочется связать четверные спирали с онкологическими процессами.

Образование таких структур может быть вызвано многочисленными мутациями и повреждениями в ДНК (например, известно, что много повреждений при раке накапливается именно в теломерах). Наверное, квадруплексы как-то помогают раковой клетке в управлении важными генами. И тогда можно разработать лекарство от рака, нацеленное именно на квадруплексы. Но для начала нужно убедиться, что все эти предположения соответствуют реальности и что такие четверные спирали действительно свойственны именно раковым, а не всем клеткам.


Источник: КОМПЬЮЛЕНТА


Огненные муравьи Solenopsis invicta известны не только своим ядом и высокими завоевательными способностями (это один из самых агрессивных инвазивных видов), но и особенностями социальной жизни. Некоторые колонии у них начинаются с одной самки, которая после оплодотворения перелетает на новое место, откладывает яйца и ждёт, когда вылупившиеся личинки превратятся в полноценных рабочих. Такие особи, живущие под одной самкой, нетерпимы к другим самкам, которые могут оказаться поблизости. Кроме того, у огненных муравьёв есть и другие колонии, сформированные несколькими самками, которые собрались вместе: самки расселяются вместе с рабочими особями, и в будущем подданные такой «королевы» будут спокойно принимать таких же «королев» в свой дом. Если же в колонию второго типа залетит самостоятельная самка первого типа, её убьют.

Огненные красные муравьи с добычей (фото [stevensys])Огненные красные муравьи с добычей (фото [stevensys])Социальные программы — по крайне мере у насекомых — находятся под управлением генов. В 1998 году исследователям удалось обнаружить, что муравьи из колоний разных видов отличаются вариантами гена Gp-9. Муравьи из колоний с одной маткой имели две одинаковые нормальные копии этого гена, тогда как в колониях со множеством королев одна копия Gp-9 была мутантной. Ген Gp-9 кодирует белок обонятельного рецептора, так что на первый взгляд всё было вполне логично: разные варианты гена позволяли узнавать, какая королева «своя», а какая — нет.

Но не слишком ли много различий в поведении и физиологии муравьёв зависело от одного-единственного гена? Тут и размер матки, и плодовитость, и запах, и агрессивность... Так что исследователи всё больше склонялись к мысли, что дело тут не в одном гене, а в нескольких. Дальнейшие изыскания, как говорится, полностью подтвердили это предположение. Учёные из Университета Лозанны (Швейцария) прошлись по геному 500 особей огненных муравьёв, которые либо были потомками одной матки, либо жили в колонии с несколькими королевами. С особым вниманием проверялся участок ДНК с геном Gp-9: ведь если тут замешана целая группа генов, то она должна наследоваться одним блоком, избегая рекомбинационной перетасовки в потомстве.

Результаты исследований эти ожидания подтвердили и даже в некотором роде превзошли: в статье, появившейся в Nature, учёные сообщают об обнаружении 600 генов, которые передаются у огненных муравьёв единым куском из поколения в поколение. Среди них был, разумеется, и Gp-9; в целом же весь блок занимал почти половину хромосомы, в которую входил. Бóльшая часть генов, отличия которых сопровождали разницу в социальном поведении, содержалась именно в этом фрагменте.

Здесь можно провести аналогию с половой хромосомой: мужские признаки переходят в потомство цельным генетическим монолитом; анатомическое и физиологическое смешение, например, мужских и женских гениталий в норме невозможно. Точно так же наследуются и гены, формирующие социальную программу: чтобы она работала адекватно, нужно, чтобы все необходимые гены были вместе. Ну а их количество просто указывает на то, что поведенческие механизмы слишком сложны, чтобы управляться одним-двумя генами, даже у таких простых, сугубо инстинктивных существ, как муравьи.


Источник: КОМПЬЮЛЕНТА


Ученые обнаружили в геномах хомячков особый набор генов, который управляет длиной и размерами тоннелей, которые эти грызуны вырывают под землей, и повреждение этих участков ДНК приводит к потере способности к рытью нор, говорится в статье, опубликованной в журнале Nature.

ХомякХомякМногие грызуны, в том числе кроты, слепыши, сурки, полевки и некоторые виды мышей живут в сложных и длинных системах нор, которые они вырывают в поисках пищи или при обустройстве жилища. Зачастую подземные "дворцы" грызунов имеют несколько отдельных "комнат", выступающих в роле "спальни", склада пищи или тоннеля, через который животное спасается от наводнений или нападений хищников.

Группа генетиков под руководством Джесса Уэбера (Jesse Weber) из университета штата Техас в Остине (США) обнаружила, что геном грызунов содержит в себе "программу" рытья нор, наблюдая за поведением береговых хомячков (Peromyscus polionotus) и родственных им оленьих хомячков (Peromyscus maniculatus).

Как объясняют авторы статьи, данные виды грызунов следуют двум абсолютно разным стратегиям рытья нор. Береговые хомячки предпочитают жить в сложных норах с разветвленными ходами, спальной "комнатой" и спасательным тоннелем, тогда как их собратья обитают в относительно коротких и простых тоннелях.

Уэбер и его коллеги обратили внимание на то, что длина норы, ее размеры и общая "архитектура" была по сути одинаковой для всех береговых хомячков, вне зависимости от территории их обитания. Более того, грызуны вырывали тоннели и в лабораторных условиях, если в их клетке был подходящий для "постройки" норы холм из песка или другой мягкой почвы.

Исследователи предположили, что причиной такого поведения их подопечных могла быть некая генетическая "программа", которая побуждала хомячков находить подходящее место и вырывать себе жилище. Ученые проверили эту гипотезу, скрестив береговых и оленьих хомячков и проследив за поведением их потомков.

Эксперимент показал, что норы гибридных грызунов представляли собой нечто среднее между сложными тоннелями береговых и простыми норами оленьих хомячков. Убедившись в наличии некой генетической "программы" постройки нор, авторы статьи попытались найти ее, сравнив геномы гибридов из нескольких поколений и их "чистых" родителей.

Оказалось, что программа рытья нор представляла собой своеобразный генетический "конструктор" из нескольких фрагментов ДНК, соединенных друг с другом. По словам ученых, добавление или удаление одного из них приводит к серьезным изменениям в стратегии рытья нор, которой следует грызун.

Так, добавление лишней копии одного участка, который удалось выделить ученым, увеличивало среднюю длину входного тоннеля на 3 сантиметра. Удаление другого участка приводило к тому, что мыши "забывали" секрет постройки спасательного выхода.

Уэбер и его коллеги полагают, что схожие генетические "программы" могут содержаться в геномах и других грызунов, умеющих выкапывать сложные норы.

Разделение этой программы на несколько независимых друг от друга участков, по всей видимости, позволяет грызунам гибко менять стратегию рытья нор при изменении условий окружающей среды или появлении новых угроз для безопасности популяции. Вполне возможно что "модульная" конструкция некоторых участков генома объясняет разнообразное поведение и других видов животных, заключают ученые.

 


 

Источник: РИА Новости


 

Известно, что РНК, которая получается в результате транскрипции, ещё незрелая, неотредактированная, в ней есть фрагменты, которые будущему белку не нужны. Поэтому РНК проходит обязательную посттранскрипционную правку: из неё вырезаются одни куски — интроны, другие же — экзоны — сшиваются вместе и образуют готовый шаблон для синтеза полипептидной цепи. Этот процесс вырезания одних кусков и монтажа других называется сплайсингом.

Альтернативный сплайсинг гена у самца и самки дрозофилы: РНК и белки, которые определяют границы монтируемых участков. Альтернативный экзон показан жёлтым. (Рисунок Allen Gathman.)Альтернативный сплайсинг гена у самца и самки дрозофилы: РНК и белки, которые определяют границы монтируемых участков. Альтернативный экзон показан жёлтым. (Рисунок Allen Gathman.)Но не стоит думать, что для каждого гена сплайсинг его РНК будет всё время происходить по одной и той же схеме. Часто бывает так, что РНК разрезается и сшивается по-разному. В зависимости от обстоятельств некоторые фрагменты остаются в готовой молекуле, вместо того чтобы быть вырезанными, и сами фрагменты сшиваются между собой совершенно различными способами. Такой альтернативный сплайсинг позволяет создать великое множество вариантов белка, оставаясь при этом в рамках одного гена и не занимая дополнительную территорию на ДНК. Некоторые белки (например, человеческий нейрексин) благодаря альтернативном сплайсингу существуют едва ли не в тысячах форм. Функции этих вариантов могут разниться довольно сильно. Например, если полноразмерный фактор транскрипции активирует какие-то гены, то его укороченный в результате альтернативного сплайсинга фрагмент, наоборот, подавляет активность тех же самых генов.

При этом наука только в последнее время начала осознавать, насколько огромную роль играет альтернативный сплайсинг в живых системах. В 2008 году исследователи из Массачусетского технологического института (США) проанализировали РНК из 10 видов тканей человека, и оказалось, что РНК почти от каждого гена претерпевает альтернативный сплайсинг. Более того, именно за счёт альтернативного сплайсинга и формируются различия между тканями.

В новом исследовании та же команда учёных решила выяснить, в чём специфика сплайсинга у разных видов животных. Были взяты образцы ткани у нескольких видов млекопитающих (макака-резус, крыса, мышь и корова) и у курицы. У каждого вида анализировали 9 типов ткани (мозг, кишечник, сердце, почки, печень, лёгкие, скелетные мышцы, селезёнка и семенники). При этом отдельно оценивалась активность генов, то есть набор «черновых» РНК, и активность сплайсинга, то есть набор разных форм одной и той же РНК.

В статье, опубликованной в журнале Science, авторы сообщают, что характер активности генов в одних и тех же тканях был примерно одинаков, независимо от того, какому виду они принадлежали. Что вполне понятно: каждая ткань имеет свои уникальные особенности, отличающие, например, мышечную клетку от нейрона, и чтобы эти особенности проявились, нужен определённый набор генов. И эти гены будут работать в любом организме, будь то мышь или курица.

Но когда учёные проанализировали сплайсинговую активность, оказалось, что тут разные способы сплайсинга группируются не по тканям, а по видам. То есть какой-то путь альтернативного сплайсинга был примерно одинаков и в мозгу, и в лёгких, и в сердце, но лишь пока все они принадлежали одному биологическому виду. Иными словами, способ альтернативного сплайсинга определял «лицо вида», хранил в себе отличия вида от других, его индивидуальные особенности. Это тоже в целом понятно: если говорить о приспособлении вида к среде, то альтернативный сплайсинг — удобный, пластичный и быстрый механизм адаптации.

Альтернативный сплайсинг часто затрагивает те участки белка, которые подвергаются фосфорилированию. А модификация фосфатными остатками — один из основных способов изменить активность белка. То есть альтернативный сплайсинг, влияя на наличие сайтов для модификации, может вмешаться в распределение белка в клетке, в его участие в сигнальных путях и в результате привести к перестройке всей молекулярной внутриклеточной кухни. Всего исследователи нашли несколько тысяч новых альтернативных экзонов, которые в разных обстоятельствах могут попадать в конечную версию РНК. Так что эволюции есть из чего выбирать. Правда, это пока что первое исследование подобного масштаба, посвящённое роли сплайсинга в эволюционных процессах, и учёным ещё предстоит понять, как он взаимодействует с другими механизмами эволюции на других уровнях генетической регуляции.

 


Источник: КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Птичьи гонки вооружений, или Как жертвы кукушек учатся на своих…

28-03-2011 Просмотров:9612 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Птичьи гонки вооружений, или Как жертвы кукушек учатся на своих ошибках

За время совместной эволюции птицы, которые часто подвергались гнездовому паразитизму кукушек, всё сильнее совершенствовали «системы детектирования» чужих яиц в своём гнезде. Но и кукушки не дремали: они научились имитировать окраску...

Археологи откопали косметички неандертальцев

11-10-2010 Просмотров:7819 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Археологи откопали косметички неандертальцев

Убедительные доказательства того, что неандертальцы наносили раскраску на тело уже 50 тысяч лет назад, представили исследователи Бристольского университета (Bristol University) после раскопок в провинции Мурсия на юге Испании. Это означает,...

Почему некоторые электрические рыбы выбрали постоянный ток

02-10-2013 Просмотров:6405 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Почему некоторые электрические рыбы выбрали постоянный ток

В водах Амазонии живут два вида электрических рыб, которых часто путают между собой, до того они похожи. Рыб зовут Brachyhypopomus walteri и Brachyhypopomus bennetti; это родственники, использующие электрические сигналы для общения...

Неожиданные новости о филогении гребневиков

13-10-2017 Просмотров:774 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Неожиданные новости о филогении гребневиков

Традиционно считается, что самыми первыми животными, еще в глубокой древности отделившимися от общего предка и успешно дотянувшими до наших дней, являются губки (Porifera или Spongia). Но согласно новому исследованию американских...

Ученые заглянули в мозг обезьян

21-07-2012 Просмотров:10765 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Ученые заглянули в мозг обезьян

Разные участки коры головного мозга активизируются у двух обезьян, выполняющих одно и то же задание, но имеющих разные характеры. Американские ученые из Университета Вашингтона в Сент-Луисе проследили активность мозговой коры двух...

top-iconВверх

© 2009-2019 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.