Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Генетики


Новости Генетики (102)

Ранние исследования эволюции хромосом показали, что Y-хромосома к настоящему моменту утратила всё, за исключением нескольких первоначальных генов, и оказалась на грани исчезновения.

Эораптор, один из самых первых динозавровЭораптор, один из самых первых динозавровОднако сравнение с целым рядом сухопутных животных, от земноводных до млекопитающих, свидетельствует о том, что у неё в запасе как минимум 100 млн лет.

Люди и большинство млекопитающих делятся на XX-самок и XY-самцов. У птиц совершенно иная картина: ZZ-самцы и ZW-самки, причём W-хромосома коротка. У крокодилов и некоторых других рептилий пол зависит от температуры в период созревания плода, и лишь иногда — и от температуры, и от генов.

Крис Орган из Университета Юты (США) проанализировал определение пола у 165 современных позвоночных. Сравнив мутационные различия между половыми хромосомами этих видов, а также сверившись с данными палеонтологической летописи о том, как давно жил их общий предок, учёный смог определить, когда появилась комбинация ZW. По его словам, существует 90-процентный шанс на то, что первые самки динозавров имели именно её, хотя от современных птиц их отделяет 230 млн лет.

Г-н Орган предполагает, что половые хромосомы преодолевают естественный распад путём добавления новых генов по мере исчезновения старых.

Напомним: в феврале с. г. Дженнифер Хьюз из Института Уайтхеда (США) показала, что человеческая Y-хромосома не потеряла ни одного гена с тех пор, как наши предки отделились от макак-резусов, а произошло это 25 млн лет назад.

Следует также отметить, что в 2008 году Дженнифер Грейвз из Канберрского университета (Австралия) заметила сходство между половыми хромосомами птиц и примитивными млекопитающими под названием однопроходные. Это говорит о том, что комбинация ZW может иметь ещё более долгую историю: последний общий предок этих групп жил примерно 310 млн лет назад.

Результаты исследования были представлены на конференции Общества палеонтологии позвоночных.


Источник: КОМПЬЮЛЕНТА


Анализ генома примитивного мха позволил ученым выдвинуть новую гипотезу о переходе растений к сухопутному образу жизни.

331x252 iHgLEbiRkchK66r174NeJDhq4FJhImPUАмериканские биологи из Университета Восточной Каролины пришли к выводу, что первые растения приспособились к жизни на суше благодаря генам, позаимствованным у бактерий, грибов и вирусов. Результаты исследования опубликованы в журнале  Nature Communications.

Авторы работы проанализировали геном мха Physcomitrella patens. Считается, что из всех современных растений он наиболее близок к риниофитам, первым растительным организмам, которые колонизировали сушу в начале ордовикского периода, около 480 миллионов лет назад.

Оказалось, что 128 генов, отвечающих у Physcomitrella patens за приспособления к жизни на суше, напоминают последовательности ДНК представителей других царств живой природы. Например, к их числу относятся гены, кодирующие энзимы из группы субтилаз, связанные с ростом корней и устойчивостью к засухе.

По мнению исследователей, гаметы и споры первых растений были плохо защищены от проникновения чужеродного генетического материала, так что в их геном периодически встраивались участки ДНК, образовавшиеся в результате распада бактериальных клеток и грибов под действием ультрафиолетового излучения.

Ряд ученых уже оспорил выводы работы. По их мнению, существующие методики не позволяют судить о горизонтальном переносе генов, случившемся столь давно. «Если бы они постарались, то нашли бы общие гены у мхов и собак», прокомментировал открытие генетик Билл Мартин из Университета Генриха Гейне, сообщает The Scientist.

 


 

Источник: infox.ru


 

Хотя современные организмы почти поголовно (кроме ряда вирусов) используют ДНК как носитель генетического кода, в давние-давние времена, как полагают исследователи, жизнь начиналась не с ДНК, а с РНК.

Молекула рибозима — РНК, способной катализировать химическую реакцию на манер белков (рисунок Laguna Design)Молекула рибозима — РНК, способной катализировать химическую реакцию на манер белков (рисунок Laguna Design)По концепции РНК-мира, первые молекулы РНК выполняли одновременно и наследственно-сохраняющую функцию, и катализирующую, то есть работали и за ДНК, и за белки. Рибозимы, открытые более 30 лет назад, прекрасно иллюстрируют то, как РНК может катализировать химические реакции. Иными словами, жизнь на Земле началась с первых РНК, которые могли и хранить, и воспроизводить генетическую информацию.

Однако проблема гипотезы РНК-мира состоит в том, что молекулы для химической реакции должны встретиться в пространстве. Если они свободно плавают по миру, шансов на встречу у них крайне мало. В этом случае говорят о компартментализации: молекулы заперты на ограниченной территории и интенсивно реагируют друг с другом. Клетка с её органеллами и есть самый выдающийся пример такой компартментализации. Казалось бы, нет ничего проще, чем представить себе молекулы РНК, заключённые в липидных пузырьках, но для этого нужно допустить, что, кроме РНК, во времена РНК-мира существовали уже и довольно сложные молекулы липидов.

Исследователи из Пенсильванского университета (США) показали, как молекулы РНК могли собраться вместе, не прибегая к помощи липидных мембран. Неклеточную компартментализацию удалось создать с помощью раствора полиэтиленгликоля (ПЭГ) и декстрана. В растворе эти полимеры формируют новую фазу, в которой собирается РНК. И чем плотнее РНК набивалась в декстрановую фазу, тем быстрее шла реакция, которую РНК катализировала: по сравнению с обычным раствором скорость реакции увеличивалась в 70 раз.

То есть, как пишут исследователи в журнале Nature Chemistry, им удалось показать, что в двухфазной системе действительно может происходить компартментализация РНК и что это действительно ускоряет реакцию.

Авторы работы уверяют, что и декстран, и ПЭГ вполне могли присутствовать во времена зарождения жизни. Однако вовсе не обязательно, чтобы это были именно они. Главное, что показано, — некие полимеры могут сформировать в растворе двухфазную систему и тем самым ускорить протекание биохимических реакций. То есть РНК-мир вполне мог обойтись безо всяких липидных мембран.

Исследователи говорят, что в полимерную фазу лучше всего стягивались более длинные молекулы РНК, а короткие продолжали плавать на свободе. Длинные РНК обладают большими каталитическими возможностями и могут нести больше информации. То есть за счёт такой компартментализации уже мог проходить первый отбор в пользу более прогрессивных, многофункциональных, более «биологических» молекул.

 


 

Источник: КОМПЬЮЛЕНТА


 

Эволюция традиционно понимается как перебор множества небольших изменений в организме и выбор самого подходящего к конкретным условиям среды. В любом живом существе постоянно происходят генетические мутации, которые могут приводить к переменам в работе клеток, тканей, органов и т. п. Если это случается к месту, изменение сохраняется в поколениях.

Хотя человеческий эмбрион (на фото) и превратится в будущем в уникальный организм, клеточные комплексы, образующиеся в ходе его развития, сходны с теми, что образуют эмбрионы других животных. (Фото Bettmann / Corbis)Хотя человеческий эмбрион (на фото) и превратится в будущем в уникальный организм, клеточные комплексы, образующиеся в ходе его развития, сходны с теми, что образуют эмбрионы других животных. (Фото Bettmann / Corbis)Стюарт Ньюман из Медицинского колледжа Нью-Йорка (США) предложил свою версию эволюции жизни — по крайней мере в той её части, которая касается развития самых первых многоклеточных организмов. Учёный исходил из того, что тела животных, от эмбриональной стадии до взрослого состояния, используют набор повторяющихся морфологических мотивов, повторяющихся структурных комплексов, которые можно уподобить строительным блокам. Причём эти элементы, если верить ископаемым находкам, впервые появились почти полмиллиарда лет назад. С помощью таких блоков образуются кровеносные сосуды, сегменты тела, экзоскелет или скелет обычный и т. д.

По словам профессора Ньюмана, ему в голову вдруг пришла идея, что эти клеточные блоки похожи на то, как ведут себя вязкоупругие химические субстанции при механическом воздействии. Из этого он делает вывод, что первые многоклеточные столкнулись с силами, с которыми до сих пор жизнь не имела дела, и эти силы буквально слепили из многоклеточных, как из глины, те самые базовые морфологические мотивы. Действительно, даже интуитивно понятно, что чисто механически среда действует на одну-единственную клетку совершенно иначе, чем на многоклеточный организм, пусть даже самый простой.

В будущем остались те многоклеточные, у которых гены позволяли принять ту или иную форму, не противоречившую новой физике. То есть у клеток были гены, предназначенные для внутриклеточных целей, но если они не могли найти общий язык с новой формой, многоклеточность такой клетке не светила. Иными словами, физические силы поставили фильтр, через который одни генетические комплексы прошли, а другие — нет. И здесь важно то, что таких комплексов могло быть довольно много; это объясняет морфологическое разнообразие живых организмов.

В этом случае не было постепенных микроизменений, которые шаг за шагом формировали облик организмов. Физические силы работали с уже имеющимся набором генетических признаков, разделяя их на годные и негодные к многоклеточной жизни. В дальнейшем естественный отбор шёл в направлении всё большей независимости от физики, но при этом структурные кирпичи остались. Эту теорию можно оспаривать, но в её пользу говорит тот факт, что взрыв морфологического разнообразия произошёл между 640 и 540 млн лет назад: именно тогда сформировались все структурные мотивы, и с тех пор ничего нового к ним не прибавилось.

Подробности гипотезы изложены в журнале Science.


Источник: КОМПЬЮЛЕНТА


Некоторые исследователи берут на себя смелость утверждать, что и сегодня можно выделить ДНК динозавров, ведь никто не знает, сколько времени уходит на распад генетического материала...

Одна из музейных реконструкций птицы моа (фото Stephen Janko)Одна из музейных реконструкций птицы моа (фото Stephen Janko)Точнее, не знал, ибо изучение окаменелостей из Новой Зеландии позволило приблизительно установить период полураспада ДНК и окончательно развеяло надежды на клонирование тираннозавра.

После гибели клетки ферменты начинают разрушать связи между нуклеотидами, формирующими основу ДНК. Распад ускоряют микроорганизмы, а в долгосрочной перспективе за деградацию большинства связей отвечает вода. Подземные воды повсеместны, поэтому ДНК в костях, по идее, должна распадаться с возрастающей скоростью.

Определить эту скорость оказалось трудным делом, ибо редко удаётся найти большое количество ДНК-содержащих окаменелостей, которые позволили бы провести сравнение. Что ещё хуже, на темпы распада влияют переменные окружающей среды: температура, степень биохимической активности микроорганизмов, показатель оксигенации и пр.

Но палеогенетики под руководством Мортена Аллентофта из Копенгагенского университете (Дания) и Майкла Банса из Университета Мёрдока (Австралия) смогли получить в своё распоряжение 158 ДНК-содержащих костей ног, принадлежавших трём видам вымерших гигантских птиц моа. Останкам было от 600 до 8 000 лет, их нашли на трёх участках в пределах 5 км друг от друга, и впоследствии они хранились почти в идентичных условиях при температуре 13,1 ˚C.

Сравнив возраст и степень деградации генетического материала костей, исследователи подсчитали, что период полураспада ДНК составляет 521 год. Иными словами, за это время уничтожается половина связей между нуклеотидами, затем распадается половина оставшихся, и так далее.

Учёные полагают, что даже при температуре, идеальной для сохранения генетического материала (−5 ˚C), каждая связь будет разрушена максимум за 6,8 млн лет (при отрицательной температуре период полураспада ДНК может достигать 158 тыс. лет). В реальности же ДНК перестаёт быть читаемой гораздо раньше: достаточно примерно 1,5 млн лет, чтобы нити ДНК стали слишком короткими и перестали давать осмысленную информацию.

Поэтому разговоры о том, что хорошо бы выделить ДНК динозавров или насекомых, попавших в янтарную ловушку, можно прекратить.

В то же время ряд специалистов хотел бы взглянуть на аналогичные исследования окаменелостей из вечной мерзлоты, ведь очевидно, что кости, хранившиеся при других условиях, могут дать иной результат. Действительно, анализ останков моа показал, что различия в возрасте отвечают лишь за 38,6% расхождений в степени деградации ДНК. Очевидно, на скорость влияют и условия хранения образца после раскопок, и химический состав почвы, и даже время года, в которое скончалось животное.

Самая старая ДНК на сегодня принадлежит насекомым и растениям, найденным во льдах возрастом от 450 до 800 тыс. лет.

Результаты исследования опубликованы в журнале Proceedings of the Royal Society B.


Источник: КОМПЬЮЛЕНТА


Учёным удалось отчасти понять, как растениям удаётся передавать эпигенетический код из поколения в поколение.

Схематический портрет молекулярного комплекса ДНК и фермента ДНК-метилтрансферазы (рисунок Laguna Design)Схематический портрет молекулярного комплекса ДНК и фермента ДНК-метилтрансферазы (рисунок Laguna Design)Про эпигенетический код наука знает давно, но как он передаётся, до сих пор остаётся во многом загадкой. Известно, к примеру, что у млекопитающих все эпигенетические маркеры в половых клетках удаляются. У растений определённые эпигенетические модификации при образовании пыльцы исчезают, но после оплодотворения появляются на прежнем месте.

Исследователям из Лаборатории в Колд-Спринг-Харборе (США) удалось отчасти понять, как это происходит по крайней мере у растений. Их пыльцевое зерно образовано двумя клетками — генеративной, из которой потом образуются два спермия, и вегетативной, которая сама никого не оплодотворяет, но помогает этому процессу. Вегетативная и генеративная клетки образуются из общего предшественника. Учёные проанализировали эпигенетический статус ДНК созревающей пыльцы на разных стадиях. Как и ожидалось, клетки-предшественницы вегетативной и генеративной клеток имели существенные различия в метильном эпигенетическом узоре.

Присоединение метильных групп к ДНК — один из важнейших элементов эпигенетического кода — подавляет активность генов. Учёные выяснили, что в растительной пыльце этим процессом руководят малые интерферирующие РНК. Напомним, что обычная сфера деятельности этих молекул — процессы трансляции. Именно на этом этапе они обычно вмешиваются, подавляя синтез белка на матричной РНК. Но, как видно, малым интерферирующим РНК до всего есть дело. Небольшие молекулы РНК, длиной всего в 21 и 24 нуклеотида, служили проводниками для ферментов, выполняющих метилирование ДНК.

В статье, опубликованной в журнале Cell, авторы пишут, что зоны в ДНК, которые то приобретали, то теряли метильные группы, часто содержали транспозоны. Транспозонами называют мобильные элементы ДНК, которые обладают определённой самостоятельностью: они могут буквально «перепрыгивать» из одного участка генома в другой. В интересах клетки держать эти мобильные элементы под контролем, так как они могут влезть куда не следует и вызвать опасную мутацию, изменив последовательность гена.

Один из способов контроля транспозон — держать их метилированными. В связи с этим авторы работы делают любопытный вывод о том, что регуляция метилирования ДНК у растений произошла от древнего молекулярного механизма, который следил за активностью транспозонов в клетке. Эти регуляторные малые РНК вычленились в прошлом из транспозонных элементов, и теперь они водят к ним ферменты, которые подавляют активность их опасных «предков». Более того, некоторые гены, которые должны молчать в ходе развития зародыша, окружены транспозонными последовательностями: метилирующие ферменты, подавляющие активность транспозонов, заодно запечатывают и эти гены.

Таким образом, для передачи метильного кода в следующие поколения растения используют механизмы сдерживания мобильных элементов ДНК- и РНК-интерференции. Животные в этом смысле оказались менее изощрёнными: метильный узор, который сохраняется в ДНК в течение всей жизни, при формировании половых клеток исчезает без шансов на восстановление в следующем поколении.


Источник: КОМПЬЮЛЕНТА


Гены в мозгу пчел видоизменяются, когда те меняют профессию.

Источник: flickr.com/photos/8510057@N02/источник: flickr.com/photos/8510057@N02/Биологи из Университета Джона Хопкинса (США) выяснили, что перемена профессии у рабочих пчел сопровождается обратимыми изменениями ДНК. Результаты исследования опубликованы в свежем выпуске журнала Nature Neuroscience.

В начале своей жизни рабочие пчелы ухаживают за потомством внутри улья, а затем становятся пчелами-фуражирами, которые совершают вылеты за нектаром за пределы гнезда. В ходе работы ученые проанализировали геном клеток мозга 21-ой пчелы-няньки и геном такого же количества пчел-фуражиров.

Оказалось, что 155 участков ДНК двух категорий пчел различаются по наличию метильных групп (СН3). Эти группы присоединяются к цитозину, одному из четырех азотистых оснований, входящих в состав ДНК. У пчел метилированными оказались регуляторные гены, которые координируют работу остального генома.

Затем ученые провели эксперимент, изъяв из улья всех пчел-нянек, так что часть фуражиров была вынуждена вернуться к уходу за потомством. Выяснилось, что при этом характер метилирования регуляторных генов пчел-фуражиров изменился и стал таким же, как у пчел, живущих внутри гнезда.

Авторы статьи надеются, что полученные данные помогут лучше понять, как ненаследуемые изменения в ДНК связаны с процессами обучения и запоминания у человека, а также с развитием раковых опухолей, поскольку оно также сопряжено с метилированием ряда генов.


Источник: infox.ru


 

Ширина улыбки определяется не только настроением, но и генами, которые вы получили от родителей. Таких генов может быть несколько сотен, и некоторые из них уже удалось обнаружить. Международная группа исследователей сообщает в веб-журнале PLoS Genetics , что ей удалось найти пять генов, определяющих основные («базовые») черты лица. Наибольший интерес тут, впрочем, представляет методическая часть работы, то есть то, как именно вёлся поиск этих генов.

Слева — «главные» лицевые точки, определённые с помощью МРТ (фото James Woodson / Thinkstock)Слева — «главные» лицевые точки, определённые с помощью МРТ (фото James Woodson / Thinkstock)С помощью МРТ исследователи выделили девять важных точек, расстояние между которыми определяет «ландшафт» нашего лица. В такие параметры, например, попали расстояние между глазами и расстояние от кончика носа до его основания. Показатели отбирались с таким расчётом, чтобы их можно было легко оценить у любого человека. Затем учёные обратились непосредственно к анализу ДНК: среди пяти групп людей искали зависимость между строением генома и строением лица. Группы были довольно большие, от 500 до 2,5 тыс. человек в каждой. Позже к ним добавились ещё три группы, на которых и проверялись полученные результаты: анализировалась ДНК и по ней «восстанавливалась» внешность.

В результате в исследовательских руках оказались пять генов, которые определяли такие черты, как ширина лица, расстояние между глазами и длина носа. Один из них, PAX3, уже был известен по своему влиянию на форму лица (он участвует в формировании мышечных клеток), и от него как раз зависит расстояние между глазами и расстояние от кончика носа до его основания. Мутации PAX3 приводят к развитию синдрома Ваарденбурга . (Это, к слову, подтвердило, что разработанный метод поиска «лицевых» генов вполне эффективен.)

Два других, расположенные на хромосомах 2 и 3, ранее упоминались в связи с «заячьей губой» и дефектами в развитии челюстей. Оставшаяся же пара до сих пор никогда в таком контексте не упоминалась, хотя известно, что один из этих генов включён в синтез коллагена (про функции другого ничего не известно). То есть учёным удалось не только подтвердить уже известные результаты, но и найти новые «лицевые» гены.

Практический смысл таких исследований очевиден. Даже если не фантазировать на тему косметического проектирования человека, информация о генах, отвечающих за лицо, может сильно облегчит жизнь криминалистам. Восстановить облик преступника можно будет по ДНК, оставшейся на месте преступления, не полагаясь на не очень надёжные показания очевидцев (если такие имеются) и диковатые фотороботы. Однако, как замечают авторы работы, один и тот же ген может иметь множество вариантов. Тип лица, может, и определяют пять генов, но число вариантов этих генов и их комбинаций достигает десятков и сотен. В этом смысле учёные находятся в самом начале пути: предстоит колоссальная работа, чтобы окончательно установить взаимосвязь между геном и внешностью.


Источник: КОМПЬЮЛЕНТА


 

Физик Джереми Ингланд из Массачусетского технологического института (США), проведя моделирование процесса воспроизведения простейших живых организмов, пришёл к выводу о том, что воспроизводство РНК и организмов на её основе значительно проще, нежели в случае ДНК. Но главное в другом: для воспроизведения РНК in vitro используется энергии лишь чуть больше, чем это абсолютно необходимо с термодинамической точки зрения.

Уровень потерь при воспроизводстве кишечной палочки чрезвычайно мал: даже при активном делении он всего в 2,5–3 раза больше абсолютно необходимого минимума. (Иллюстрация Jeremy L. England.)Уровень потерь при воспроизводстве кишечной палочки чрезвычайно мал: даже при активном делении он всего в 2,5–3 раза больше абсолютно необходимого минимума. (Иллюстрация Jeremy L. England.)Условно говоря, «КПД процесса» здесь близок к 100%.

ДНК более устойчива в химическом отношении, чем РНК, но и куда сложнее. Дело в том, что вместо сахара дезоксирибозы РНК содержит рибозу, имеющую дополнительную гидроксильную группу, увеличивающую вероятность гидролиза молекулы, то есть уменьшающую её стабильность.Упрощённые структуры РНК и ДНК. РНК в большинстве случаев не является двойной спиралью и значительно короче ДНК. (Иллюстрация Wikimedia Commons.)Упрощённые структуры РНК и ДНК. РНК в большинстве случаев не является двойной спиралью и значительно короче ДНК. (Иллюстрация Wikimedia Commons.)

Для проведения термодинамических расчётов по энергии, требуемой системе на репликацию в отношении РНК и ДНК, учёный использовал статистическую оценку РНК и ДНК как систем до и после их репликации. Зная варианты состояния компонентов в системе, при которой возможно самовоспроизведение РНК и ДНК, исследователь определил количество тепла, абсолютно необходимое с термодинамической точки зрения для процесса.

Оказалось, что термодинамически репликация РНК значительно проще и требует на порядок меньшего количества тепла. В сложных с точки зрения энергобаланса условиях вероятность репликации у РНК должна быть радикально выше, чем у ДНК. Именно этот тезис заставил исследователя предположить, что первый тип процессов исторически имел место значительно раньше, чем второй. И сей вывод как будто подтверждает гипотезу мира РНК , по которой первые самовоспровоизводящиеся живые организмы состояли из РНК, одновременно являвшейся и носителем наследственной информации, и средством её дальнейшего воспроизводства. Характерное для нынешней жизни разделение функций произошло, по его мнению, позднее, когда ДНК стала использоваться как носитель наследственной информации (более устойчивый, чем РНК), а ферментативная функция перешла к белкам.

Любопытно, что, оценивая термодинамическую эффективность размножения кишечной палочки, Джереми Ингланд заключил, что та тратит на размножение всего втрое больше энергии, чем это абсолютно необходимо с термодинамической точки зрения. Хотя этот показатель уступает КПД репликации РНК, близкого к 100%, тем не менее для столь сложной системы как клетка его можно считать выдающимся, заключает учёный.

С препринтом исследования можно ознакомиться здесь .


Источник: КОМПЬЮЛЕНТА


 

Генетики совершили открытие десятилетия, выяснив, что участки ДНК, ранее считавшиеся бесполезными, нужны для регуляции работы генов.

331x252 bqA0IBBWeeNgI1XtcfRWCxtP6whP3Ul4Участники международного проекта ENCODE («Энциклопедия ДНК-элементов»)подвели промежуточные итоги своей работы, опубликовав сразу 30 статей, 6 из которых появились в свежем выпуске журнала Nature, а остальные – в журналах Genome Research и Genome Biology. На сайте Nature все опубликованные материалы объединены в интерактивную схему.

Проект ENCODE стартовал в 2003 году, после того, как ученым удалось расшифровать геном человека, прочитав 3 миллиарда нуклеотидных пар человеческой ДНК. Участники ENCODE поставили перед собой цель понять, какие функции несет каждый отрезок этой нуклеотидной последовательности.

Сначала ученые сосредоточились лишь на тех отрезках генома, в которых зашифрованы белки. Они составляют менее 1% всей ДНК. Остальные 99% генома долгое время считались «мусорной ДНК», которая не несет какого-либо смысла для организма. Однако, приступив затем к изучению этой «бессмысленной» ДНК, участники ENCODE смогли доказать обратное.

В «мусоре» нашли переключатели

Как следует из опубликованных статей, почти 80% некодирующих последовательностей в действительности играют важную роль, регулируя активность генов. Исследователи показали, что мутации «мусорной» ДНК, так же, как и мутации генов, могут вызывать наследственные заболевания. По мнению экспертов, это самое значительное открытие, совершенное генетиками за последние 10 лет.

«Мы выяснили, что нужно почти 4 миллиона переключателей для того, чтобы управлять работой 21 000 генов, которые есть у человека», рассказал Брэдли Бернштейн, участник проекта ENCODE. Раньше, желая найти причину рака или диабета, ученые искали гены, мутации которых вызывают эти болезни. Но, как следует из опубликованных работ, зачастую причинами болезней становятся мутации «переключателей», рассеянных по некодирующей ДНК.

Сейчас над проектом ENCODE работают более 440 ученых в 32 лабораториях по всему миру.  Они провели уже около 1600 экспериментов со 147-ю типами клеток.


Источник: infox.ru


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Почему бактерии совершают суицид?

20-03-2013 Просмотров:11653 Новости Микробиологии Антоненко Андрей - avatar Антоненко Андрей

Почему бактерии совершают суицид?

Мы привыкли считать суицид отклонением от нормы, обосновывая это биологическими аргументами: дескать, где вы видели, чтобы животные кончали жизнь самоубийством? Это же противоречит эволюции и вообще принципам жизни на Земле....

Впервые изучена икра диких угрей

03-02-2011 Просмотров:13853 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Впервые изучена икра диких угрей

Находка японских учёных позволила исследовать особенности нереста этих рыб в естественной среде. Полученные знания помогут лучше организовать разведение угрей, мясо которых высоко ценится в пищевой промышленности, без ущерба для их...

Класс (лат. classis) / надкласс (лат. superclassis) / подкласс (лат.…

24-09-2012 Просмотров:9360 Словарь Антоненко Андрей - avatar Антоненко Андрей

Класс(от лат. classis ‒ разряд, группа) (биологическое), одна из высших таксономических (систематических) категорий животных и растений. Класс объединяет родственные отряды (животных) или порядки (растений). Например, отряды грызунов, насекомоядных, хищных и...

Ученые вернут мамонтов в Сибирь через 30-50 лет

12-06-2013 Просмотров:11931 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Ученые вернут мамонтов в Сибирь через 30-50 лет

Перспектива клонирования мамонта и возвращения к жизни целой популяции этих животных становится все ближе. Как заявил профессор эволюционной генетики канадского университета Макмастера Хендрик Пойнар, речь идет о каких-то 30-50 годах,...

Как гремучие змеи выбирали яды и почему они трясут хвостами

19-09-2016 Просмотров:5812 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Как гремучие змеи выбирали яды и почему они трясут хвостами

Вышли сразу две интересных научных статьи, посвященные гремучим змеям (подсемейство ямкоголовые, лат. Crotalinae). Первое исследование, которое выполнили ученые из Университета Висконсин-Мэдисон и Техасского университета в Кингсвилле (США), под руководством профессора...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.