Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Генетики


Новости Генетики (102)

Молекулярные биологи выяснили, почему наши далекие предки внезапно перешли от откладывания яиц к вынашиванию плода внутри утробы — оказалось, что в этом могут быть виноваты транспозоны, своеобразные внутренние генетические паразиты, осуществившие масштабную «перестройку» генома, говорится в статье, опубликованной в журнале Cell Reports.

Предполагаемый предок всех плацентарных млекопитающих, Предполагаемый предок всех плацентарных млекопитающих, "Нам впервые удалось получить полноценный пример того, как в природе появляется что-то совершенно новое, как его носители выживают и воспроизводят себя. Мы обнаружили, что генетические изменения, которые привели к переходу к внутриутробному вынашиванию, были спровоцированы "одомашненными" транспозонами, которые вторглись в геном ранних млекопитающих. Надо полагать, что такой феномен, как беременность, обязан своим существованием тем вещам, которые, по сути, являются генетическими паразитами", — рассказывает Винсент Линч (Vincent Lynch) из Йельского университета (США).

Транспозонами ученые называют небольшие фрагменты молекулы ДНК, которые способны копировать сами себя и встраивать новые копии в разные участки генома. При этом они не кодируют никаких полезных для организма белков и их иногда называют "генетическими паразитами". Однако это не значит, что для организма транспозоны совершенно бесполезны: ученые считают, что они делают геном более изменчивым и помогают организму приспосабливаться к окружающей среде.

Древнейшее млекопитающее ArboroharamiyaДревнейшее млекопитающее ArboroharamiyaЯркий пример этого, тоже касающийся истории эволюции млекопитающих, был открыт Линчем и его коллегами еще в 2011 году — они выяснили, что первые млекопитающие "потеряли" сумку и перешли к полному внутриутробному развитию благодаря транспозонам.

В новой работе Линч и его коллеги окунулись еще в более глубокую генетическую историю и попытались найти те гены, которые превратили поздних звероящеров-цинодонтов в млекопитающих, заставив их отказаться от откладывания яиц и перейти к кормлению детенышей молоком.

Для этого ученые сравнили то, какие гены включаются в клетках матки у нескольких десятков видов плацентарных млекопитающих, в том числе и человека, с тем, какие участки ДНК активизировались в детородных органах у сумчатых млекопитающих (опоссумов), их яйцекладущих родичей (утконосов), ящериц, куриц и лягушек. Это сравнение помогло Линчу и его коллегам составить "древо эволюции" генов, связанных с ростом потомства, и понять, как и когда возникла беременность.

Древо эволюции млекопитающих и их способности к внутриутробному.развитиюДрево эволюции млекопитающих и их способности к внутриутробному.развитиюОказалось, что генетическая эволюция млекопитающих шла не плавно, а большими рывками, в ходе которых сотни и даже тысячи генов приобретали новую функцию, переезжали на новое место или просто "отключались". Во время первого такого скачка, перехода от звероящера к примитивным древним млекопитающим, наши предки приобрели сразу 500 новых генов и потеряли около трех сотен старых. Следующий этап, появление сумчатых, сопровождался появлением более тысячи генов. На последнем этапе, во время зарождения плацентарных млекопитающих, мы приобрели 800 новых генов и потеряли около 200 старых.

Для всех этих новых и "перепрофилированных" генов была характерна одна общая черта — они были окружены или содержали в себе вставки из транспозонов, которые попали в геном наших предков, судя по числу мутаций, примерно в то же время, когда появились первые млекопитающие. По всей видимости, большая мобильность этих "генетических паразитов" и их способность к самокопированию помогла эволюции осуществить столь масштабные изменения практически в мгновение ока.

"Гены должны каким-то образом понимать то, где и когда они должны включиться и начат работать. Похоже, что транспозоны дали им возможность получить эту информацию и научили старые гены работать в новом для них уголке организма — матке — во время беременности", — заключает Линч.


Источник:  РИА Новости 


Знаменитый американский палеонтолог Джек Хорнер обещает в ближайшие годы продемонстрировать всем желающим живого динозавра. По его словам, воссоздание вымерших мезозойских ящеров с помощью современных генетических технологий заодно приведет и к существенному прорыву в медицине.

181114chikenosaur В 2009 году Хорнер решил не искать настоящую мезозойскую ДНК в янтаре, как это показывают в классическом голливудском фильме Jurassic Park. Вместо этого он вознамерился "откатить" назад эволюционный процесс на примере обычной курицы. Так появилась идея курицеящера (chickenosaurus) – генетически измененной птицы, у которой путем искусственных манипуляций воссозданы черты строения, свойственные далеким предкам.

Выбор источника для создания новых динозавров на первый взгляд выглядит довольно странно. Страусы, например, намного примитивнее куриных, канадские журавли практически не менялись на протяжении последних 10 млн лет, а у птенцов гоацинов на крыльях сохранились когти, с помощью которых те ловко лазают по деревьям, пока не станут на крыло. Но все эти птицы весьма неудобны для лабораторных опытов, а вот с цыплятами ученые работают десятилетиями и уже накопили по ним массу ценного научного материала.

Последние четыре года Хорнер хранил молчание о своем проекте, но наконец недавно дал новое интервью газете The Washington Post. Он напомнил, что в конце эксперимента надеется вывести динозавра, который выглядит, ходит и действует как динозавр, но вылупился из куриного яйца. Для этого научному коллективу предстоит решить три задачи – получить зубастую бесклювую голову, длинный хвост и заменить крылья парой лап с когтями. К настоящему времени палеонтолог и его коллеги уже получили несколько странных цыплят с зубами и вытянутым рылом, больше напоминающих крокодилов, чем птиц.

"Мы уже в состоянии сделать зубы, но птицы утратили ген эмали, – поделился своими успехами Хорнер. – Так что для того, чтобы получить настоящие зубы, нам придется вывести несколько трансгенных особей. И тогда мы сможем добавить эмаль обратно. Это на самом деле не слишком сложное дело, которое нам вполне по силам. А самым простым этапом работы, вероятно, станут лапы". Действительно, на рентгеновских снимках птичьих крыльев отчетливо различимы все те же кости, что и в лапах мелких динозавров.

По признанию палеонтолога, наибольшие трудности вызывает воссоздание хвоста. У современных птиц вместо него имеется сложная структура, называемая пигостиль – несколько сросшихся между собой позвонков, помогающих управлять движениями хвостовых перьев. Чтобы избавиться от пигостиля, нужно понять, как он образовался, однако таких знаний у современной науки пока нет. Зато команда Хорнера нашла 23 мутации, вызывающие срастание хвостовых позвонков у мышей.

 "Используя генетические маркеры, мы определили, какие гены необходимо включить, чтобы получить определенные результаты или вызвать резорбцию конкретных костей, – продолжает Хорнер. – Сейчас мы пытаемся понять, какие виды генов на самом деле отвечают за целые сегменты хвоста. Наш следующий шаг – попытка воздействием на гены лишить хвостов колонию гекконов. Мы надеемся, что обнаруженные нами у мышей гены хвоста будут работать и у ящериц".

 Известный палеонтолог настроен весьма оптимистично и даже похвастался, что создание живого динозавра в денежном исчислении обойдется куда дешевле стандартного голливудского спецэффекта. О кино Хорнер вспомнил не случайно – миллионы долларов на его исследования в свое время выделил Джордж Лукас, впечатленный просмотром "Парка юрского периода".

 "Думаю, мы можем достичь такого набора генетических изменений в одном эмбрионе, в результате которого животное успешно вылупится и будет жить нормальной жизнью, двигаясь и функционируя без проблем, – продолжает палеонтолог. – Я буду очень удивлен, если мы не сделаем этого в течение 10 лет. А если нам повезет, мы будем иметь его в течение ближайших пяти лет, потратив на весь процесс не больше пяти миллионов долларов".

 Кроме всего прочего, возвращение курицы к состоянию динозавровых предков может существенно продвинуть вперед современную медицину. "Спустя 70 миллионов лет птичий организм по-прежнему сохраняет скрытые механизмы формирования давно исчезнувших зубов. Если это так, то что могут скрывать в своих генах представители других видов? Только представьте, как это отразится на наших представлениях о медицине и восстановлении здоровья", – заявил ученый.

 Однако не все даже близкие коллеги Хорнера разделяют его энтузиазм. "Джек задает вопрос, можем ли мы восстановить что-либо, потерянное в ходе эволюции. Это неправильный вопрос. Чему вы научитесь, добившись этого? Технически, вы получите просто сильно мутировавшую курицу. Она никогда не будет настоящим динозавром, она навсегда останется просто ужасным монстром", – прокомментировал его планы доктор Мэттью Харрис из Гарвардского университета, в лаборатории которого появились на свет те самые цыплята-крокодильчики.

 


Источник: PaleoNews


Генетики показали, что митохондрии, клеточные органеллы бактериального происхождения, сначала паразитировали на клетках и лишь затем стали снабжать их энергией.

МитохондрияМитохондрияОб этом говорится в статье американских ученых из Университета Вирджинии, опубликованной в журнале PLOS ONE.

Митохондрии называют клеточными энергетическими станциями, потому что в них протекают процессы окислительного фосфорилирования, итогом которых является синтез АТФ - молекул, служащих энергетической «валютой» клетки. Митохондрии происходят от свободноживущих бактерий, по каким-то причинам поселившихся в эукариотических клетках.

Долгое время считалось, что отношения митохондрий и клеток с самого начала строились как симбиоз. Однако было неясно, почему же началось их взаимовыгодное сотрудничество. Что предки митохондрий, еще не став специалистами в выработке АТФ, «с порога» могли предложить своим хозяевам? Авторы статьи сняли эту проблему, показав, что митохондриям не надо было ничего предлагать, поскольку они начинали свою «карьеру» в качестве паразитов.

Исследователи попытались реконструировать прошлое митохондрий, приняв во внимание не только их собственный геном, но и те гены, которые когда-то были митохондриальными, но затем вошли в состав генома клетки. Всего они выявили 394 таких гена и затем сравнили их с генами современных бактерий, считающихся родичами предков митохондрий.

Оказалось, что бактерии, давшие начало митохондриям, обладали АТФ/АДФ транслоказой, белком, который закачивал АТФ в обмен на АДФ, молекулу, образующуюся при расщеплении АТФ. Это значит, что первоначально митохондрии были энергетическими паразитами и отбирали у клеток АТФ. Но затем эукариотам удалось поставить бактерий-паразитов к себе на службу, изменив направление потока АТФ на противоположное.


Источник: infox.ru


Генетические истоки разделения полов помогли открыть многоклеточные зеленые водоросли Volvox carteri, мужские и женские особи которых разделились от одноклеточных предков Chlamydomonas reinhardtii.

ВольвоксВольвоксГруппа биологов из Центра растениеводства имени Данфорта (США) выявила у одноклеточных ген MID, управляющий дифференциацией половых клеток на два класса (+ и -). Потом ученые нашли аналог этого гена (VcMID) у полноценных мужских гамет Volvox carteri. Когда они искусственно простимулировали экспрессию VcMID у Volvox carteri женского пола, крупные клетки, которые должны были стать полноценными яйцеклетками, продолжили делиться, превратившись в сперматозоиды.

При обратной операции — блокировке экспрессии VcMID в мужских гаметах — ученые получили псевдоженские яйцеклетки, однако их потомство оказалось не вполне жизнеспособным.

Родство генов MID разных видов водорослей и их общая функция (регуляция различий между полами и типами спаривания) свидетельствуют, что найдена общая генетическая основа репродуктивной системы одноклеточных и многоклеточных организмов.


Источник: Научная Россия


Мимикрия сослужила эволюционной биологии хорошую службу, став одним из аргументов в пользу эволюционной теории. Один из двух отцов теории эволюции, Альфред Уоллес, путешествуя по Азии, заметил, что бабочки-парусники Papilio polytes имитируют окраску ядовитой Pachliopta hector. Но хотя имитация окраски хорошо укладывалась в механику развития видов, биологи ещё очень долго раздумывали над тем, как мимикрия реализуется на генетическом уровне. 

Самка P. polytes (фото Ingo Arndt)Самка P. polytes (фото Ingo Arndt)С одной стороны, высказывались предположения, что маскировка-имитация развивается постепенно, с другой стороны, некоторые полагали, что она появляется внезапным скачком. В итоге биологи-эволюционисты сошлись на том, что существуют некие «супергены», массивы генетической информации, которые контролируют мимикрию и вот так комплексно и наследуются. То есть бабочка не может смешивать гены мимикрии, она получает их сразу все и со всеми изменениями, которые в них происходили, — или же вообще не получает.

Но всё оказалось намного проще! Группа исследователей из Чикагского университета (США) вместе с коллегами из Института фундаментальных исследований Тата (Индия) выяснили, что мимикрия бабочек-парусников зависит только от одного гена. Известно, что самцы Papilio polytes не мимикрируют, их крылья чёрные с белыми пятнами, а вот самки как раз раскрашивают свои крылья под ядовитых Pachliopta hector с помощью цветных полос и пятен. С одной стороны, тут можно усмотреть аргумент в пользу единого и неделимого комплекса «мимикрирующих» генов, однако имитирующая окраска самок может довольно сильно варьироваться, делая их похожими на ядовитый вид в той или иной степени. 

Раскраска крыльев самца и разных самок P. polytes в сравнении с P. hector. (Иллюстрация Krushnamegh Kunte / Tata Institute of Fundamental Research.)Раскраска крыльев самца и разных самок P. polytes в сравнении с P. hector. (Иллюстрация Krushnamegh Kunte / Tata Institute of Fundamental Research.)Чтобы понять причину этой вариабельности, биологи скрещивали между собой разноокрашенных бабочек и проверяли потом геномы их потомства. В первую очередь учёные хотели найти различия между ДНК бабочек с имитирующей окраской и ДНК бабочек без таковой. В журнале Nature авторы пишут, что в итоге они вышли на некую зону в одной из хромосом насекомых, содержащую пять генов, а из этой пятёрки удалось выделить ген под названием doublesex, от которого зависело, какая окраска будет у крыльев. 

Этот ген известен довольно давно, он управляет работой многих других генов: в частности, от него зависит пол у дрозофил и иных насекомых. Однако «в связях с мимикрией» его ещё не уличали. Полученные данные помогают понять, почему самцы не способны имитировать предостерегающую окраску: во время созревания мРНК doublesex проходит через альтернативный сплайсинг, когда разные куски мРНК перемешиваются друг с другом, и у самцов в результате получается одна мРНК (и один белок), а у самок — совсем другая. 

Но альтернативный сплайсинг не объясняет вариабельности в окраске крыльев у самок. Тут всё дело в вариантах самого гена, который у разных линий бабочек может разниться, поэтому разные варианты doublesex могут при развитии крыльев включать разные наборы генов. 

 Смысл работы не только в том, что учёным удалось разгадать молекулярно-генетическую тайну мимикрии одного вида бабочек (пусть и с таким славным научным прошлым), но и в том, что эти данные наглядно иллюстрируют, как внешняя сложность признака может не совпадать с его внутренней, генетической сложностью.

Нельзя сказать, что все эти альтернативные сплайсинги и варианты генов — сильно простая вещь; в конце концов, мы имеем дело с особым геном, который предназначен для управления другими генами, а такие гены-менеджеры простотой не отличаются. Однако это сложность иного рода, чем та, которую предполагали до сих пор и по поводу которой сломали столько копий, споря о её эволюционных путях. Как видим, такие исследования, использующие ассортимент современных молекулярно-биологических методов, могут довольно успешно разъяснять некоторые сложные места, связанные с эволюцией. 

Впрочем, о мимикрии P. polytes споры не утихли. В том же Nature вышла ещё одна статья, авторы которой призывают обратить внимание на некодирующие регуляторные области ДНК, могущие менять уровень активности гена, её время и место. Известно, что именно такие участки ДНК во многом определяют окраску других бабочек — рода Heliconius. И, возможно, такие зоны ДНК могут влиять и на мимикрирующие способности гена doublesex. 


Источник: КОМРЬЮЛЕНТА


Эпигенетические модификации ДНК не вносят никаких изменений в последовательность нуклеотидов, зато преобразуют, если можно так сказать, их внешний вид: например, к нуклеотиду цитозину прямо в ДНК можно прикрепить метильную группу, превратив его в метилцитозин. По сути, сам генетический код в этом месте не изменится, мутации как таковой не будет, но активность гена с метилированной регуляторной областью станет другой: метилирование подавляет работу гена. (Тут мы заметим, что эпигенетические способы регуляции генетической активности одним лишь метилированием ДНК не исчерпываются.)

Растения, в отличие от животных, не делают тайны из своего эпигенетического наследования. (Фото Donald M. Jones.) Растения, в отличие от животных, не делают тайны из своего эпигенетического наследования. (Фото Donald M. Jones.) Эпигенетические модификации есть у многих живых организмов, но у животных, например, они обнуляются при передаче генетического материала потомкам — уже в половых клетках ДНК освобождается от модификаций. У растений же, напротив, эти модификации передаются из поколения в поколение, и в этом случае можно с полным основанием говорить об эпигенетическом наследственном коде. Но хотя про сохранность эпигенетического кода у растений известно довольно давно, учёные до сих пор выясняют, насколько влиятельны такие модификации, как много может зависеть от них в жизни растений.

Пытаясь разобраться с этим, Фрэнк Йоханнес (Frank Johannes) из Гронингенского университета (Нидерланды) и его коллеги из Национального института здравоохранения и медицинских исследований Франции (INSERM) получили несколько линий арабидопсиса (Arabidopsis): все линии были одинаковы генетически, различаясь лишь эпигенетическими маркерами, которые переходили из поколения в поколение. Именно благодаря тому, что растения были одинаковы генетически, но различались эпигенетически, удалось показать, что эпигенетический код влияет на такие важные характеристики, как время цветения и длина первичного корня.

Результаты исследования опубликованы в Science Express

В данном случае авторы работы наблюдали за растениями на протяжении семи поколений, однако известно, что эпигенетические маркеры у Arabidopsis могут проходить неизменными по меньшей мере через два десятка поколений. Ещё раз скажем, что учёным впервые удалось напрямую показать связь между эпигенетическим кодом и важнейшими признаками растений: наличие или отсутствие тех или иных модификаций сопоставляли как с внешним видом и поведением растений, так и с тем, какие области ДНК несли эти модификации. С одной стороны, эти сведения имеют важное практическое значение — к примеру, для тех, кто занимается селекцией новых сортов сельскохозяйственных растений. С другой — это заставляет задуматься над путями эволюции: ведь отбор может действовать не только на уровне генетических мутаций, но и на уровне эпигенетических модификаций. 

Что до животных и человека, то тут вопрос с эпигенетическим наследованием остаётся пока довольно туманным. Есть множество примеров того, что эпигенетическое наследование у животных существует (и что таким образом может передаваться, например, ожирение), но что это за механизмы и как они работают, мы пока не очень себе представляем.


Подробнее: КОМПЬЮЛЕНТА


У высших животных синтез белков в зародыше начинается сразу после оплодотворения благодаря матричной РНК, заранее запасённой в яйцеклетке. Но потом эмбрион включает собственную транскрипцию и начинает сам синтезировать мРНК; этот период называется MZT (maternal-to-zygotic transition). 

РНК с рибосомами, синтезирующими полипептиды (фото Jay Reimer). РНК с рибосомами, синтезирующими полипептиды (фото Jay Reimer). Однако одним лишь включением транскрипции дело тут не ограничивается, так как одновременно происходят крупные перемены в регуляции активности самой мРНК в зародыше. Как известно, у большинства мРНК эукариот на одном из концов висит длинная полиадениновая последовательность, или поли(А)-хвост. Рибосомы движутся к поли(А)хвосту с противоположного конца молекулы, но хвост при этом сильно влияет на трансляцию. Считается, что количество белка, синтезируемое на мРНК, прямо пропорционально длине поли(А)-хвоста. При этом мРНК одинакового типа обычно несут приблизительно равные хвосты. Например, у мРНК рибосомных белков эта концевая последовательность относительно короткая.

Исследования на эмбрионах, находящихся на ранних этапах развития, подтверждали связь между длиной хвоста мРНК и активностью трансляции на ней. Однако теперь у учёных дошли руки проверить это на стадиях, наступающих после включения собственных генов зародыша, а также в клетках взрослого организма.

Дэвид Бартел (David Bartel) и его сотрудники из Института Уайтхеда (США) сумели измерить длину поли(А)-хвостов у индивидуальных мРНК дрожжей, зародышей лягушки и рыбы данио-рерио, клеток листьев Arabidopsis thaliana, печени мыши и ряда клеточных линий. Длину мРНК сравнили с тем, как часто эти мРНК вовлекаются в трансляцию. 

И оказалось, что после включения собственных генов зародыша, на стадии гаструляции связь между длиной поли(А)-хвоста и эффективностью трансляции мРНК слабеет, а в неэмбриональных клетках её вообще нет. Этот результат оказался настолько неожиданным, что потянул на статью в Nature. Получается, что вскоре после оплодотворения у клетки в корне меняются взгляды на регуляцию трансляции — по крайней мере в том, что касается поли(А)-последовательности. Опять же, поскольку эта последовательность есть у большинства мРНК у всех эукариот, речь тут идёт о каких-то базовых переменах в регуляции синтеза белка. 

Косвенным образом это подтверждают и исследования эффекта микрорегуляторных РНК. Эти небольшие молекулы подавляют синтез белка, связываясь с матричной РНК. Механизм при этом оказывается разным: либо мРНК просто замолкает, либо микроРНК может её дестабилизировать. Оказалось, что на ранних стадиях развития зародыша микроРНК заставляют замолчать мРНК, укорачивая у неё поли(А)-хвост. А вот дестабилизация мРНК происходит на более поздних этапах развития. Что опять-таки указывает на разную роль поли(А)-последовательности в разные периоды развития.

Правда, теперь предстоит решить несколько важных вопросов, начиная с расшифровки механизма переключения между разными системами контроля активности мРНК и заканчивая выяснением того, зачем всё же у мРНК зрелых клеток есть поли(А)-хвосты разной длины.

 


Источник: КОМПЬЮЛЕНТА


Это первый случай вхождения синтетической биологии в нашу повседневную жизнь. Назвали растение Starlight Avatar. Оно выращено первым светопроизводительным заводом Bioglow.

Starlight AvatarStarlight AvatarКомпания выставила на аукцион первую партию выращиваемых растений, и принимает предварительные заказы. Растения-лампочки будут выращены к концу этого года.

Starlight Avatar дает не очень много света, но он является лишь предвестником других видов генетически модифицированных организмов, которые сделают наше жизненное пространство более экологичным и красивым.

Жители городов в скором времени станут выращивать на своих балконах цветы, которые будут освещать улицы вместо фанарей.

 


 

Источник: Научная Россия


 

Динозавры могут вернуться к жизни, если ученые найдут способ запустить механизм обратной эволюции – деэволюции у птиц, уверена доктор биохимии Оксфордского университета Элисон Вуллард. А чтобы возродить популяцию мамонтов, по ее словам, потребуется  намного меньше усилий.

Мир динозавровМир динозавров Современные птицы являются прямыми потомками динозавров. Наших привычных пернатых связывает с тираннозаврами и велоцирапторами непрерывная последовательность форм, а это значит, что где-то в глубинах птичьих ДНК хранится генетический код динозавров. Если найти способ заставить работать эти заблокированные и умолкшие на миллионы лет гены, то Земля вновь увидит исчезнувших в конце мелового периода ужасных ящеров.

Эта теория в какой-то степени перекликается со знаменитым сериалом "Парк юрского периода", но базируется на менее фантастических допущениях и уже работающих методиках. Напомним, что у Стивена Спилберга генетики воссоздали древних животных благодаря ДНК из крови динозавра, выпитой комаром, который сохранился в янтаре. Недавно палеонтологи исследовали комара возрастом 46 млн лет (то есть он жил лишь чуть позже, чем вымерли все динозавры) и действительно обнаружили в его пищеварительном тракте кровь. Но никаких годных к расшифровке молекул ДНК там найдено не было.

Как показали специально проведенные исследования ученых из университета Мердока в Западной Австралии, ДНК принципиально не способна просуществовать более 6,3 млн лет. Поскольку динозавры вымерли около 65 млн лет назад, найти пригодный для дальнейшей работы "оригинальный" генетический материал ужасных ящеров попросту невозможно.

Однако инициировав деэволюцию птиц, можно все же попытаться получить искомых динозавров. "Можем ли мы "перемотать" эволюцию назад, переключая разные гены, чтобы обратить вспять эволюционный процесс и поколение за поколением видеть все более близких к динозаврам птиц? Теоретически, мы могли бы использовать наши современные знания, чтобы в конце концов воссоздать геном динозавров", – уверена доктор Вуллард.

Основной трудностью, подстерегающей деэволюционистов на этом пути, является полная длина воссоздаваемого генома. Ведь даже если докопаться до ДНК динозавров удастся, они будут разорваны на множество крошечных фрагментов. Собрать из них последовательный полный геном, в котором каждый фрагмент расположен на своем месте –это примерно как сложить мозаику из миллиона паззлов.

Намного проще вернуть к жизни мамонта или шерстистого носорога – ведь со времени их вымирания еще не прошло шести миллионов лет, и следовательно, обнаружить жизнеспособные клетки, содержащие неповрежденную ДНК этих животных, вполне реально. После такой находки клонировать мамонта будет уже делом техники, считает оксфордский биохимик.

"Исследователям понадобится яйцеклетка слона, приходящегося самым близким родственником вымершим мамонтам. Затем ядро этой яйцеклетки меняется на ядро мамонта, а сама яйцеклетка электрошоком побуждается к делению. Теоретически, эта трансгенная клетка разовьется в эмбрион мамонта, который и родится после двухлетней беременности у сурогатной мамаши-слонихи", – рассуждает Вуллард.

 Правда, даже теоретическая возможность воссоздания вымерших животных порождает тяжелые этические вопросы, пишет The Telegraph. Если возвращение уничтоженных человеком видов в каком-то смысле является нашим моральным обязательством, то с более древними организмами все не так просто. Не станут ли они средой для развития какого-нибудь смертоносного вируса, или не разрушат ли экологический баланс, сложившийся на Земле в наши дни? И, наконец, вспоминая сюжет "Парка юрского периода", не будет ли нам просто страшно и опасно жить бок о бок с новыми динозаврами?

 Читайте так же о том, что ученые планируют через 30 лет клонировать мамонтов и о том, как создали клонированный эмбрион вымершей лягушки.


Истчоник: PaleoNews


Исследователи постоянно пытаются заставить бактерии производить какие-нибудь вещества, от белков до топливных углеводородов, и самая типичная технологическая проблема при этом — малый выход требуемых молекул. Обычно такие молекулярно-биотехнологические манипуляции сводятся к тому, что в геном бактерии вставляют ген, кодирующий нужный белок; таких генов может быть несколько, и эти белки могут иметь самые разные свойства. Однако синтез мРНК на ДНК и последующий синтез белковой молекулы на мРНК подчиняются множеству факторов, влияющих, разумеется, на активность всей этой машинерии. И необходимость их учёта является постоянной головной болью тех, кто занимается подобными молекулярно-генетическими работами. 

Рибосомы на двух нитях мРНК; от рибосом отходят фрагменты синтезируемой полипептидной цепи. (Фото Visuals Unlimited / Corbis.)Рибосомы на двух нитях мРНК; от рибосом отходят фрагменты синтезируемой полипептидной цепи. (Фото Visuals Unlimited / Corbis.)Один из таких факторов связан с редкими кодонами — триплетами нуклеотидов, соответствующих тем или иным аминокислотам. Как известно, все аминокислоты, использующиеся при синтезе белка, кодируются в генетическом коде «словами» из трёх нуклеотидных букв; однако таких «слов» в коде гораздо больше, чем аминокислот, то есть, получается, одной и той же аминокислоте соответствует больше одного кодона. Эти кодоны используются в генах с разной частотой, одни чаще, другие реже; последние поэтому и называются редкими. 

Некоторое время назад исследователи заметили, что у бактерий такие редкие кодоны тяготеют к началу кодирующей области в гене, и на мРНК рибосома, стало быть, сталкивается с ними в первую очередь. Более того, чем больше редких кодонов оказывалось в начале, тем больше белка синтезировалось на такой матрице. Никто не знал, почему так происходит, но предположения выдвигались самые разные. По одной гипотезе, редкие кодоны служат тормозами рибосомам: на таких кодонах рибосоме приходится ждать, когда к ней придёт аминоацилированная транспортная РНК с соответствующей кодону аминокислотой. Потом, на обычных кодонах, рибосома постепенно разгоняется. Если же в начале редких кодонов нет, то рибосомы сразу ускоряются, и случается так, что сзади идущая нагоняет переднюю, сталкивается с ней, и эта авария прекращает биосинтез. А если в начале мРНК стоят редкие кодоны, то они, как регулировщики скорости, делают так, что все рибосомы добираются до конца мРНК, тем самым увеличивая продукцию белка. 

По другим предположениям выходило, что редкие кодоны как-то меняют пространственную укладку мРНК, но эти изменения опять же влияют на скорость движения рибосом.

 Проверить эти гипотезы экспериментально попробовали трое исследователей изИнститута Вайса при Гарвардском университете (США). Сначала они выяснили, как сильно редкие кодоны увеличивают продукцию белка. Для этого редкие и обычные кодоны вставлялись в зелёный флюоресцентный белок, который вводился в бактерию. По тому, как бактерия светилась, можно было понять, как работают начальные кодоны.

Как пишут авторы работы в Science, появление лишь одного редкого кодона могло усилить синтез белка в 60 раз.

Во-вторых, исследователи сравнили скорость эффективность синтеза белка на мРНК с редкими кодонами и на мРНК без редких кодонов, но обладающих пространственной структурой, замедляющей рибосомы. В итоге оказалось, что и то и другое действительно увеличивает эффективность синтеза, но редкие кодоны работают сами по себе и их эффект от структуры мРНК не зависит. 

Фундаментальные и практические выводы из полученных результатов очевидны: удалось не только экспериментально подтвердить гипотезу, касающуюся одной из самых общих проблем в молекулярной биологии, но и показать, с помощью каких уловок можно заставить бактерии производить больше биотехнологического продукта.

 


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Дьявольская жаба - гроза динозавров

14-05-2011 Просмотров:17478 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Дьявольская жаба - гроза динозавров

Британские палеонтологи обнаружили на острове Мадагаскар останки гигантской лягушки, которая обитала там 70 млн. лет назад. Это существо достигало 40 см в длину и весило примерно 4,5 кг. Судя по...

Одноглазые самцы амадин по-разному выбирают самок

04-10-2012 Просмотров:12403 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Одноглазые самцы амадин по-разному выбирают самок

Половое поведение у самцов гульдовых амадин зависит от того, каким глазом они смотрят на партнёра. Если оставить зрячим только левый глаз, их разборчивость сильно снизится и ухаживать за самкой они...

В Абхазии обнаружено самое глубоко живущее сухопутное существо

10-03-2012 Просмотров:12634 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

В Абхазии обнаружено самое глубоко живущее сухопутное существо

 Португальские и испанские биологи открыли животное, обитающее в 1980 метрах ниже поверхности земли. Прописано это чемпионское создание в самой глубокой пещере в мире, а питается оно грибами и разложившейся органикой. Новое...

Ученые узнали, откуда у современных животных взялся хвост

06-12-2016 Просмотров:6147 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Ученые узнали, откуда у современных животных взялся хвост

Биологи разобрались с эволюцией хвостов. Оказалось, что хвост современных рыб и хвост четвероногих животных возникли из двух разных половин одного и того же предкового хвоста. На переднем плане, мордой вправо -...

Митохондрии были паразитами перед тем как стать энергетическими станциями

20-10-2014 Просмотров:8325 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Митохондрии были паразитами перед тем как стать энергетическими станциями

Генетики показали, что митохондрии, клеточные органеллы бактериального происхождения, сначала паразитировали на клетках и лишь затем стали снабжать их энергией. МитохондрияОб этом говорится в статье американских ученых из Университета Вирджинии, опубликованной в журнале PLOS...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.