Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Эволюции


Новости Эволюции (135)

Пятилетняя работа зоологов из университетов Шеффилда (Великобритания), Йеля (США), Тасмании (Австралия) и Саймона Фрезера (Канада) увенчалась успехом: учёным удалось создать «древо жизни» птиц, которое включает в себя все ныне живущие виды пернатых. Чтобы дать представление об объёме работы, достаточно сказать, что зоологам нужно было установить родственные связи между 9 993 видами, опираясь на анатомические, генетические и палеонтологические данные. Построение филогенетического дерева заняло годы, несмотря на то что анализ проводился с помощью современных компьютеров.

011110bird-family-tree2«Древо жизни» пернатых (рисунок авторов работы)На диаграмме, представляющей древо жизни птиц в виде спирали, в центр помещён общий предок пернатых, а концентрические круги, светло- и тёмно-серые, соответствуют 20 миллионам лет каждый. Ответвления от спирали — это группы видов, а цвет этих ответвлений показывает, с какой скоростью эволюционировала (диверсифицировалась) каждая группа. Дольше всего развивались и образовывали новые виды «синие» ветки, быстрее всех — красные. Например, довольно много видов и за короткое время сформировалось у дятлов, а вот у их ближайших родственников, птиц-носорогов, видообразование шло медленно. 

Древо жизни позволяет по-новому взглянуть на то, как эволюционировали птицы с момента их появления. В частности, как пишут исследователи в журнале Nature, наиболее интенсивно разнообразие видов пернатых увеличивалось в Западном полушарии и на островах. Если же смотреть по широтам, то особой разницы между географическими зонами не заметно. Это сильно расходится с привычной точкой зрения, согласно которой самыми разнообразными по составу видов являются тропики. А вот исследователи полагают, что видовое разнообразие в тропических экосистемах не отражает их динамику. Это лишь следствие того, что данные экосистемы существуют довольно долго; скорость же птичьей эволюции всегда была в них не слишком высокой, и новые виды появлялись там не часто. В целом же быстрее всего птицы развивались в последние 50 млн лет.

Кроме общетеоретической значимости результатов, авторы работы полагают, что их «древо птиц» поможет экологам: сравнив разнообразие в разных группах, можно понять, какие из них требуют повышенного внимания со стороны природоохранных организаций.

 


Источник: КОМПЬЮЛЕНТА


 

Масштабное исследование зоологов из Техасского университета в Остине (США) способно окончательно подтвердить ту гипотезу, по которой все млекопитающие вышли из ночной тьмы — то бишь были ночными животными на заре своей эволюции. В мезозое, когда возникли первые звери, у них не было никакой возможности конкурировать с динозаврами, которые были активны днём. Чтобы их не съели прежде времени, млекопитающим пришлось уйти в тень, где они и пребывали до тех пор, пока динозавры не вымерли.

Лишь человекообразные приматы приобрели в ходе эволюции истинно «дневные» глаза. (Фото Jami Tarris / Corbis)Лишь человекообразные приматы приобрели в ходе эволюции истинно «дневные» глаза. (Фото Jami Tarris / Corbis)Подтвердить эту гипотезу зоологи смогли, сравнив строение глаз у 266 современных видов млекопитающих. Среди них были как те, что активны и днём и ночью, так и предпочитающие строго дневное время суток. Глаза тех и других сравнивали по соотношению площади роговицы и длины глаза. Это важный параметр, от которого зависит светочувствительность органа зрения и способность чётко видеть окружающее. Оказалось, что разницы в этом параметре у разных видов млекопитающих нет, то есть глаз в этом смысле устроен одинаково и у дневных, и у полудневных видов. 

При этом, как пишут исследователи в журнале Proceedings of the Royal Society B, такое соотношение размера роговицы и длины глаза чрезвычайно напоминало аналогичную величину у ночных ящериц и ночных птиц. То есть все млекопитающие, независимо от своего нынешнего образа жизни, всё ещё несут в себе наследство далёких ночных предков. У рептилий и птиц такой проблемы — уворачиваться от дневных динозавров — не было, поэтому у них дневные и ночные виды по строению глаз различаются довольно сильно. 

65 млн лет назад, в конце мезозоя, динозавры исчезли, и млекопитающие вышли из тени, но жёсткой нужды переделать глаза так, чтобы они приобрели острое дневное зрение, у зверей не было. Лишь одна группа млекопитающих озаботилась дневной специализацией зрения — человекообразные приматы. Как и у дневных птиц и дневных рептилий, у человекообразных обезьян небольшая площадь роговицы относительно длины глаза. По мнению учёных, это связано с тем, что приматы при их дневном образе жизни сильнее зависят от зрения. Действительно, с плохим дневным зрением обезьяны и предки человека вряд ли смогли бы научиться совершать сложные движения, необходимые для овладения орудиями труда.

 


Источник: КОМПЬЮЛЕНТА


 

Биологи проанализировали скорость увеличения размеров мозга и массы тела у приматов, летучих мышей и хищников и пришли к выводу, что масса мозга менялась медленнее, чем тело этих животных по мере их эволюции, говорится в статье, опубликованной в журнале Proceedings of the National Academy of Sciences

Биологи проанализировали скорость увеличения размеров мозга и массы тела у приматов, летучих мышей и хищников и пришли к выводу, что масса мозга менялась медленнее, чем тело этих животных по мере их эволюции, говорится в статье, опубликованной в журнале Proceedings of the National Academy of Sciences.

"Когда мы использовали соотношение массы мозга и тела в качестве показателя интеллекта животного, мы всегда считали, что этот показатель меняется из-за увеличения или уменьшения размеров мозга. Наша работа показала, что это соотношение меняется по другим, более сложным правилам", - пояснил руководитель группы биологов Джерон Смаерс (Jeroen Smaers) из университетского колледжа Лондона (Великобритания).

Смаерс и его коллеги проверили, насколько быстро меняется размер мозга и масса тела трех отрядов млекопитающих - приматов, рукокрылых и хищников. Такой выбор был обусловлен тем, что эти животные эволюционировали под давлением трех различных сред обитания - древесной для приматов, воздушной для летучих мышей и наземной для хищников.

Авторы статьи вычислили массу тела и мозга у современных представителей этих отрядов и их вымерших предков, и сопоставили то, как менялась относительная масса мозга и мускулов по мере эволюции млекопитающих. В частности, ученые вычисляли массу мозга и тела у всех представителей одной эволюционной цепочки, построили графики эволюции мозга и тела, и отметили, какой из показателей изменялся больше всего с течением времени.

Оказалось, что в подавляющем числе случаев масса тела млекопитающих менялась гораздо быстрее и сильнее, чем размеры мозга. При этом каждый отряд животных эволюционировал по своей собственной программе.

В частности, масса тела летучих мышей уменьшалась значительно быстрее, чем их мозг, однако рост массы тела сопровождался примерно аналогичным увеличением объемов черепной коробки. Приматы эволюционировали несколько иным образом - скорость роста их массы мускулов была заметно выше, чем мозга, однако мозг уменьшался чуть быстрее, чем тело. По словам биологов, хищники развивались схожим образом, за исключением того, что масса их мозга уменьшалась быстрее, чем вес мускулов.

Таким образом, Смаерсу и его коллегам удалось показать, что мозг приматов, рукокрылых и хищников менялся несколько медленнее, чем мускулы и остальные части их тела. Это ставит под сомнение теории, описывающие универсальный механизм увеличения относительных размеров мозга у млекопитающих по мере их эволюции, заключают авторы статьи.


Источник: РИАНОВОСТИ


 

Моллюск возрастом 400 миллионов лет сочетает в себе признаки двух современных классов этих животных.

Kulindroplax perissokomosKulindroplax perissokomosБританские палеонтологи описали новый вид моллюска из отложений силурийского периода, что позволило уточнить представления о ранних этапах эволюции этой группы. Статья с описанием нового таксона опубликована в журнале Nature.

Вид, получивший название Kulindroplax perissokomos, был найден на территории британского графства Херефордшир, его возраст составляет около 425 миллионов лет. Моллюск был погребен на морском дне под тонким слоем вулканического пепла, поэтому экземпляр отличается хорошей сохранностью.

Длина животного равна 4 сантиметрам, а ширина – 2. С помощью специальной компьютерной программы ученые создали его трехмерную реконструкцию и пришли к выводу, что моллюск обладал червеобразным телом и нес на спине панцирь,состоящий из 7 пластинок.

Таким образом, Kulindroplax perissokomos сочетает в себе признаки двух классов моллюсков – беспанцирных червеобразных Aplacophora и хитонов Polyplacophora с пластинчатым панцирем, что подтверждает правоту тех зоологов, которые считают эти классы близкородственными, объединяя их в группу Aculifera.

Ранее ученые считали, что сначала, еще во время кембрийского взрыва, появились именно беспанцирные моллюски. Однако, как доказывает находка, первые моллюски всё же обладали панцирем, а червеобразные Aplacophora произошли от них позднее, отказавшись от пластин на спине ради большей подвижности.


Источник: infox.ru


«Эволюция в пробирке» заняла у кишечной палочки 24 года.

Кишечная палочка (Escherichia coli)Кишечная палочка (Escherichia coli) википедияАмериканские микробиологи из Мичиганского университета «заставили» бактерий эволюционировать, в результате чего те стали питаться новым типом вещества. Результаты исследования опубликованы в свежем номере журнала Nature.

Эксперимент был начат в 1988 году. Ученые расселили кишечных палочек (Escherichia coli) по 12-ти культурам, и затем каждые сутки добавляли в них ограниченное количество глюкозы, которого хватало на несколько часов. Это давало бактериям стимул искать альтернативные источники энергии.

Через определенные интервалы времени исследователи отбирали образцы из всех12 культур и замораживали их, чтобы в случае необходимости «отмотать» молекулярную эволюцию. Когда у микроорганизмов сменилась 31 тысяча поколений, выяснилось, что некоторые бактерии в одной из культур Ara–3 смогли перейти на питание лимонной кислотой.

В норме бактерии E. сoli не могут потреблять лимонную кислоту в присутствии кислорода, что является их отличительной видовой особенностью. Поэтому, когда еще через 2 тысячи поколений большинство бактерий культуры Ara–3 стали питаться лимонной кислотой, ученые сочли, что у них эволюционировал совершенно новый признак.

Эволюция в три этапа

Авторы статьи разморозили образцы культуры Ara–3 за весь период ее существования и проанализировали, как менялся геном бактерий. Ученые пришли к выводу, что молекулярная эволюция у E. сoli происходила в три этапа. На первом из них произошла мутация в гене, в котором закодирован белок, направляющий лимонную кислоту в клетке.

В аэробных условиях у обычных бактерий этот ген не работает, однако у мутировавших E. сoli он переставал реагировать на присутствие кислорода. При этом единичная мутация сама по себе не способствовала эффективному усвоению лимонной кислоты. Поэтому E. сoli смогла перейти на новый тип питания только тогда, когда в ее геноме накопилось достаточное число копий мутировавшего гена.

Авторы исследования подчеркивают, что даже у таких несложно устроенных организмов, как бактерии, для приобретения нового признака недостаточно единичной мутации. «В реальности мутация – это сложный комплексный процесс перестройки ДНК, в результате чего бактерия получает новый регуляторный модуль, не существовавший ранее», – пояснил Закари Блаунт, один из авторов работы.


 

Источник: infox.ru


 

 

 

 

Инженерам давно известно, что лучше всего собирать систему из модулей. Если один из компонентов перестанет работать, достаточно его заменить, будь то видеокарта компьютера, генератор автомобиля или камера космического телескопа.

Изображение Jason PriemНапротив, если проблемы начнутся у монолитного комплекса (экономики, финансовых рынков), их будет очень трудно исправить.

Как ни странно, это правило действует и в природе. Биологические системы, как правило, модульны — в частности те, которые могут рассматриваться как сети: мозг, генетические регуляторные сети, метаболические пути. (Сети являются модульными, если они содержат сильно связанные друг с другом скопления узлов, которые с другими кластерами соединены очень слабо.)

Здесь возникает важный вопрос: каким образом биологические сети приобрели такое свойство? Должно быть какое-то эволюционное давление, но какое?

Тайна усугубляется преимуществами, которые даёт модульность. Это делает системы более способными к развитию в случае изменения окружающих условий. Поскольку мутации влияют обычно на один модуль, они приводят к конкретным небольшим изменениям приспособляемости системы. Эволюция с лёгкостью выбирает между «за» и «против» этих изменений.

Немодульным системам развиваться сложнее, потому что мутации в них обычно влияют на всю систему и далеко не всегда оказываются полезными, о чём свидетельствуют различные эксперименты.

Но модульность, само собой, даёт явное преимущество, когда она уже существует. Это не объясняет, как и почему она развивается.

Недостатка в гипотезах нет. Одна из точек зрения гласит, что модульность возникает в быстро меняющейся среде, в которой существуют общие подзадачи, но различные проблемы первого уровня. Однако реальных доказательств в пользу этого мнения пока не найдено.

По этим причинам появление модульности остаётся одним из наиболее важных открытых вопросов в биологии.

Ход Липсон из Корнеллского университета (США) и его коллеги предлагают ещё одно объяснение. По их словам, недооценивается такой ключевой фактор, как стоимость создания и поддержки сети. «Модульность развивается не потому, что она расширяет возможности эволюции, а в качестве побочного продукта снижения стоимости подключения к сети», — говорят исследователи.

Речь идёт о расходах на изготовление соединений и их содержание, об энергии, необходимой для передачи информации по ним и для сдерживания сигналов. Стоимость растёт с увеличением числа соединений и их длины.

«Действительно, многочисленные исследования сосудистой и нервной систем (в том числе головного мозга) показали, что суммарная длина схемы сведена к минимуму», — подчёркивают авторы гипотезы.

Очевидно, что у таких сетей есть важные преимущества.

Для проверки идеи г-н Липсон и коллеги разработали компьютерную среду для измерения способности различных сетей приспосабливаться к тем или иным обстоятельствам. Поначалу сети были случайными, и ни одна из них не показала хороших результатов. Но некоторые были чуть лучше других, и именно они чаще давали «потомство». Следующее поколение не являлось точной копией предыдущего, ибо содержало случайные изменения. Таким образом и происходит биологическая эволюция.

Компьютер измерял сети по двум критериям. Первый был очень простым: насколько хорошо система распознавала некий набор входных данных. А второй требовал принять во внимание затраты на поддержание сети.

Так вот, сети, которые демонстрировали лучшие показатели по первому критерию, через 25 тыс. поколений точно идентифицировали входящие сигналы. Но только те, что набирали больше баллов по второму критерию, были модульными. То есть модульность делает систему более гибкой (в мире ограниченных ресурсов минимум затрат — важное преимущество), но дело не в стремлении к модульности, а в необходимости свести к минимуму расходы.

Результаты исследования, опубликованные на сайте arXiv, могут иметь большое практическое значение. В последние годы так называемые эволюционные вычисления используются всё чаще — и в анализе рентгеновских снимков, и в работе с наборами данных для проектирования (например, деталей для сверхзвуковых самолётов). При этом инженеры никак не могли понять, как заставить систему стать модульной. Быть может, теперь НТР пойдёт ещё немного быстрее?..

 


Источник: КОМПЬЮЛЕНТА


 

 

 

 

 

Генетические данные говорят о том, что черепахи произошли от общего предка птиц и крокодилов, а не от более древних групп рептилий.

cherepahiЭволюционные корни черепах долгие годы занимают ученых. Согласно данным палеонтологов и морфологов, черепахи отделились уже на самых ранних этапах эволюции рептилий, от их общего предка, или же на более поздних этапах, от общего предка ящериц, змей и гаттерий. Однако авторы работы, опубликованной в журнале Biology Letters, на основании генетических данных пришли к другому,неожиданному выводу: черепахи произошли от общего предка архозавров,современными представителями которых являются птицы и крокодилы.

Изучив тысячи участков генома с малой изменчивостью у черепах и других рептилий, коллектив ученых из Бостонского университета обнаружил, что черепахи генетически ближе всего к крокодилам и птицам. Это бросает вызов предыдущим палеонтологическим и анатомическим гипотезам, которые склонны «удревнять»черепах, сближая их с общими предками рептилий. Ведь, например, у черепах, как и у котилозавров, предков основных групп рептилий, в черепе нет височных окон.

По материалам предыдущих исследований, основанных на анализе генов,кодирующих микроРНК, выходило, что черепахи произошли от предка лепидозавров,включающих в себя ящериц, змей и гаттерий. Чтобы проверить эту гипотезу, ученые проанализировали 1145 уникальных ультраконсервативных элементов ДНК и вариабельную фланкирующую ДНК по краям этих участков. Это и позволило сблизить черепах с архозаврами.

Ультраконсервативные элементы с очень низкой изменчивостью позволяют сравнивать геномы, в процессе эволюции сильно разошедшиеся между собой. Чем дальше тот или иной участок ДНК находится от центра ультраконсервативного элемента, тем быстрее он изменяется, что позволяет выстраивать разные шкалы эволюционного времени.

Ученые подчеркивают, что они впервые построили генетическое древо рептилий с высоким разрешением, на основании анализа множества локусов (участков) ДНК. Так как общие ультраконсервативные участки есть не только у разных позвоночных, но даже у насекомых и дрожжей, исследователи указывают, что этот метод генетического анализа позволит пересмотреть генетические связи и между другими группами организмов.


Источник: infox.ru


Учёные сумели поставить эксперимент, в котором столкнули две мощные эволюционные силы — естественный отбор и эффект основателя.

News20a6a1Самец анолиса Anolis sagrei (фото Filigreed)Когда животные или растения расселяются по новым территориям, часть особей уходит из родной популяции и основывает собственную. Понятно, что первопроходцы не могут взять с собой всё генетическое разнообразие исходной популяции: они несут только те гены, которые есть у них. Поэтому новая маленькая популяция должна пережить обеднение генофонда: изменчивость в ней падает, и все особи стремятся к каким-то одним параметрам, заданным основателями. Этот эволюционно-генетический эффект так и называется — эффект основателя. Ему противостоит естественный отбор: чтобы выжить в новых условиях, популяция должна действовать методом проб и ошибок, то есть у неё под рукой должно быть много вариантов, из которых какой-нибудь да пригодится. То есть генетическое разнообразие должно быть большим.

Естественно, никто в явном виде этого не наблюдал. Ученые обнаруживали новые популяции каких-то видов, отличающиеся друг от друга, и начинали теоретизировать, является нынешний облик животных следствием естественного отбора или же следствием случайного эффекта основателя. Исследователи из Университета Род-Айленда (США) решили определить взаимовлияние этих факторов, основываясь на эволюционном эксперименте. Они поселили несколько пар ящериц анолисов на ряде островов Багамского архипелага, где до сих пор этих ящериц не было. Условия благоприятствовали экспериментаторам: исходная популяция жила в лесистой местности, тогда как на других островах поблизости от «экспериментального» те же ящерицы обитали на более открытых кустарниковых пространствах. У лесных ящериц более длинные задние ноги, с помощью которых они лучше пролезают сквозь тонкие ветви и листья. У кустарниковых анолисов задние ноги короче, ими удобно балансировать, путешествуя по толстым открытым стволам и камням.

Ящериц расселили в 2005-м, и уже через год учёные видели явные признаки эффекта основателя: генетическое разнообразие ящериц на каждом из семи заселённых островов резко упало, и все популяции демонстрировали заметный разброс в длине задних ног. Эффект основателя не обращает внимания на условия среды: преимущество получил тот вариант признака, который по чистой случайности оказался у первых «колонизаторов». Поэтому все популяции стали отличаться как друг от друга, так и от материнской. Следующие несколько лет прошли под знаком естественного отбора, который заставил ящериц укоротить задние конечности: животные начали приспосабливаться к условиям среды. Однако следы первоначального эффекта основателя сохранялись: те из ящериц, у которых после расселения оказались самые длинные ноги, оставались в этом смысле чемпионами и далее, хотя длина задних конечностей и уменьшалась.

Результаты исследований учёные представили в журнале Science.

Итак, уникальный в своём роде эксперимент позволил увидеть взаимовлияние двух важных эволюционных факторов. Хотя нельзя не признать, что с условиями его проведения авторам во многом просто повезло. Ну и в качестве побочного результата исследователи отмечают то, насколько хорошо прижились расселённые ящерицы: за первые два года на чужбине популяции анолисов выросли в 13 раз. Острова, использовавшиеся для эксперимента, испытали удар мощного урагана, после которого оттуда исчезли многие виды, в том числе и анолисы. Возможно, результаты исследования пригодятся в расселении в естественной среде редких и исчезающих видов, которых разводят в неволе.

 


Источник:  КОМПЬЛЕНТА


 

Слон и мышьСлон и мышьЧтобы увеличиться от размера мыши до размера слона, млекопитающим необходима смена не менее 24 миллионов поколений. К такому выводу пришли австралийские палеонтологи.

Вычислением максимально скорости увеличения и уменьшения габаритов животных решил заняться Алистер Эванс из университета Монаша. "Мы хотели установить, насколько быстро крошечные мышеподобные млекопитающие могли превратиться в огромных бегемотообразных монстров после того, как динозавры уступили им планету", – рассказал ученый.

Он напомнил, что в конце мелового периода самые крупные млекопитающие были размером с кролика и весили порядка трех килограммов. Прошло порядка 40 миллионов лет, прежде чем на Земле появилось самое крупное из когда-либо существовавших млекопитающих – Indricotherium, вес которого достигал 15 тонн.

Измерив скорость увеличения размеров у 28 отрядов млекопитающих, Эванс с коллегами обнаружили, что в пределах одного вида увеличение размеров идет довольно быстро, и если бы предки-мыши и потомки-слоны принадлежали к одному виду, то на это понадобилось бы всего порядка 200 тысяч поколений. Однако в таксонах надвидового уровня увеличение размера происходит намного медленнее, и в реальных эволюционных цепочках на те же изменения затрачивается около 24 миллионов поколений.

А вот обратное уменьшение идет почти в 10 раз быстрее, отмечает Эванс. Этот процесс, который ученые называют карликовостью, обычно начинается после того, как популяция оказывается в географической изоляции, в первую очередь на островах. Например, некогда населявшие средиземноморские острова карликовые слоны весили около 100 килограммов, хотя их недалекие предки – крупные европейские слоны – достигали веса в 100 раз больше, сообщает MSNBC. На превращение слонов-гигантов в слонов-лилипутов понадобилось всего 800 тысяч лет.

 


 

Источник: Maleus


 

Обнаружены останки самого древнего антарктического кита, известного науке. Челюсть длиной 60 см была найдена на Антарктическом полуострове.

Древний кит в представлении художника (изображение Marcelo Reguero / AFP / Getty Images)Древний кит в представлении художника (изображение Marcelo Reguero / AFP / Getty Images)Животное, достигавшее шести метров, имело полный рот зубов и, скорее всего, питалось гигантскими пингвинами, акулами, а также крупной костной рыбой, останки которых залегали неподалёку.

Древний кит обитал в полярных водах в эоцене, около 49 млн лет назад. Судя по всему, полностью водные киты развились из сухопутных млекопитающих быстрее, чем принято считать, отмечает автор исследования Тумас Мёрс из Шведского музея естественной истории. Останкам сухопутных предков китообразных 53 млн лет. Оказывается, они стали водными животными всего за 4 млн лет, а не за 15 млн. Более того, они сразу же заселили весь Мировой океан: очень уж удачным выдался природный эксперимент. Этому благоприятствовали и обстоятельства, поскольку к тому времени все крупные морские хищники вымерли.

Антарктида в эоцене была теплее, чем сейчас, и покрывалась лесами, но и на тропики не походила. И всё же там наряду с гигантскими пингвинами и млекопитающими, пережившими динозавров, жили кожистые черепахи и разнообразные акулы.

Результаты исследования были обнародованы на 11-м Международном симпозиуме по вопросам изучения Антарктиды.


Источник:  КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Первые жители Полинезии пришли из Восточной Азии

05-10-2016 Просмотров:1738 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Первые жители Полинезии пришли из Восточной Азии

Большая международная группа ученых представила результаты исследования, опровергающего устоявшиеся представления об истории заселения островов Полинезии. По новым данным, люди пришли туда из Восточной Азии. Статья ученых опубликована в журнале Nature. Исследователи...

Природоохранные зоны

19-10-2013 Просмотров:12124 Заповедники и национальные парки Антоненко Андрей - avatar Антоненко Андрей

Природоохранные зоны

Что такое природоохранные зоны? К природоохранным зонам (особо охраняемым природным территориям - ООПТ) относятся территории требующие особой охраны в следствие своих природных, научных, рекреационных, культурных и других особенностей. Сейчас в мире существует около...

"Вояджер" оказался в зачарованном месте

08-07-2013 Просмотров:6083 Новости Астрономии Антоненко Андрей - avatar Антоненко Андрей

"Вояджер" оказался в зачарованном месте

Voyager-1 за 36 лет удалился от Земли на дистанцию, более чем в 120 раз превышающую расстояние между нашей планетой и Солнцем. Однако похоже, ему так и не удалось покинуть пределы...

Надотдел (лат. infraordo) / надтип (лат. superphylum)

24-09-2012 Просмотров:5444 Словарь Антоненко Андрей - avatar Антоненко Андрей

В зоологии:                    •  надтип (лат. superphylum) — ранг выше типа, в ботанике:                   •  надотдел (лат. superdivisio) — ранг выше отдела

Эксперимент по поиску внеземного бюджета

14-12-2010 Просмотров:8582 Новости Микробиологии Антоненко Андрей - avatar Антоненко Андрей

Эксперимент по поиску внеземного бюджета

Сенсационная статья о бактерии, способной использовать мышьяк вместо фосфора для строительства своей ДНК, вызвала волну критики в мировом научном сообществе. Российские биологи также высказали Infox.ru мнение о работе коллег из...

top-iconВверх

© 2009-2017 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.