Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Эволюции


Новости Эволюции (139)

Понедельник, 10 Декабрь 2012 23:20

День, когда фотосинтез изменил мир

Автор

Миллиарды лет назад маленькая сине-зелёная водоросль расщепила молекулу воды и выпустила яд, результатом действия которого стали смерть и разрушения в огромных масштабах. Речь о фотосинтезе, кислороде и гибели анаэробных жителей Земли.

Фото Michael HunterВпервые геологи обнаружили свидетельства важнейшего эволюционного этапа, непосредственно предшествовавшего расщеплению воды цианобактериями. Это уникальный «снимок» момента перед тем, как мир приобрёл современный облик: с появлением фотосинтеза атмосфера наполнилась кислородом, и тем самым была проложена дорога к нынешнему разнообразию форм жизни. Это самое большое изменение в истории биосферы. 

Фотосинтез как метод производства энергии организмом возможен при наличии света и источника электронов. В нашем мире таким источником выступает вода, а кислород становится побочным продуктом реакции. Фотосинтез появился около 3,4 млрд лет назад, но нет никаких признаков образования кислорода в те далёкие времена. Скорее всего, древние организмы вместо воды пользовались сероводородом. Судя по окисленным минералам, фотосинтез в том виде, в котором мы знаем его сегодня, возник примерно 2,4 млрд лет назад.

Как же это произошло? Для ответа на этот вопрос Вудворд Фишер из Калифорнийского технологического института (США) и его коллеги изучили южноафриканские породы, сформировавшиеся незадолго до знаменательного рубежа. Анализ показал, что, несмотря на образование пород в бескислородных условиях, весь марганец находится там в окисленной форме.

При отсутствии атмосферного кислорода марганец нуждался в каком-то катализаторе для окисления. Учёные считают, что некий фотосинтезирующий организм пользовался марганцем в качестве источника электронов. Остававшиеся от этих реакций нестабильные ионы марганца реагировали с водой и образовывали оксиды.

Комментаторы приветствуют гипотезу, ибо она согласуется с предсказаниями эволюционной теории. Окисление марганца по-прежнему играет важную роль в фотосинтезе. В фотосинтезирующих структурах современных растений и водорослей расположены богатые марганцем кристаллы, которые становятся источником электронов. Для восполнения дефицита кристаллы отбирают электроны у проходящих мимо молекул воды. Именно этот «грабёж среди бела дня» расщепляет последние и производит тот кислород, которым мы дышим.

У этого сложного процесса, скорее всего, очень простые корни. В 2007 году Джон Аллен из Колледжа королевы Марии Лондонского университета (Великобритания) и Вильям Мартин из Дюссельдорфского университета (ФРГ) предложили следующий сценарий: по их мнению, современный фотосинтез родился, когда ранняя цианобактерия случайно оказалась в водной среде, богатой марганцем, и быстро адаптировалась к новому источнику электронов.

Поскольку марганец — сравнительно редкий ресурс, запасы которого не бесконечны, цианобактерии позже выработали другую стратегию. Они включили марганец непосредственно в свои фотосинтезирующие структуры и стали пользоваться последними как аккумуляторами: как только электроны заканчивались, они брали их из другого, более обильного источника, то есть воды.

Поэтому то, что нашла группа г-на Фишера, почти наверняка является остатком деятельности примитивных цианобактерий.

Результаты исследования были представлены на конференции Американского геофизического союза.

 


 

Источник: КОМПЬЮЛЕНТА


 

Считается, что хлоропласты — фотосинтетические органеллы растений и водорослей — возникли в результате симбиоза: когда-то давным-давно нефотосинтезирующие клетки предоставили внутри себя убежище фотосинтезирующим. Постепенно фотосинтетики, поселившиеся внутри, упростились и превратились в хлоропласты. Однако не все хлоропласты имеют одно происхождение. Чаще всего, полагают учёные, они образовывались из цианобактерий. Однако зелёные и красные водоросли получили свои хлоропласты, по-видимому, «проглотив» какие-то эукариотические, небактериальные клетки, которые уж имели к тому времени хлоропласты. В некоторых случаях от ядра поглощённых клеток-фотосинтетиков остался так называемый нуклеоморф — редуцированное клеточное ядро, находящееся между мембранами хлоропласта. И это помимо собственного генома пластиды, оставшегося от бактерии, которую поглотил первый хозяин.

Схема развития эндосимбиоза, благодаря которому возникли водоросли-«матрёшки» (рисунок John M. Archibald / Dalhousie University)Схема развития эндосимбиоза, благодаря которому возникли водоросли-«матрёшки» (рисунок John M. Archibald / Dalhousie University)Иными словами, перед нами двойной эндосимбиоз: сначала один эукариот поглощает цианобактерии, а потом второй эукариот поглощает первого с его хлоропластами, в которые превратились цианобактерии. Чтобы лучше понять эволюционный путь такой «матрёшки», исследователи из Объединённого института геномных исследований (США) и Университета Дальхауз (Канада) сравнили геномы двух микроскопических водорослей, Bigelowellia natans и Guillardia theta, относящихся к криптофитовым и хлорарахниофитовым водорослям. Обоих называют «живыми ископаемыми» — из-за нуклеоморфа в хлоропластах. Учёные проанализировали последовательности всех геномов: собственного ядерного генома водоросли, ДНК митохондрий, ДНК хлоропласта и ДНК нуклеоморфа хлоропласта. Причём отдельно сравнивались полные геномы водорослей и транскриптомы, то есть РНК, синтезированная на активных генах.

Криптофитовая водоросль-«матрёшка» Guillardia theta (фото Geoff McFadden / University of Melbourne)Криптофитовая водоросль-«матрёшка» Guillardia theta (фото Geoff McFadden / University of Melbourne)Как пишут авторы в журнале Nature, и Bigelowellia natans, и Guillardia theta имеют на удивление сложную систему ферментов, необходимых для фиксации углерода и вообще углеродного обмена. Но ответ на главный вопрос — зачем водорослям понадобилось сохранять нуклеоморф — оказался на удивление простым. У Bigelowellia natans и Guillardia theta перестал работать механизм переноса генов эндосимбионтов в ядро хозяина. У большинства других организмов эндосимбионт жертвовал своим геномом, который переходил во владение хозяина. У криптофитовых и хлорарахниофитовых водорослей механизм переноса и встройки генов в хозяйский геном перестал работать, поэтому ДНК симбионта до сих пор присутствует в хлоропластах в виде нуклеоморфа.

Иными словами, никакой нужды в дополнительном отдельном геноме у водорослей не было, просто во время установления эндосимбиотических отношений что-то пошло не так. Вместе с тем остаётся вероятность, что какой-то смысл в этой странной генетической «матрёшечности» всё же найдут: генетические и молекулярно-биологические исследования таких водорослей пока только набирают силу. Но уже сейчас можно сказать, что исследователи прояснили несколько важных этапов в эволюции фотосинтетических организмов: теперь мы знаем, что ДНК некоторых из них в действительности не принадлежит одному организму, а представляет собой результат смешения хозяйского генома и генома поглощённого эндосимбионта, от которого в клетке хозяина остались только хлоропласты.


Источник: КОМПЬЮЛЕНТА


Лонгрич и его коллеги пришли к такому выводу, восстановив устройство крыльев одной из древнейших протоптиц - археоптерикса (Archaeopteryx lithographica), и пернатого динозавра анхиорниса (Anchiornis huxleyi).

Ученые проанализировали устройство крыльев археоптериксов и пернатых динозавров и выяснили, что верхние конечности первых птиц были устроены значительно проще, чем у современных пернатых, что является неожиданностью с точки зрения палеонтологии, говорится в статье, опубликованной в журнале Current Biology.

"Внимательно изучив окаменелости, мы теперь можем понять, как эволюционировали крылья. До нашей работы всем казалось, что птицы обладали относительно современными крыльями с Юрского периода. Теперь нам понятно, что крылья первых птиц были более примитивными и представляли собой переходные формы, связывающие настоящих пернатых и динозавров. Мы смогли проследить, как медленно эволюционировало крыло при переходе от анхиорниса к археоптериксу и к более поздним птицам", — заявил руководитель группы ученых Николас Лонгрич (Nicholas Longrich) из Йельского университета (США).

Лонгрич и его коллеги пришли к такому выводу, восстановив устройство крыльев одной из древнейших протоптиц — археоптерикса (Archaeopteryx lithographica), и пернатого динозавра анхиорниса (Anchiornis huxleyi).

Сравнение крыльев Анхиорниса, Архиоптерикса и современной птицыСравнение крыльев Анхиорниса, Архиоптерикса и современной птицыВ качестве исходного материала ученые избрали две ключевых окаменелости — так называемый "берлинский археоптерикс", найденный в Германии в 1880 году, и останки анхиорниса BMNHC PH828, обнаруженные его первооткрывателями в Китае в 2009 году.

Как отмечают исследователи, эти окаменелости содержат в себе достаточное число отпечатков перьев и костей крыла для получения некоторого представления об их устройстве. Ученые проанализировали расположение отдельных перьев в окаменелостях, определили их типы и подготовили модели крыльев анхиорниса и археоптерикса.

 Перо археоптерикса, обнаруженное в 1861 году немецким палеонтологом фон Майером Перо археоптерикса, обнаруженное в 1861 году немецким палеонтологом фон МайеромК удивлению Лонгрича и его коллег, устройство крыльев протоптицы и динозавра значительно отличалось от того, как сложены конечности их современных родственников. В целом, их крылья оказались гораздо примитивнее, чем считалось ранее.

"Археоптерикс обладал весьма странными крыльями, в которых присутствовало сразу несколько слоев длинных маховых перьев. Крылья динозавра анхиорниса состояли из множества простых перьев-полосок, наложенных друг на друга. Единственная птица, оперение которой хотя бы отдаленно напоминает крылья анхиорниса — это пингвин", — пояснил Лонгрич.

По словам палеонтологов, подобные крылья не были пригодны для настоящего полета. Единственный доступный для них стиль полета — интенсивное махание крыльями — был слишком энергозатратным для совершения длительных перелетов. Кроме того, пернатые рептилии и протоптицы не умели взлетать с места и медленно парить над землей, экономя силы, что еще больше ограничивало свободу их движения.

Так называемый “берлинский” скелет археоптерикса, обнаруженный в 1861 годуТак называемый “берлинский” скелет археоптерикса, обнаруженный в 1861 годуЛонгрич и его коллеги полагают, что древние протоптицы недолго пользовались такими крыльями. По их расчетам, современный вариант крыльев развился за первые десять миллионов лет эволюции птиц. Их форма практически не менялась в последующие 130 миллионов лет, пережив вымирание динозавров и расцвет млекопитающих.

"Мы постепенно начинаем "реставрацию" сложнейшей картины того, как перья и сами птицы развивались среди динозавров. К примеру, нам теперь кажется, что перья впервые появились для защиты от перегрева или охлаждения. Затем их структура усложнилась — вероятно, для привлечения самок или устрашения врагов. В последствии выяснилось, что большие перья-"украшения" подходят для удержания тела динозавра в воздухе", — заключает один из авторов статьи Джейкоб Винтер (Jacob Vinther) из Бристольского университета (Великобритания).


Источник: РИА Новости


Через 2,8 млрд лет умирающее Солнце  набухнет и превратится в красного гиганта, который опалит нашу планету уничтожив на ней всю жизнь. Примерно за миллиард лет до этого на Земле останутся только одноклеточные  организмы, дрейфующие в изолированных соленых горячих водных источниках.

Последние жители нашей планеты (изображение Jjguisado/Flickr/Getty)Последние жители нашей планеты (изображение Jjguisado/Flickr/Getty)Это конечно мрачная перспектива, ожидающая нашу планету, но она дает надежду для тех, кто ищет внеземную жизнь. Модель, предсказывающая эти карманы жизни в будущей Земле и намекающая, что обитающая жизнь вокруг других планет  может быть более разнообразной, чем считалось ранее,  дает новую надежду в поисках жизни в самых неожиданных местах.

Используя то, что мы знаем о Земле и Солнце, учитывая увеличение размеров нашего светила и превращение его в красного гиганта, исследователи из Великобритании рассчитали сроки для различных этапов жизни на нашей планете.

Ранее уже публиковалось исследование, моделирующее этот сценарий жизни на Земле, но Джек О’Мэлли-Джеймс из университета Сент-Эндрюс из Великобритании и его коллеги рассмотрели возможность того, что жизнь обитающая в различных экстремальных местах планеты способна просуществовать намного дольше, чем говорилось в предыдущих исследованиях.

Существует множество звезд находящихся на разных этапах эволюции подобных нашему Солнцу, поэтому ученые смотрели на то, как долго может процветать простая и сложная жизнь вокруг звезд различного размера.

О'Мэлли-Джеймс  говорит  - "Обитаемость это не столько набор атрибутов планеты, но еще что-то, что имеет срок своего существования".

Исследователи смоделировали повешение температуры на поверхности Земли на различных широтах, а так же учли долгосрочные изменения в параметрах орбиты планеты. Их модель показывает, что по мере старения Солнца происходит нагрев Земли, и как в связи с этим будут исчезать растения, животные, рыбы, беспозвоночные и остальные живые организмы. Испарятся океаны, и остановится тектоника литосферны плит. Последним пристанищем живых микроорганизмов останутся бассейны горячего рассола расположенные на высоких широтах, закрытых пещерах или глубоко под землей. Микробы, обитающие в этих бассейнах, могут править Землей еще в течение миллиардов лет, прежде чем иссякнут и эти источники.

Применяя эту модель обитаемости к различным звездным системам на разных этапах эволюции можно сказать, что жизнь на планете будет одноклеточной в течение первых 3х миллиардов лет и в конце жизни звезды. Это показывает, что наибольшей вероятностью найти жизнь на других планетах будет нахождение одноклеточных организмов.

“Тем не менее, любое доказательство жизни за пределами нашей планеты было бы большим достижением” говорит О'Мэлли-Джеймс. Сейчас он работает над тем, чтобы определить, какие химические признаки микробной жизни будут на Земле в далекой будущем и сможем ли мы обнаружить подобные знаки на других планетах, которые, в настоящее время считаются безжизненными. “Вместо того, чтобы планета была мертвой – она может находится ближе к концу своего обитаемого цикла”  говорит он.

Эван Монаган из Открытого университета в Милтон Кейнс, Великобритании, считает, что нам следует думать о жизни на планете, как цикл - от простых до сложных и, возможно, обратно к простым. Это поможет в охоте за внеземной жизнью, говорит он. "Если жизнь существует во многих местах, мы должны определить в каком диапазоне могут существовать многоклеточные”.


Источник: NewScientist


Пятилетняя работа зоологов из университетов Шеффилда (Великобритания), Йеля (США), Тасмании (Австралия) и Саймона Фрезера (Канада) увенчалась успехом: учёным удалось создать «древо жизни» птиц, которое включает в себя все ныне живущие виды пернатых. Чтобы дать представление об объёме работы, достаточно сказать, что зоологам нужно было установить родственные связи между 9 993 видами, опираясь на анатомические, генетические и палеонтологические данные. Построение филогенетического дерева заняло годы, несмотря на то что анализ проводился с помощью современных компьютеров.

011110bird-family-tree2«Древо жизни» пернатых (рисунок авторов работы)На диаграмме, представляющей древо жизни птиц в виде спирали, в центр помещён общий предок пернатых, а концентрические круги, светло- и тёмно-серые, соответствуют 20 миллионам лет каждый. Ответвления от спирали — это группы видов, а цвет этих ответвлений показывает, с какой скоростью эволюционировала (диверсифицировалась) каждая группа. Дольше всего развивались и образовывали новые виды «синие» ветки, быстрее всех — красные. Например, довольно много видов и за короткое время сформировалось у дятлов, а вот у их ближайших родственников, птиц-носорогов, видообразование шло медленно. 

Древо жизни позволяет по-новому взглянуть на то, как эволюционировали птицы с момента их появления. В частности, как пишут исследователи в журнале Nature, наиболее интенсивно разнообразие видов пернатых увеличивалось в Западном полушарии и на островах. Если же смотреть по широтам, то особой разницы между географическими зонами не заметно. Это сильно расходится с привычной точкой зрения, согласно которой самыми разнообразными по составу видов являются тропики. А вот исследователи полагают, что видовое разнообразие в тропических экосистемах не отражает их динамику. Это лишь следствие того, что данные экосистемы существуют довольно долго; скорость же птичьей эволюции всегда была в них не слишком высокой, и новые виды появлялись там не часто. В целом же быстрее всего птицы развивались в последние 50 млн лет.

Кроме общетеоретической значимости результатов, авторы работы полагают, что их «древо птиц» поможет экологам: сравнив разнообразие в разных группах, можно понять, какие из них требуют повышенного внимания со стороны природоохранных организаций.

 


Источник: КОМПЬЮЛЕНТА


 

Масштабное исследование зоологов из Техасского университета в Остине (США) способно окончательно подтвердить ту гипотезу, по которой все млекопитающие вышли из ночной тьмы — то бишь были ночными животными на заре своей эволюции. В мезозое, когда возникли первые звери, у них не было никакой возможности конкурировать с динозаврами, которые были активны днём. Чтобы их не съели прежде времени, млекопитающим пришлось уйти в тень, где они и пребывали до тех пор, пока динозавры не вымерли.

Лишь человекообразные приматы приобрели в ходе эволюции истинно «дневные» глаза. (Фото Jami Tarris / Corbis)Лишь человекообразные приматы приобрели в ходе эволюции истинно «дневные» глаза. (Фото Jami Tarris / Corbis)Подтвердить эту гипотезу зоологи смогли, сравнив строение глаз у 266 современных видов млекопитающих. Среди них были как те, что активны и днём и ночью, так и предпочитающие строго дневное время суток. Глаза тех и других сравнивали по соотношению площади роговицы и длины глаза. Это важный параметр, от которого зависит светочувствительность органа зрения и способность чётко видеть окружающее. Оказалось, что разницы в этом параметре у разных видов млекопитающих нет, то есть глаз в этом смысле устроен одинаково и у дневных, и у полудневных видов. 

При этом, как пишут исследователи в журнале Proceedings of the Royal Society B, такое соотношение размера роговицы и длины глаза чрезвычайно напоминало аналогичную величину у ночных ящериц и ночных птиц. То есть все млекопитающие, независимо от своего нынешнего образа жизни, всё ещё несут в себе наследство далёких ночных предков. У рептилий и птиц такой проблемы — уворачиваться от дневных динозавров — не было, поэтому у них дневные и ночные виды по строению глаз различаются довольно сильно. 

65 млн лет назад, в конце мезозоя, динозавры исчезли, и млекопитающие вышли из тени, но жёсткой нужды переделать глаза так, чтобы они приобрели острое дневное зрение, у зверей не было. Лишь одна группа млекопитающих озаботилась дневной специализацией зрения — человекообразные приматы. Как и у дневных птиц и дневных рептилий, у человекообразных обезьян небольшая площадь роговицы относительно длины глаза. По мнению учёных, это связано с тем, что приматы при их дневном образе жизни сильнее зависят от зрения. Действительно, с плохим дневным зрением обезьяны и предки человека вряд ли смогли бы научиться совершать сложные движения, необходимые для овладения орудиями труда.

 


Источник: КОМПЬЮЛЕНТА


 

Биологи проанализировали скорость увеличения размеров мозга и массы тела у приматов, летучих мышей и хищников и пришли к выводу, что масса мозга менялась медленнее, чем тело этих животных по мере их эволюции, говорится в статье, опубликованной в журнале Proceedings of the National Academy of Sciences

Биологи проанализировали скорость увеличения размеров мозга и массы тела у приматов, летучих мышей и хищников и пришли к выводу, что масса мозга менялась медленнее, чем тело этих животных по мере их эволюции, говорится в статье, опубликованной в журнале Proceedings of the National Academy of Sciences.

"Когда мы использовали соотношение массы мозга и тела в качестве показателя интеллекта животного, мы всегда считали, что этот показатель меняется из-за увеличения или уменьшения размеров мозга. Наша работа показала, что это соотношение меняется по другим, более сложным правилам", - пояснил руководитель группы биологов Джерон Смаерс (Jeroen Smaers) из университетского колледжа Лондона (Великобритания).

Смаерс и его коллеги проверили, насколько быстро меняется размер мозга и масса тела трех отрядов млекопитающих - приматов, рукокрылых и хищников. Такой выбор был обусловлен тем, что эти животные эволюционировали под давлением трех различных сред обитания - древесной для приматов, воздушной для летучих мышей и наземной для хищников.

Авторы статьи вычислили массу тела и мозга у современных представителей этих отрядов и их вымерших предков, и сопоставили то, как менялась относительная масса мозга и мускулов по мере эволюции млекопитающих. В частности, ученые вычисляли массу мозга и тела у всех представителей одной эволюционной цепочки, построили графики эволюции мозга и тела, и отметили, какой из показателей изменялся больше всего с течением времени.

Оказалось, что в подавляющем числе случаев масса тела млекопитающих менялась гораздо быстрее и сильнее, чем размеры мозга. При этом каждый отряд животных эволюционировал по своей собственной программе.

В частности, масса тела летучих мышей уменьшалась значительно быстрее, чем их мозг, однако рост массы тела сопровождался примерно аналогичным увеличением объемов черепной коробки. Приматы эволюционировали несколько иным образом - скорость роста их массы мускулов была заметно выше, чем мозга, однако мозг уменьшался чуть быстрее, чем тело. По словам биологов, хищники развивались схожим образом, за исключением того, что масса их мозга уменьшалась быстрее, чем вес мускулов.

Таким образом, Смаерсу и его коллегам удалось показать, что мозг приматов, рукокрылых и хищников менялся несколько медленнее, чем мускулы и остальные части их тела. Это ставит под сомнение теории, описывающие универсальный механизм увеличения относительных размеров мозга у млекопитающих по мере их эволюции, заключают авторы статьи.


Источник: РИАНОВОСТИ


 

Моллюск возрастом 400 миллионов лет сочетает в себе признаки двух современных классов этих животных.

Kulindroplax perissokomosKulindroplax perissokomosБританские палеонтологи описали новый вид моллюска из отложений силурийского периода, что позволило уточнить представления о ранних этапах эволюции этой группы. Статья с описанием нового таксона опубликована в журнале Nature.

Вид, получивший название Kulindroplax perissokomos, был найден на территории британского графства Херефордшир, его возраст составляет около 425 миллионов лет. Моллюск был погребен на морском дне под тонким слоем вулканического пепла, поэтому экземпляр отличается хорошей сохранностью.

Длина животного равна 4 сантиметрам, а ширина – 2. С помощью специальной компьютерной программы ученые создали его трехмерную реконструкцию и пришли к выводу, что моллюск обладал червеобразным телом и нес на спине панцирь,состоящий из 7 пластинок.

Таким образом, Kulindroplax perissokomos сочетает в себе признаки двух классов моллюсков – беспанцирных червеобразных Aplacophora и хитонов Polyplacophora с пластинчатым панцирем, что подтверждает правоту тех зоологов, которые считают эти классы близкородственными, объединяя их в группу Aculifera.

Ранее ученые считали, что сначала, еще во время кембрийского взрыва, появились именно беспанцирные моллюски. Однако, как доказывает находка, первые моллюски всё же обладали панцирем, а червеобразные Aplacophora произошли от них позднее, отказавшись от пластин на спине ради большей подвижности.


Источник: infox.ru


«Эволюция в пробирке» заняла у кишечной палочки 24 года.

Кишечная палочка (Escherichia coli)Кишечная палочка (Escherichia coli) википедияАмериканские микробиологи из Мичиганского университета «заставили» бактерий эволюционировать, в результате чего те стали питаться новым типом вещества. Результаты исследования опубликованы в свежем номере журнала Nature.

Эксперимент был начат в 1988 году. Ученые расселили кишечных палочек (Escherichia coli) по 12-ти культурам, и затем каждые сутки добавляли в них ограниченное количество глюкозы, которого хватало на несколько часов. Это давало бактериям стимул искать альтернативные источники энергии.

Через определенные интервалы времени исследователи отбирали образцы из всех12 культур и замораживали их, чтобы в случае необходимости «отмотать» молекулярную эволюцию. Когда у микроорганизмов сменилась 31 тысяча поколений, выяснилось, что некоторые бактерии в одной из культур Ara–3 смогли перейти на питание лимонной кислотой.

В норме бактерии E. сoli не могут потреблять лимонную кислоту в присутствии кислорода, что является их отличительной видовой особенностью. Поэтому, когда еще через 2 тысячи поколений большинство бактерий культуры Ara–3 стали питаться лимонной кислотой, ученые сочли, что у них эволюционировал совершенно новый признак.

Эволюция в три этапа

Авторы статьи разморозили образцы культуры Ara–3 за весь период ее существования и проанализировали, как менялся геном бактерий. Ученые пришли к выводу, что молекулярная эволюция у E. сoli происходила в три этапа. На первом из них произошла мутация в гене, в котором закодирован белок, направляющий лимонную кислоту в клетке.

В аэробных условиях у обычных бактерий этот ген не работает, однако у мутировавших E. сoli он переставал реагировать на присутствие кислорода. При этом единичная мутация сама по себе не способствовала эффективному усвоению лимонной кислоты. Поэтому E. сoli смогла перейти на новый тип питания только тогда, когда в ее геноме накопилось достаточное число копий мутировавшего гена.

Авторы исследования подчеркивают, что даже у таких несложно устроенных организмов, как бактерии, для приобретения нового признака недостаточно единичной мутации. «В реальности мутация – это сложный комплексный процесс перестройки ДНК, в результате чего бактерия получает новый регуляторный модуль, не существовавший ранее», – пояснил Закари Блаунт, один из авторов работы.


 

Источник: infox.ru


 

 

 

 

Инженерам давно известно, что лучше всего собирать систему из модулей. Если один из компонентов перестанет работать, достаточно его заменить, будь то видеокарта компьютера, генератор автомобиля или камера космического телескопа.

Изображение Jason PriemНапротив, если проблемы начнутся у монолитного комплекса (экономики, финансовых рынков), их будет очень трудно исправить.

Как ни странно, это правило действует и в природе. Биологические системы, как правило, модульны — в частности те, которые могут рассматриваться как сети: мозг, генетические регуляторные сети, метаболические пути. (Сети являются модульными, если они содержат сильно связанные друг с другом скопления узлов, которые с другими кластерами соединены очень слабо.)

Здесь возникает важный вопрос: каким образом биологические сети приобрели такое свойство? Должно быть какое-то эволюционное давление, но какое?

Тайна усугубляется преимуществами, которые даёт модульность. Это делает системы более способными к развитию в случае изменения окружающих условий. Поскольку мутации влияют обычно на один модуль, они приводят к конкретным небольшим изменениям приспособляемости системы. Эволюция с лёгкостью выбирает между «за» и «против» этих изменений.

Немодульным системам развиваться сложнее, потому что мутации в них обычно влияют на всю систему и далеко не всегда оказываются полезными, о чём свидетельствуют различные эксперименты.

Но модульность, само собой, даёт явное преимущество, когда она уже существует. Это не объясняет, как и почему она развивается.

Недостатка в гипотезах нет. Одна из точек зрения гласит, что модульность возникает в быстро меняющейся среде, в которой существуют общие подзадачи, но различные проблемы первого уровня. Однако реальных доказательств в пользу этого мнения пока не найдено.

По этим причинам появление модульности остаётся одним из наиболее важных открытых вопросов в биологии.

Ход Липсон из Корнеллского университета (США) и его коллеги предлагают ещё одно объяснение. По их словам, недооценивается такой ключевой фактор, как стоимость создания и поддержки сети. «Модульность развивается не потому, что она расширяет возможности эволюции, а в качестве побочного продукта снижения стоимости подключения к сети», — говорят исследователи.

Речь идёт о расходах на изготовление соединений и их содержание, об энергии, необходимой для передачи информации по ним и для сдерживания сигналов. Стоимость растёт с увеличением числа соединений и их длины.

«Действительно, многочисленные исследования сосудистой и нервной систем (в том числе головного мозга) показали, что суммарная длина схемы сведена к минимуму», — подчёркивают авторы гипотезы.

Очевидно, что у таких сетей есть важные преимущества.

Для проверки идеи г-н Липсон и коллеги разработали компьютерную среду для измерения способности различных сетей приспосабливаться к тем или иным обстоятельствам. Поначалу сети были случайными, и ни одна из них не показала хороших результатов. Но некоторые были чуть лучше других, и именно они чаще давали «потомство». Следующее поколение не являлось точной копией предыдущего, ибо содержало случайные изменения. Таким образом и происходит биологическая эволюция.

Компьютер измерял сети по двум критериям. Первый был очень простым: насколько хорошо система распознавала некий набор входных данных. А второй требовал принять во внимание затраты на поддержание сети.

Так вот, сети, которые демонстрировали лучшие показатели по первому критерию, через 25 тыс. поколений точно идентифицировали входящие сигналы. Но только те, что набирали больше баллов по второму критерию, были модульными. То есть модульность делает систему более гибкой (в мире ограниченных ресурсов минимум затрат — важное преимущество), но дело не в стремлении к модульности, а в необходимости свести к минимуму расходы.

Результаты исследования, опубликованные на сайте arXiv, могут иметь большое практическое значение. В последние годы так называемые эволюционные вычисления используются всё чаще — и в анализе рентгеновских снимков, и в работе с наборами данных для проектирования (например, деталей для сверхзвуковых самолётов). При этом инженеры никак не могли понять, как заставить систему стать модульной. Быть может, теперь НТР пойдёт ещё немного быстрее?..

 


Источник: КОМПЬЮЛЕНТА


 

 

 

 

 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Сумчатый волк реабилитирован. Поздно

11-09-2011 Просмотров:8841 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Сумчатый волк реабилитирован. Поздно

Семьдесят пять лет назад в зоопарке на острове Тасмания умер последний на Земле сумчатый волк. История взаимоотношений людей и этих животных весьма печальна — в течение многих лет последних обвиняли...

В эволюции рыб все оказалось не просто

14-10-2016 Просмотров:3276 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

В эволюции рыб все оказалось не просто

Если взглянуть в современные океаны, реки и озера, то можно увидеть удивительное разнообразие рыб – длиннотелые угри, восьмиметровые сельдяные короли, хрупкие морские коньки. Подавляющее большинство современных рыб – около 96%...

Ряпушка сибирская - Coregonus sardinella

14-11-2012 Просмотров:10501 Рыбы Енисея Антоненко Андрей - avatar Антоненко Андрей

Ряпушка сибирская - Coregonus sardinella

В Енисее ряпушка распространена от северной границы Енисейского залива до устья р. Подкаменной Тунгуски. Известна во многих озерах бассейна Енисея и его дельты. В некоторых она обитает постоянно, образуя локальные...

Самое глубокое место Земли кишит жизнью

19-03-2013 Просмотров:8760 Новости Окенологии Антоненко Андрей - avatar Антоненко Андрей

Самое глубокое место Земли кишит жизнью

Кинорежиссёр Джеймс Кэмерон не нашёл никаких свидетельств жизни, погрузившись в прошлом году под воду почти на 11 км в самой глубокой точке Мирового океана. Оказывается, ему надо было взять с...

Трехрукий трибрахидий питался суспензией

30-11-2015 Просмотров:4194 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Трехрукий трибрахидий питался суспензией

Ученые из Великобритании, США и Канады воссоздали условия жизни трибрахидия (Tribrachidium) — существа из эдиакарской фауны, и установили, что оно питалось взвешенными в воде частицами. Авторы исследования опубликовали его в журнале Science Advances,...

top-iconВверх

© 2009-2017 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.