Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Эволюции


Новости Эволюции (136)

Понедельник, 20 Май 2013 19:28

Эволюция перьев

Автор

Около 150 лет назад, когда обнаружили археоптерикса — наполовину динозавра, наполовину птицу, — всё казалось понятным: динозавры нарастили перья, научились летать, и так появились птицы. 

Как бы не так. В последнее время в Китае открыли несколько пернатых динозавров, которых нельзя считать прямыми предками птиц, и вопрос об эволюции пера (результат развития чешуи?) заиграл новыми красками. Судя по количеству находок оперённых, но нелетающих животных, перья возникали вовсе не для полёта. Для чего же? 

Палеонтолог Джулия Кларк из Техасского университета в Остине (США) выступила в журнале Science с обзорной статьёй, в которой попыталась собрать всё, что мы знаем о происхождении перьев, и указать направления дальнейшего поиска.

Микрораптор, по-видимому, носил переливчатое оперение. (Изображение Mick Ellison / AMNH.)Микрораптор, по-видимому, носил переливчатое оперение. (Изображение Mick Ellison / AMNH.)Самые ранние «протоперья» совершенно не напоминали чешуйки: то были тоненькие нити, которые едва ли могли улучшить аэродинамические характеристики животных — даже тех, что специализировались на прыжках с дерева на дерево. А когда появляются лёгкие плоские и ветвистые образования, в которых мы узнаём привычные нам перья, их несут нелетающие существа. 

И у современных птиц перья не только даруют возможность полёта, но и выполняют целый ряд других функций. Во-первых, что очевидно, они служат теплоизолирующим материалом. Во-вторых, помогают птицам сливаться с окружающим миром (прятаться от хищников) или, напротив, выделяться на его фоне (дабы понравиться противоположному полу). Недавно исследователи идентифицировали расцветку перьев некоторых ископаемых образцов, и выяснилось, что она была довольно яркой. Одна работа, опубликованная несколько месяцев назад, обнаружила первое свидетельство различий в оперении между полами: 130 млн лет назад самцы обладали длинными хвостовыми перьями, что, по-видимому, стало результатом полового отбора. 

Так когда же появились первые перья? Палеонтологи продолжают отфутболивать сакраментальную дату всё дальше в прошлое. По последним данным, самые ранние протоперья возникли как минимум за 100 млн лет до того, как их потомки позволили первой птице подняться в воздух. Многие тероподы (в эту группу динозавров, давшую впоследствии птиц, входили, помимо прочих, рапторы и тираннозавры, представляете?) носили перья, напоминавшие современные, или что-то вроде щетины. И не они одни. Их очень далёкий родственник, похожий на трицератопса, тоже щеголял протоперьями. Некоторые летучие птерозавры не исключение (хотя их щетина несколько иная). 

Последний общий предок этих групп жил почти за 100 млн лет до этих пушистых существ. Он тоже носил жёсткие протоперья? Или же перья возникали в истории эволюции несколько раз? 

Как на грех, палеонтологическая летопись не спешит удовлетворить наше любопытство. Все великолепно сохранившиеся образцы из Китая относятся к позднему юрскому периоду или раннему мелу, а эти группы образовались ещё в триасе. Ни одна из найденных на сегодня окаменелостей тех времён не сохранила следов мягких тканей настолько хорошо, чтобы рассказать о происходившем на перьевом фронте. 

Более того, до сих пор не обнаружен такой слой породы, от которого можно было бы ожидать прорыва. Поэтому исследователям приходится идти окольными путями, отмечает г-жа Кларк. Сейчас надо подналечь на моделирование, чтобы максимально сузить перечень возможных функций уже найденных протоперьев. Но уже ясно, что они возникали вовсе не для того, чтобы можно было оторваться от земной тверди.

 


 

Источник: КОМПЬЮЛЕНТА


 

Многие органы в нашем теле настолько замысловаты, что кажется невероятным их возникновение в результате постепенного усложнения более простых структур. Причём дело не столько во множестве элементов, сколько в их спаянности друг с другом, взаимной «притирке». Если взять классический пример такого органа — глаз, нельзя представить себе, скажем, две трети от него: недособранный глаз просто не будет работать. А на каких основаниях тогда эволюционировала структура, которая ни за что не отвечала?

Череп рыб, особенно ископаемых, устроен гораздо сложнее черепа человека. (Фото HBSS.) Череп рыб, особенно ископаемых, устроен гораздо сложнее черепа человека. (Фото HBSS.) В подобных случаях эволюционисты обычно указывают на более простые аналоги таких «нередуцируемо сложных» структур: так, наш изощрённый глаз можно сопоставить с предельно простыми «глазами» плоских червей. В эволюции всё могло начаться со скопления светочувствительных клеток на поверхности кожи, которые потом образовали «впячивание», аналог глазного бокала, и следом шло развитие глазной камеры. Причём первые «глаза» были вполне функциональны, то есть могли отличать по крайней мере свет от тени. Развитие всё же имело место, и оно заключалось в постепенном прибавлении генов, клеток и тканей.

Американские учёные из центра NESCent (National Evolutionary Synthesis Center) предложили альтернативную версию того, как могли развиваться сложные структуры. Их модель полностью противоположна описанной выше, то есть эволюционное движение шло не по пути усложнения, а по пути упрощения. Свою гипотезу они подтверждают математической моделью, описанной в журнале Evolutionary Biology. Модель оперировала скоплением клеток, в котором происходила передача наследственной информации, её перемешивание в результате рекомбинации, мутационные процессы и т. д. Кроме того, клетки должны были выполнять некую функцию. Чем эффективнее они делали свою работу, тем выше была вероятность воспроизводства, появления следующего поколения. При этом клетки в виртуальной популяции были разного рода — условно говоря, белые и чёрные.

Поначалу способ организации клеток был довольно сложен: белые и чёрные сочетались друг с другом весьма хитроумным способом. Но через несколько поколений обнаружилось, что «клеточная» структура заметно упростилась. То есть задача, которая стояла перед комплексом клеток, заставляла их в каждом поколении искать более простые пути взаимодействия, чтобы с помощью эффективной работы получить право оставить потомство.

Похожие вещи, по словам учёных, можно наблюдать и в природе. Например, череп позвоночных развивался явно по пути упрощения. Если череп ископаемых рыб напоминал костяную головоломку, то впоследствии и число костей уменьшилось, и их соединения упростились. Особенно это заметно при переходе между классами, то есть от рыб к амфибиям, от амфибий к рептилиям и т. д. В одних случаях кости просто исчезали, а в других — срастались в одну.

Поэтому вполне возможно, что такие сложные структуры, как глаз или бактериальный жгутик, в прошлом выглядели ещё сложнее, а то, что мы видим сейчас, есть лишь более простые и эффективные версии первоначальной конструкции. Но чтобы эта гипотеза подтвердила своё право на существование, придётся найти больше подобных примеров, а также убедиться, что процессы упрощения соответствуют реальным эволюционным срокам.


Источник: КОМПЬЮЛЕНТА


400 млн лет назад в первобытном океане обитала бесчелюстная рыба Euphanerops. Ко всем прочим странностям этого существа теперь прибавилась пара плавников, расположенная позади его ануса.

Ископаемый образец Euphanerops (фото Robert Sansom).Ископаемый образец Euphanerops (фото Robert Sansom).«Обычно у рыб по два грудных и брюшных плавника, а также один анальный, — напоминает ведущий автор открытия Роберт Сэнсом из Лестерского университета (Великобритания). — А Euphanerops не имеет спаренных плавников в области груди или брюха, зато у него пара анальных. Насколько мне известно, это единственное создание с подобной особенностью. Оно уникально».

Euphanerops, реконструкция (изображение авторов работы).Euphanerops, реконструкция (изображение авторов работы).Euphanerops жили в девонском периоде, который из-за плодовитой эволюции рыб порой так и называется — «век рыб». Бесчелюстные рыбы того времени обычно располагали лишь одиночными плавниками и больше напоминали угрей. Теперь вы понимаете, как удивились учёные, изучая образец, найденный в Квебеке (Канада).

Хотя плавники, без сомнения, каким-то образом влияли на способ передвижения рыбы, г-н Сэнсом и его коллеги не спешат приписывать им определённую функцию.

Интересно другое: именно в девонском периоде стали появляться наши ранние предки, челюстные позвоночные, которые со временем выработали привычное нам строение тела с двумя руками (плавниками, крыльями). «А всё, что было у бесчелюстных рыб, — это хвост и спинные плавники, — поясняет г-н Сэнсом. — Для парных образований необходима совершенно иная модель развития».

Вот почему Euphanerops начинает выглядеть как очень важное звено нашей собственной эволюции. У него появляются парные плавники как раз в тот период, когда стали возникать челюстные позвоночные. Возможно, именно благодаря таким, как он, у нас сегодня есть две руки и две ноги.

Результаты исследования опубликованы в журнале Biology Letters.


Источник: КОМПЬЮЛЕНТА


«Батарейками» для первой жизни на Земле могли стать метеориты, которые принесли с собой молекулы, позволившие запасать энергию.

Обед подан! (Фото Wally Pacholka / Barcroft Media / Getty Images.)Обед подан! (Фото Wally Pacholka / Barcroft Media / Getty Images.)У каждого организма есть такие встроенные «батарейки», ведь энергия, полученная с пищей, не всегда требуется сразу и полностью. В основе таких молекул — фосфор, но у ранних форм жизни не было к нему доступа, ибо этот элемент был спрятан глубоко в минералах. Решить проблему помогли камни, сыпавшиеся с неба.

Сегодня самым распространённым хранителем энергии выступает аденозинтрифосфат (АТФ), которым пользуются миллионы сложных организмов. Откуда взялась эта молекула? Для её создания и освобождения энергии требуются ферменты, но первые организмы ещё не были настолько сложны, чтобы выполнять подобные операции. Вероятно, была какая-то молекула попроще.

По словам Терри Ки из Лидсского университета (Великобритания), первым накопителем энергии мог быть пирофосфит, состоящий из фосфора, кислорода и водорода. Это вещество схоже по своим химическим свойствам с АТФ и при этом более реактивно, то есть ему не нужны ферменты.

Г-н Ки и его коллеги изучили один сибирский метеорит, содержащий много фосфора. Фрагменты небесного камня окунули в кислую воду из вулканических прудов Исландии, которая считается аналогом воды, существовавшей на первобытной Земле. Четыре дня спустя образцы метеорита выделили большое количество фосфита. Высохнув, он превратился в пирофосфит. Как видим, это вещество образуется очень просто.

Идея этого исследования пришла учёным после того, как в 2009 году в геотермальных прудах Калифорнии был обнаружен избыток фосфита.

Выводы, к сожалению, вызвали неоднозначную оценку. Самая большая проблема заключается в том, что все современные организмы пользуются для накопления энергии фосфатами, а не фосфитами, отмечает Уильям Мартин из Университета Генриха Гейне (ФРГ). Животные и растения используют АТФ, а большинство микроорганизмов приспособили пирофосфат. «И я ставлю на то, что так было всегда», — подчёркивает учёный.

По этой причине многие полагают, что древним накопителем энергии скорее всего служил пирофосфат. Но и с ним не всё гладко. Ему надо было образовываться из фосфатов, а они химически очень активны, поэтому никакому фосфату не удалось бы продержаться на поверхности планеты сколько-нибудь долго. К тому же пирофосфат реагирует с водой, а не растворяется в ней, как пирофосфит. «Учёные отдают предпочтение пирофосфату, потому что он проще», — говорит Стивен Беннер из Фонда прикладной молекулярной эволюции (США). По его словам, нет никакого другого аргумента в пользу такого выбора.

Г-н Ки считает, что пирофосфит мог быть предшественником пирофосфата: им пользовались до тех пор, пока жизнь не приобрела молекулярное «оборудование», позволившее ей работать с фосфатами. В ходе дальнейших экспериментов, результаты которых ещё не опубликованы, его группа выяснила, что пирофосфит легко превращается в пирофосфат.

Отчёт об исследовании опубликован в журнале Geochimica et Cosmochimica Acta.


Источник: КОМПЬЮЛЕНТА


На примере пылевых клещей биологам удалось опровергнуть закон необратимости эволюции. Оказалось, что предки этих существ были свободноживущими организмами, которые сначала перешли к постоянному паразитизму, а затем вновь вернулись к исходному состоянию.

Пылевой клещ, фото википедияПылевой клещ, фото википедияРезультаты исследования, выполненного Павлом Климовым и Берри О’Коннором из Мичиганского университета, опубликованы в журнале Systematic Biology.

Закон необратимости эволюции, сформулированный еще в конце XIX века палеонтологом Луи Долло, вызывает споры среди ученых вплоть до настоящего времени. Как гласит этот закон, «организм ни целиком, ни даже отчасти не может вернуться к состоянию, уже осуществленному в ряду его предков».

Авторы работы смогли показать, что закон Долло не работает в случае пылевых клещей – микроскопических членистоногих, которые живут в матрасах и подушках и вызывают у многих людей аллергические реакции. Для этого им пришлось проверить все 62 гипотезы об их происхождении, существующие на сегодня.

Проанализировав набор из 5 генов ядерной ДНК более чем 700 видов потенциальных родственников пылевых клещей, исследователи выяснили, что они произошли от паразитического подотряда Psoroptidia. Клещи из этой группы паразитируют на млекопитающих и птицах, никогда не покидая своих хозяев.

Ранее считалось, что постоянные паразиты не могут вновь стать свободноживущими организмами, поскольку при паразитическом образе жизни утрачиваются многие важные органы. Однако предки пылевых клещей смогли сделать это благодаря устойчивости к высокой сухости и способности питаться кератином,содержащимся в волосах и перьях.

Как надеются ученые, их открытие поможет в борьбе с аллергией, вызываемой пылевыми клещами. «Зная родственные связи этих существ, мы лучше поймем свойства белков их иммунной системы и эволюцию генов, кодирующих аллергены», --пояснил Павел Климов, соавтор статьи.


Источник: infox.ru


Одна мутация в гене, управляющем ростом костных и зубных тканей, появившаяся в геноме предков китов и дельфинов примерно 30 миллионов лет назад, лишила их резцов, клыков и моляров и сделала их зубы похожими на примитивную "пилу", заявляют ученые в статье, опубликованной в журнале PeerJ.

Серый кит. Фото: Владимир Вертянкин / Кроноцкий заповедникСерый кит. Фото: Владимир Вертянкин / Кроноцкий заповедник"Нам было очень интересно найти генетическое изменение, которое столь сильно изменило то, как питались морские млекопитающие, и затем проследить за его эволюцией на примере окаменелостей. Простейший "сдвиг" в активности белков в разных частях челюсти, породивший примитивные зубы дельфинов, может помочь нам понять, как появились сложные зубы млекопитающих", — заявил Брук Армфилд (Brooke Armfield) из университета Флориды в Гейнсвилле (США).

Армфилд и его коллеги пришли к такому выводу, изучая активность генов в формирующихся зубах в зародышах пятнистых продельфинов (Stenella attenuata), а также обычных свиней, генетически близких к китообразным. Ученые заметили, что развитием зубов свиньи управляют два ключевых гена — BMP4 и FGF8.

Как выяснили исследователи, первый участок отвечает за формирование резцов и клыков, а FGF8 — ростом моляров и премоляров. Поэтому активность BMP4 и связанных с ним белков наиболее высока в передней части челюсти, а второго гена — в ее внутренней половине. В случае с дельфинами данная картина нарушается — ген BMP4 активен во всех клетках будущей челюсти, а не только в районе резцов и клыков. Благодаря этому зубы дельфинов и китов напоминают примитивную "пилу", не похожую на жевательный "арсенал" остальных млекопитающих.

Судя по окаменелостям, предки китообразных приобрели эту мутацию примерно 30 миллионов лет назад, через 18 миллионов лет после появления амбулоцетуса (Ambulocetus natans) и других примитивных китов. Ученые связывают ее появление с переходом на новый тип пищи, для поедания которой не требовались клыки, моляры и другие специализированные зубы.


Источник: РИА Новости


Исследователи из Венского университета (Австрия) вместе с норвежскими коллегами из Бергенского университета обнаружили, что голова у животных начала развиваться ещё до своего появления. Речь идёт, разумеется, о генетическом аппарате, который управляет формированием головы. И под головой тут следует понимать не мозг, а именно часть тела на переднем его конце, снабжённую органами чувств, ртом, мозгом, в конце концов.

Морской анемон Nematostella vectensis, у которого нашли «гены головы» (фото авторов работы).Морской анемон Nematostella vectensis, у которого нашли «гены головы» (фото авторов работы).Учёные работали с морскими анемонами, или актиниями. У этих кишечнополостных есть передний конец тела и задний, а голова отсутствует. Личинки актиний плавают в океане в поисках места, где можно осесть. Найдя такое место, они прикрепляются к нему и превращаются в полип, который один концом тела сидит на субстрате, а другим концом, наделённым ртом и щупальцами, добывает пропитание. Учёным удалось определить гены, управляющие дифференцировкой переднего конца тела личинки — того, которым она движется вперёд и которым потом садится на субстрат. Среди этих генов оказался Six3/6, играющий роль управляющего всеми остальными генами. Причём вся эта цепочка, начинающаяся с Six3/6, есть и у других животных, включая насекомых, рыб и человека.

Когда личинка актинии плавает в поисках места, где можно обосноваться, она воспринимает какие-то сигналы из внешней среды, и делает это именно своим передним концом, так что его в каком-то смысле можно назвать «головой». Правда, эта «голова» потом превратится в «ногу», да и мозга, главного атрибута головы, ни у личинки, ни у взрослой актинии нет.

У высших животных и у морских анемонов около 600–700 млн лет назад был общий предок — тоже без головы, но вот предпосылки для её возникновения, судя по всему, уже были. Полученные данные подтверждают теорию о том, что эволюция предпочитает заранее готовить генетико-молекулярные механизмы, которые позволили бы сформировать ту или иную структуру. Когда для такой структуры приходит время, этим механизмам даётся карт-бланш (как это было, по-видимому, с мозгом).

Результаты работы опубликованы на сайте PLoS Biology.


Источник: КОМПЬЮЛЕНТА


Иногда можно услышать, что эволюция не очень любит искать новые пути — и если есть возможность использовать уже найденное решение, то она так и сделает. Очередное подтверждение этому продемонстрировали исследователи из Университета Британской Колумбии (Канада). Несколько лет назад они ставили эксперимент с эволюцией в пробирке: культуру бактерий Escherichia coli растили в среде, содержащей легко расщепляемую глюкозу и трудно расщепляемый ацетат. Кишечная палочка может работать как с тем, так и с другим субстратом, но, как выяснили учёные, в каждом образце колония бактерий разделялась на две части: одни поглощали только глюкозу, другие специализировались на ацетате.

Эволюция кишечной палочки выбирает надёжные, проверенные пути. (Фото Dr. Dennis Kunkel.)Эволюция кишечной палочки выбирает надёжные, проверенные пути. (Фото Dr. Dennis Kunkel.)Такое разделение популяции на две части для биологов уже давно не новость. Похожие процессы наблюдали, например, у цихлидовых рыб, амадин и пальмовых деревьев: хотя популяция занимает одну территорию, в ней выделяются экологические подгруппы. В случае бактерий экологическое разделение было обусловлено разными питательными веществами. Но раскол в популяции обычно подкрепляется генетическими изменениями, мутациями. И учёные захотели проверить, какие мутации тут задействованы.

Эксперимент с бактериями ставили в трёх пробирках и из каждой брали по 17 образцов на разных стадиях опыта для генетического анализа. Оказалось, что у бактерий из разных пробирок возникали одни и те же мутации, которые помогали им приспособиться к особенностям среды. И второе: эти мутации возникали в определённой последовательности, то есть сначала у бактерий появлялись изменения, которые позволяли использовать им другой тип пищи, а потом возникал генетический переключатель, переводивший метаболизм с одного пути на другой.

То, что приспособления к среде возникают у организмов в определённом порядке, учёные тоже давно знают, но как это проявляется на генетическом уровне, на уровне мутаций? При этом мы считаем, что вариантов таких приспособлений может быть множество, ведь мутации, как известно, появляются случайно, и отбор может выбрать разные варианты, которые одинаково подходят к решению одной и той же проблемы. Но, по-видимому, хотя мутации и случайны, эволюция предпочитает решать проблему единственным проверенным способом. То есть можно сказать, что эволюцию можно до какой-то степени предсказать.

С другой стороны, как замечают скептики, такая предсказуемость эволюции может иметь место только у тех организмов, которые не знают полового размножения, — у тех же бактерий, например. Кроме того, стоит учитывать, что в своих экспериментах исследователи работали с относительно небольшой и гомогенной популяцией микроорганизмов, и вполне возможно, что в естественных популяциях, гигантских по численности и разнообразных по видовому составу, эволюционные пути не так уж и однообразны.

Результаты исследований опубликованы на сайте PLoS Biology.


Источник: КОМПЬЮЛЕНТА


3D-реконструкция спинного хребта четвероногих показала, что первые сухопутные животные передвигались подобно современным тюленям.

Ихтиостега (реконструкция Джулии Молнар)Ихтиостега (реконструкция Джулии Молнар)В числе участников исследования была ихтиостега — зубастое создание свирепого вида, жившее 374−359 млн лет назад и являвшееся переходным видом между рыбами и сухопутными животными. Ихтиостега обитала в мелководье и болотах, привлечённая туда, скорее всего, изобилием пищи. По-видимому, она могла вылезать на пологий берег на передних лапах, либо подскакивая в манере илистых прыгунов, либо, что более вероятно, подтягивая тело наподобие ластоногих.

Позвонки ихиостеги (изображение Julia Molnar)Позвонки ихиостеги (изображение Julia Molnar)Ведущий автор исследования Стефани Пирс из Кембриджского университета (Великобритания) полагает, что полученный результат заставит переписать учебник по эволюции позвоночника среди ранних животных с конечностями.

Хребет изучался следующим образом. Первым делом останки возрастом около 360 млн лет обрабатывались синхротронным излучением высокой энергии. Тем самым удалось получить рентгеновское изображение с высоким разрешением. Это и позволило произвести реконструкцию вымершего позвоночного с исключительной детализацией.

Сегодня все четвероногие обладают позвоночником, который сформирован костяными сегментами (позвонками), связанными в один ряд от головы до хвоста (или таза). У современных тетраподов (в том числе у человека) каждый позвонок представляет собой одну кость, тогда как у ранних позвоночных они состояли из нескольких частей.

Грудной отдел ихтиостеги под разными углами. Цветом обозначены (по легенде слева направо) шейные рёбра, клейтрум, грудные рёбра, нейральные дуги, интерцентры, плевроцентры и грудинные элементы. (Изображение Royal Veterinary College / S. Pierce.)Грудной отдел ихтиостеги под разными углами. Цветом обозначены (по легенде слева направо) шейные рёбра, клейтрум, грудные рёбра, нейральные дуги, интерцентры, плевроцентры и грудинные элементы. (Изображение Royal Veterinary College / S. Pierce.)На протяжении более чем ста лет считалось, что позвонки ранних тетраподов состояли из трёх наборов костей: кость спереди, кость сверху и пара сзади. Новое исследование показало, что всё наоборот. Первая кость (intercentrum) в действительности задняя. Это важно, поскольку понимание того, как состыковывались кости, позволяет оценить подвижность позвоночника и тем самым составить модель распределения сил между конечностями.

Сканирование позвонка в ESRF (изображение ESRF / I. Montero)Сканирование позвонка в ESRF (изображение ESRF / I. Montero)Специалисты не только установили, что ихтиостега ползала подобно тюленю, но и обнаружили ряд костей, простиравшийся сверху до середины её груди. Вероятно, это одна из наиболее ранних попыток создания грудины. Такое образование помогало поддерживать вес во время передвижения по суше.

Результаты исследования опубликованы в журнале Nature.

 


 

Источник: КОМПЬЮЛЕНТА


 

Современное учение об эволюции представляет собой сложнейший сплав самых разных биологических дисциплин, от старых и уважаемых систематик животных и растений до новейшей молекулярной биологии. Что бы ни появлялось нового в смысле концепций, теорий и методов, эволюционное учение попробует это применить к своему предмету. Предмет же эволюционного учения сложен чрезвычайно, ведь теория эволюции изучает саму жизнь в её самых универсальных проявлениях, в развитии и взаимоотношениях с неживой природой. (Хотя мы допускаем, что с научной точки зрения такое определение предмета теории эволюции будет не вполне строгим.) В этом смысле можно сказать, используя уже весьма подзатёртое сравнение, что теория эволюции — это царица биологии.

Схема молекулы рибозима. С похожих молекул могла начаться жизнь на Земле (рисунок Laguna Design).Схема молекулы рибозима. С похожих молекул могла начаться жизнь на Земле (рисунок Laguna Design).И, разумеется, не проходит и года, чтобы биологи-эволюционисты не придумали, не подправили, не опровергли какую-нибудь из эволюционно-экологических закономерностей. Уходящий год не стал исключением, и тут, пожалуй, следует начать с концепций и гипотез, касающихся происхождения жизни — вечной темы, что волнует умы не только учёных мужей, но и весьма далёких от науки представителей рода человеческого. (Опять-таки в скобках заметим, что вопросы происхождения жизни, возможно, в теорию эволюции не входят, но мы их сюда на свой страх и риск включили, исходя из, может быть, весьма наивного соображения: ведь должна же эволюция жизни с чего-то начинаться!) Любая гипотеза о происхождении жизни должна объяснять несколько важных моментов: во-первых, живой организм должен копировать и передавать наследственную информацию; во-вторых, он должен быть отделён от окружающей среды мембраной или чем-то подобным; в-третьих, у него должен быть какой-никакой метаболизм, чтобы строить биомолекулы и самого себя из этих биомолекул.

Как известно, одной из самых популярных гипотез, объясняющих появление механизма сохранения и передачи информации в живых системах, стала гипотеза мира РНК. Наследственной информацией у нас заправляют нуклеиновые кислоты, но — только с помощью белков. Однако после открытия рибозимов стало понятно, что иногда нуклеиновые кислоты могут обходиться и без помощи белков. Это и подтолкнуло создание гипотезы мира РНК. Согласно ей, первыми молекулами на Земле были РНК, которые сами себя копировали, а уже потом к ним присоединились ДНК и белки, информация о которых уже могла записываться на нуклеиновых носителях. И в этом году группе исследователей из нескольких научных центров в США удалось поставить любопытный эксперимент, который показал, как в таком РНК-супе могла начаться эволюция. Оказалось, что в смеси рибозимов преимущество получают те молекулы, которые копируют других, а не себя. То есть запуск эволюции, процесс передачи информации вовсе не обязательно должен начинаться с самокопирования (этого, кстати, с рибозимами никому не удавалось достичь). Важно, чтобы молекулы-прародители могли работать не только со своей последовательностью, но и с чужой. Здесь, конечно, можно сказать о молекулярной взаимопомощи, но это уже будет чистой воды антропоморфизм.

Хорошо, пусть у нас существуют молекулы РНК, которые могут хранить и копировать информацию. Вопрос: как они встречаются в бескрайнем первичном океане? Если предположить, что они плавали в мембранных пузырьках, то получается, что, кроме одних сложных биомолекул, РНК, на заре жизни существовали и другие, которые организовывали мембраны, например, те же липиды. Однако, как показали эксперименты учёных из Пенсильванского университета (США), молекулы РНК могли группироваться и без участия сложносочинённых мембран. Оказалось, РНК любят концентрироваться в смеси довольно простых веществ, декстрана и полиэтиленгликоля, — их появление в видном растворе собирает РНК в ограниченной зоне. Существование на заре времён таких простых веществ, как декстран и полиэтиленгликоль, вполне вероятно. И с их помощью мир РНК мог обходиться без мембран.

Молекулярная модель большой частицы рибосомы дрожжей; разными цветами выделены разные белки. (Рисунок Laguna Design.)Молекулярная модель большой частицы рибосомы дрожжей; разными цветами выделены разные белки. (Рисунок Laguna Design.)Однако далеко не все согласны отдавать лавры основателей жизни одним лишь РНК. Учёные из Университета Иллинойса (США) полагают, что белки и РНК возникли и какое-то время существовали бок о бок, и лишь спустя какое-то время РНК позвали полипептидные цепи на помощь. Исследователи попробовали восстановить генеалогию и возраст разных фрагментов рибосомы, сложной нуклеопротеидной машины, которая и переводит язык нуклеиновых оснований в аминокислотную последовательность. Оказалось, что белки, образующие рибосому, ничуть не моложе соответствующих фрагментов РНК. Более того, важнейший реакционный центр рибосомы оказался моложе других её частей. Но даже если белки существовали до того, как объединились с РНК, остаётся вопрос, как они поддерживали свою структуру? Как они хранили информацию о самих себе?

Что же до происхождения метаболизма, то специалистам из Института Санта-Фе (США) удалось вроде бы вполне убедительно показать, что химические реакции, с помощью которых живые организмы манипулируют углеродом, существовали в древнейшей геохимии, хотя и были довольно неэффективными. То есть живые организмы подобрали из неживой природы что-то неочевидное и плохо работающее и с помощью миллионов лет эволюции сделали из этого вполне действенный метаболический аппарат. Другой вопрос, где живые организмы этим занимались. Общепризнанному мнению о том, что «жизнь возникла в океане», в уходящем году предъявили контраргументы. Группа исследователей, среди которых есть и наши соотечественники из МГУ, весьма небезосновательно предположила, что первые организмы не смогли бы выжить в тех солевых пропорциях, которые существовали в доисторическом океане. А потому первые эволюционные шаги жизнь должна была делать не в океанских глубинах и просторах, а на суше, в грязевых лужах, чей состав был более щадящ к первым живым существам.

Хоанофлагеллаты одиночные (слева) и образующие колонии после питания бактериями (справа). (Фото Rosanna A. Alegado / University of California, Berkeley.)Хоанофлагеллаты одиночные (слева) и образующие колонии после питания бактериями (справа). (Фото Rosanna A. Alegado / University of California, Berkeley.)Следующее эволюционное событие, которое в уходящем году пользовалось особым вниманием исследователей, это появление многоклеточных организмов. Эпизод этот относится, если можно так сказать, к проблемам повышенной фундаментальности, а чем фундаментальнее проблема, тем труднее найти для неё непротиворечивую теорию. Многоклеточность имеет очевидные плюсы, но что заставило древних одноклеточных перейти к такому состоянию? Тем более что в современном мире одноклеточные не такая уж забитая и угасающая группа, достаточно вспомнить бактерии и океанический одноклеточный планктон. Остроумное объяснение предложили исследователи из Калифорнийского университета в Беркли (США), работавшие с хоанофлагеллятами, которые, как считается, стоят на грани между одно- и многоклеточностью. По мнению учёных, предки многоклеточных объединились благодаря бактериям, точнее, благодаря некоторым веществам, которые содержат бактерии. Одноклеточные питались бактериями, а то вещество, которое в бактериях содержалось, склеивало многоклеточных вместе, в колонию. Не слишком аппетитная гипотеза, если вдуматься.

Ещё один удивительный результат получили учёные из Университета Миннесоты (США), у которых дрожжи превратились из одноклеточных в многоклеточные образования всего за… 60 дней. Движущей силой тут стала гравитация: чтобы быстрее осесть на дно, клетки дрожжей объединялись со своими родственниками, причём в получившихся кластерах разные клетки вели себя по-разному, то есть демонстрировали основные признаки зарождающегося многоклеточного «самосознания». Но самое удивительное тут, конечно же, сверхсжатые сроки, за которые это произошло. Ну и самая, пожалуй, удивительная гипотеза о происхождении многоклеточности вышла из-под пера Стюарта Ньюмана из Медицинского колледжа Нью-Йорка (США). Уважаемый профессор сравнил базовые структурные блоки, которые есть у самых разных животных, с вязкоупругими химическими субстанциями и пришёл к выводу, что первые многоклеточные сформировались под действием физико-химических сил, которые не влияют на одиночные клетки, но неизбежно вступают в свои права, если клеткам вздумается объединиться.

Вообще, эволюционное учение в последнее время стало необычайно широко пользоваться экспериментальными методами, хотя, казалось бы, с эволюцией ассоциируются миллионы и миллионы лет, о каких экспериментах тут может идти речь? Тем не менее исследователи вдруг поняли, кто им поможет поверить экспериментом тайны эволюции. Помощниками оказались бактерии и дрожжи: благодаря высочайшей скорости размножения они могут проявить эволюционные закономерности за вполне разумное время, нужно лишь правильно спланировать эксперимент. И с помощью этих микроскопических помощников в прошлом году удалось проверить ряд важнейших эволюционных концепций, которые до сих пор существовали только в виде умозрительных рассуждений. Так, исследователи из Мичиганского университета (США) сумели сопоставить генетическое понятие мутации и фенотипическое понятие признака. У вируса новый признак формировался за четыре мутации, бактериям для этого требовалось больше полусотни. В данном случае важна не столько абсолютная цифра (понятно, что для разных организмов и для разных признаков она будет разной), сколько сам способ, позволяющий оценить взаимодействие генов при формировании признака и число мутаций, которые должны в них попасть. И опять же с помощью бактерий удалось наблюдать увидеть целый эволюционный цикл: 56 тысяч поколений бактерий и 20 лет эксперимента позволили учёным увидеть три стадии формирования признака и сопоставить их с фенотипическими изменениями.

Пекарские дрожжи — одни из главных «рабочих лошадок» современной биологии (Dennis Kunkel Microscopy.)Пекарские дрожжи — одни из главных «рабочих лошадок» современной биологии (Dennis Kunkel Microscopy.)В свою очередь, дрожжи помогли исследователям из Университета Окленда (Новая Зеландия) подтвердить экспериментально одну из главных концепций в биологии: половое размножение с эволюционной точки зрения лучше, чем бесполое. Однако можно возразить, что все эти эксперименты ставятся на довольно специфических объектах, бактериях и одноклеточных грибах, а у них эволюция может идти иными путями. Но, как оказалось, по крайней мере у бактерий новые виды образуются так же, как у животных: за счёт генетического разнообразия внутри популяции, которое проявляется при смене экологических условий. То есть нет необходимости придумывать для бактерий какую-то свою, отдельную эволюцию.

Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.)Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.) Безусловно, нельзя не упомянуть эксперимент исследователей из Университета Род-Айленда (США), которые сумели увидеть эволюцию не в пробирке, не среди бактерий, а среди ящериц. Учёные задумали проверить, существует ли на самом деле эволюционно-генетический эффект, называемый эффектом основателя, когда расселяющиеся маленькие популяции оказываются между молотом и наковальней — между естественным отбором и собственным небогатым (из-за расселения) генофондом. Так вот, в течение нескольких лет учёные воочию наблюдали борьбу между двумя эволюционным факторами, которые раньше существовали только в теории. Правда, нельзя не признать, что с условиями эксперимента зоологам повезло: в их распоряжении оказались острова, очищенные от большей части фауны сильнейшим ураганом.

Из других новостей на тему общеэволюционных законов следует отметить два сообщения о молекулярных механизмах эволюции. В Стэнфорде (США) на примере колюшки была подтверждена известная гипотезу о том, что большая часть эволюционных изменений заключается в перетасовке уже имеющихся генов, нежели в создании новых. То есть у вида создаётся несколько генетических сценариев для жизни, из которых один работает, а другие спят. Если же возникает надобность, происходит переключение между этими генетическими наборами, благодаря мутациям в нескольких управляющих последовательностях ДНК. Именно так, по словам учёных, колюшкам удалось быстро перейти из морей в солёные водоёмы. И именно так, кстати говоря, мог возникнуть человек: по мнению некоторых исследователей, мы отличаемся от обезьян в первую очередь способом управления генами.

В другой работе, опубликованной учёными из Массачусетского технологического института (США), говорится о том, что главным молекулярным инструментом эволюции, главным молекулярным механизмом, обеспечивающим приспособление вида к среде, может быть альтернативный сплайсинг РНК. Во всяком случае, согласно результатам этой научной группы, разные виды отличаются друг от друга не столько активностью генов, сколько способами альтернативного сплайсинга.

Из более частных эволюционных исследований, которые касаются развития отдельных групп животных, можно напомнить о работе исследователей из Смитсоновского института изучения тропиков (США) и Университета Вагенингена (Нидерланды), которые пришли к выводу, что мелкие грызуны благодаря своим воровским повадкам спасли доисторические леса от вымирания. А исследователи из Университета Монаша в Австралии попробовали посчитать, сколько времени требуется эволюции, чтобы превратить мышь в слона и обратно — и тут эволюция поразила своей медлительностью. И, конечно, отдельная тема — это происхождение человека и эволюция самого человека. Про переход от обезьян к человеку и его эволюционно-генетические причины можно узнать в соседнем материале. Здесь же стоит упомянуть об экспериментах исследователей из Тринити-Колледжа (Ирландия), которые с помощью симулятора эволюции показали, что сложная общественная жизнь идёт рука об руку с развитием больших нейронных систем. То есть, грубо говоря, развитие мозга лучше происходит в обществе.

Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.)Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.)Однако, отделившись от обезьян и сформировав первые цивилизации, человек отнюдь не вышел из-под власти эволюции и естественного отбора. Так, учёные из Университета Шеффилда (Великобритания) показали влияние естественного отбора на человека на примере популяционной динамики в нескольких финских деревнях. Оказалось, что даже в моногамном обществе есть эволюционные изменения признаков, которые можно наблюдать на протяжении нескольких сотен лет. Можно предположить, что в современном мире, с развитием медицины, средств контрацепции, и т. д. и т. п. не найдётся места не только для старых традиционных сообществ, но и для эволюции. Однако исследователи из Университета Гронингена (Нидерланды) утверждают, что естественный отбор по сей день действует даже на такой важный с точки зрения эстетики и моды параметр, как рост: хотя современные мужчины и женщины предпочитают высоких партнёров, эволюция благоприятствует высокорослым мужчинам, но низкорослым женщинам.

 Долгое время феномен менопаузы не мог найти объяснения у учёных. Человек — одно из редчайших исключений среди животных, наши особи женского пола с некоего возраста теряют способность давать потомство. Эта странная и эволюционно нерациональная стратегия, кажется, нашла своё объяснение в теории: менопауза нужна, чтобы бабушки смогли заботиться о потомстве своих детей, тем самым повышая его выживаемость. Именно благодаря менопаузе, по мнению исследователей из Университета Турку (Финляндия), пожилая женщина может отдать своё время и силы ребёнку своей дочери или невестки, не отвлекаясь на собственных малышей. Эта гипотеза и раньше существовала, но на этот раз её проверили на человеческой популяции. Забота бабушек принесла свои плоды — антропологи из Университета Юты и Калифорнийского университета в Лос-Анджелесе (оба — США) подтвердили, что благодаря бабушкам человек стал жить дольше.

Можно ли вылечить рак с помощью теории Дарвина? (Фото Moredun Animal Health.)Можно ли вылечить рак с помощью теории Дарвина? (Фото Moredun Animal Health.)Выше мы назвали эволюционное учение царицей биологии. Злые языки могли бы сказать, что это в полном смысле царица: пользуясь результатами и методами других областей, она ничего не даёт взамен в смысле практической пользы, что пользы от неё как от козла молока (эволюционно совершенно непредставимая вещь, хотя и возможная с точки зрения генной инженерии). Это не совсем так — выводы, сделанные в рамках эволюционного учения, могут пригодиться другим, более практическим областям. Вот примечательный пример: учёные из Онкоцентра имени Х. Ли Моффита (США) опубликовали работу, в которой именно с помощью эволюционной теории объясняют удивительную способность раковых клеток противостоять химиотерапии. Собственно, исследователи рассматривают опухоль как популяцию, которая подчиняется соответствующим эволюционно-экологическим законам. Если гипотеза верна, то онкологам, чтобы справиться с раком, нужно в корне пересмотреть подходы к лечению. И, возможно, что именно благодаря эволюционной теории мы когда-нибудь победим рак. (Заметим, что уподобление рака популяции ещё не столь радикальный шаг — по сравнению с прошлогодней работой, в которой рак уподоблялся единому организму и предлагался едва ли не на роль нашего предка.)

Из иных результатов эволюционных изысканий, которые могут пригодиться с практической точки зрения, можно упомянуть о том, как климатические изменения играют на руку паразитам, а также о генеалогии зловещих лихорадок Эбола и Ласса, которые оказались гораздо старше, чем о них думали. И то, и другое пригодилось бы для эпидемиологов и вообще врачей, которые много бы дали за то, чтобы знать, чего можно ждать от инфекции в будущем.

Златокрот (фото Inspector Lewis)Златокрот (фото Inspector Lewis)В действительности, как легко заметить, современная теория эволюции больше всего напоминает некий призрак, неуловимую сущность, которая возникает на стыке самых разных дисциплин, от психологии до иммунологии. Так что имеет смысл говорить не столько об отдельной дисциплине, сколько об эволюционном подходе, который может стать мощным оружием в познании живого мира — всё равно, идёт ли речь об отвлечённо-высокой загадке происхождения жизни или о «низменных», повседневно-медицинских иммунологических вопросах. 

Однако, несмотря на всё величие и мощь эволюционного подхода, срабатывает он не всегда. И уходящий год дал нам два любопытных примера, когда биологам-эволюционистам оставалось только развести руками. Первый пример — это бактерии из пещеры Лечугия, что в американском штате Нью-Мексико. Местные микробы сумели приобрести устойчивость к большинству современных антибиотиков, хотя были изолированы от окружающей среды в течение последних тысячелетий, — феномен, который нельзя объяснить с эволюционно-генетической точки зрения. Вторым номером идёт златокрот: появление у этого удивительного животного переливающегося золотистого меха невозможно объяснить никакой эволюционной потребностью, и учёным приходится говорить, что в данном случае мы имеем дело с «побочным и бесполезным продуктом каких-то других эволюционных превращений».

 


 

Источник: КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Окаменевшие капли помогают решить парадокс ранней Земли

05-12-2012 Просмотров:7894 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Окаменевшие капли помогают решить парадокс ранней Земли

Считается, что юную Землю наполняла горячая вода, но два исследования, результаты которых были представлены на конференции Американского геофизического союза, показали, что в действительности на планете было даже холоднее, чем сейчас. Сурикат...

Древние мокрецы были эффективнее современных

12-10-2016 Просмотров:2517 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Древние мокрецы были эффективнее современных

Древний – не значит примитивный, уверены палеонтологи Боннского университета. Они изучали палеогеновых насекомых, сохранившихся в янтарях, и смогли лично убедиться, что жившие более 50 млн лет назад мокрецы были устроены...

Предки четвероногих вышли на сушу, набрав в рот воды

20-03-2015 Просмотров:4314 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Предки четвероногих вышли на сушу, набрав в рот воды

Биологи выяснили, как могли хватать добычу на суше предки четвероногих организмов, когда они только покинули водную стихию. Реконструировать повадки первых сухопутных позвоночных помогли наблюдения за илистыми прыгунами. Илистый прыгунОб этом говорится...

Мозг эволюционировал медленнее, чем мускулы млекопитающих - ученые

17-10-2012 Просмотров:6760 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Биологи проанализировали скорость увеличения размеров мозга и массы тела у приматов, летучих мышей и хищников и пришли к выводу, что масса мозга менялась медленнее, чем тело этих животных по мере...

Британцы перекроили эволюционное древо динозавров

27-03-2017 Просмотров:2013 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Британцы перекроили эволюционное древо динозавров

Британские ученые предложили радикально новый взгляд на систематику динозавров, исключив хищных теропод из группы ящеротазовых. По их словам, тероподы являются родичами не длинношеих зауропод, а гадрозавров и прочих птицетазовых динозавров. Об...

top-iconВверх

© 2009-2017 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.