Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Эволюции


Новости Эволюции (139)

Ископаемое, жившее 580 млн лет назад, поставило под сомнение привычное эволюционное древо животных.

News15a8a1Eoandromeda и её слепокБеспозвоночное, названное Eoandromeda octobrachiata (потому что его тело напоминает спиральную галактику Андромеды), призывает пересмотреть самые нижние ветви, полагают авторы исследования.

Группа палеонтолога Фэн Тан из Китайской академии геологических наук считает Eoandromeda пращуром современных гребневиков: эти желеобразные существа похожи на медуз, но круглее и обладают восемью рядами радужных «плавников» («гребней»). Если они правы, это самый старый гребневик из известных науке.

Гребневики находятся у основания эволюционного древа. Как правило, считается, что сначала появились губки, затем стрекающие (медузы, актинии и др.), а после них идут гребневики. Это расположение остаётся спорным. «Eoandromeda кладёт ещё немного на ту чашу весов, которая склоняется в пользу более базального положения гребневиков», — говорит соавтор работы Стефан Бенгтсон из Шведского музея естественной истории.

Всё дело в форме: ископаемое имеет окторадиальную симметрию, то есть его тело можно разрезать на восемь одинаковых кусков. Современные гребневики бирадиальны, то есть обладают двусторонней симметрией, их (как и людей, мух, морские анемоны) можно разделить только на две идентичные части.

Если Eoandromeda появилась после книдарий, билатеральная симметрия в истории эволюции возникала дважды — один раз у книдарий, а затем у других двусторонних организмов, пришедших после Eoandromeda. Гораздо проще считать, что Eoandromeda была первой.

Это не голословное утверждение, ибо анализ ДНК подтвердил: гребневики ближе к корню эволюционного древа. Коллег приветствует Энди Баксеванис из Национального НИИ человеческого генома (США), группа которого расшифровала ДНК гребневика мнемиопсиса и теперь сравнивает её с геномом губок, книдарий, червей и других животных. По его словам, результаты пока свидетельствуют о том, что губки и гребневики появились раньше стрекающих.

Однако некоторые учёные сомневаются в том, что ископаемое можно отнести к гребневикам. Восемь «спиральных рукавов» действительно напоминают восемь радужных «гребней» по бокам современных гребневиков, но в образце отсутствуют ключевые характеристики современных гребневиков — щупальца и рот.

В 1980-х годах Дольф Зайлахер из Тюбингенского университета (ФРГ) пришёл к выводу, что многие странные окаменелости эдиакария (635–542 млн лет назад) представляли собой аномально большие амёбоподобные одноклеточные организмы. Он выделил их в особое царство Vendobionta. По его словам, пока вендобионты не вымерли, многоклеточные жили в тени этих гигантов. Г-н Зайлахер видит в Eoandromeda (а она размером с мяч для гольфа) одного из вендобионтов.

«А я вообще не могу себе представить, как Eoandromeda могла плавать, обладая таким спиральным вооружением, — отмечает Клаус Нильсен, отставной эволюционный биолог из Музея естественной истории Дании. — Так что это никоим образом не гребневик».


Источник:  КОМПЬЮЛЕНТА


 

Палеонтологи выяснили, что у предков рыб и сухопутных животных челюсти появились после того, как обонятельные центры освободили для них место. Для этого обонятельной системе  пришлось «переехать» на внешнюю часть черепа.

С челюстями и без

Ископаемая рыба ShuyuИскопаемая рыба ShuyuУ первых позвоночных был хорошо развит череп, но не было челюстей. Бесчелюстные рыбы господствовали 440 миллионов лет назад – в силурийском периоде. Но уже в девоне (416 миллионов лет назад) более совершенные челюстные рыбы вытеснили бесчелюстных.

Большинство современных позвоночных умеют открывать рты и жевать. Они – челюстные, эволюционные потомки девонских рыб. Но на Земле осталось и несколько десятков видов, которые смогли выжить, не разевая рта – это миноги и миксины.«По живым бесчелюстным позвоночным сложно судить о том, как происходила реорганизация черепа», – пишут палеонтологи под руководством Филипа Донохью (Philip Donoghue) из Бристольского университета (University of Bristol).

Чтобы собрать «эволюционный пазл» полностью, палеонтологи исследовали ископаемые остатки нескольких видов бесчелюстных рыб рода Galeaspida, возрастом 370-435 миллионов лет. Впервые они были обнаружены в середине 1980-х годов в Китае и Вьетнаме, а сейчас ученым удалось заглянуть внутрь окаменелостей.

Палеонтологи объясняют, что черепа Galeaspida особенно ценны для эволюционистов: они сочетают признаки бесчелюстных и челюстных рыб, а значит, могут дать информацию, которую невозможно найти в головах миксин и миног.

Без челюсти с одной ноздрей

С помощью томографа Филип Донохью (Philip Donoghue) и его коллеги заглянули в самые дальние уголки черепной коробки ископаемых бесчелюстных рыб, после чего создали трехмерную модель черепа и «портрет» рыбы.

У животного одна ноздря и нет челюсти. Ротовая полость расширена, как у всех бесчелюстных рыб. Жаберные мешки спрятаны под кожей: рыбам приходилось дышать так, как это делают тритоны – через кожу.Но в отличие от более примитивных родственников, у Galeaspida, как и у современных рыб, два обонятельных центра.


Источник:  Infox.ru

 

Самыми крупными животными в истории планеты были зауроподы. Составьте вместе четыре лондонских омнибуса — вот какая длина. Они рождались 10-килограммовыми птенцами, а масса взрослых особей достигала 100 тыс. кг. Одни только ноги весили несколько тонн.

Этапы эволюции зауроподов (здесь и ниже иллюстрации из журнала Nature)Этапы эволюции зауроподов (здесь и ниже иллюстрации из журнала Nature)Эти четвероногие титаны юрского и мелового периодов (200–65 млн лет назад) имели целый ряд специализаций, которые позволили им достичь таких масштабов. Благодаря длинной шее, широко открывающимся челюстям и зубам-граблям диплодоки, брахиозавры и иже с ними объедали верхушки деревьев и потребляли огромное количество листвы, не растрачивая энергии на перемещение массивных ног. Кости таза и конечностей были достаточно крепкими, чтобы выдерживать вес динозавров, а полые позвонки и маленькие головы облегчали нагрузку. Особая схема развития костей позволяла молодняку набирать по несколько тонн в год.

    Палеонтологи долго считали, что эти анатомические новинки возникли одновременно с большими зауроподами — что взрыв эволюционной специализации совпал с увеличением размеров. Однако в последние годы было сделано несколько открытий, которые показали, что многие важные изменения появились задолго до этого среди ранних зауроподоморфов. Пол Барретт из Музея естественной истории в Лондоне (Великобритания) называет эту группу «невоспетыми членами сообщества динозавров».

    Ранние зауроподоморфы разгуливали на двух конечностях и вообще имели, на первый взгляд, мало общего со своими огромными потомками. Но именно эти маленькие существа постепенно начинали есть, передвигаться и дышать так, что в дальнейшем эти функции сделали возможными появление зауроподов.

    Этап I: начиная с малого

    Большинство окаменелостей, относящихся к этому периоду, найдено в захолустных районах Южного полушария, прежде всего в Аргентине и Южной Африке.

    В 2006 году палеонтолог Рикардо Мартинес обнаружил многообещающий набор костей в пустыне на северо-западе Аргентины. Они вышли из породы конца триасового периода (около 230 млн лет назад) — в то время только начинали появляться первые динозавры. Мартинес обнаружил, что зубы имели грубые зазубрины по краям — приспособление для резки волокнистых растительных материалов. У других ранних динозавров были тонкие зубцы, более подходившие для рассечения плоти. Поэтому учёный решил, что ему попался крошечный предшественник великих зауроподов.

    В 2009 году Мартинес и Оскар Алькобер, тоже из Музея естественных наук Сан-Хуана (Аргентина), описали этот частичный скелет. Животное передвигалось на двух ногах, имело 1,6-метровое тело высотой с индейку и длинный хвост, а весило всего 7–8 кг. Мартинес назвал его Panphagia protos — «первое всеядное».

    Г-н Барретт считает, что расширение рациона — самый первый шаг на пути к увеличению размеров тела. Однако обычное пощипывание травки не позволило бы это сделать, говорит Мартин Зандер, палеонтолог Боннского университета (ФРГ). Поэтому зауроподы подняли голову.

    Для такого питания требуется длинная шея, которая была бы невероятно тяжёлой, если бы имела твёрдые позвонки. Поэтому позвонки больших зауроподов пронизаны отверстиями. Масса этих заполненных воздухом (пневматических) костей составляла всего 35% от веса твёрдых костей. Благодаря этому длина шеи могла достигать 15 м, отмечает Мэтью Уэдел, палеонтолог из Западного университета наук о здоровье (США). Возможно, полости пневматических костей были связаны с воздушными мешками внутри организма, что помогало направлять струю воздуха через лёгкие и повышать эффективность дыхания гигантов (нечто подобное наблюдается у современных птиц). Без этих воздушных мешков зауроподы не смогли бы очистить застоявшийся воздух, наполнявший шею после каждого вдоха: лёгкие были слишком малы, чтобы справиться с ним в одиночку.

    Так вот, г-н Уэдел нашёл потенциальных предшественников таких пневматических костей у раннего зауроподоморфа Pantydraco: его шейные позвонки имели ямки в тех местах, где у зауороподов были отверстия. Тем самым увеличивалась эффективность кислородного обмена, и это позволяло предкам динозавров побеждать в конкурентной борьбе, ведь в конце перми и начале триаса (260–240 млн лет назад) атмосферная концентрация кислорода была ниже, чем сегодня.

Этап II: несколько тонн в год

    Ранние зауроподоморфы были маленькими, юркими и в основном двуногими. То есть могли убежать от хищника. Однако на новом этапе эволюции они вырастают до 2–10 м в длину.Так менялись зубыТак менялись зубы

    Самая старая окаменелость этой стадии относится к началу юрского периода (ок. 200 млн лет назад). Прозауроподы имели более длинные шеи и туловища, более крупные тела и относительно короткие ноги по сравнению с предшественниками. Именно масса тела, которая была на порядок выше, чем у хищников того времени, позволила ещё менее проворным зауроподам выжить. «Злодей просто не мог укусить так, чтобы убить», — отмечает г-н Зандер.

    Если бы зауроподы росли медленно (как большинство рептилий), на достижение полного размера уходило бы не меньше века. Но это означало бы беззащитность молодняка в течение длительного времени.

    Ключевой «инновацией» стала фиброламеллярная кость, которая развивается в два приёма. «Каркасная структура костей расширяется очень быстро, благодаря чему они растут примерно на одну десятую миллиметра в день, постепенно заполняясь внутри», — поясняет г-н Зандер.

    Истоки этой черты появились задолго до гигантских зауроподов. В 2005 году г-н Зандер и один из его аспирантов Николь Кляйн обнаружили признаки фиброламеллярной кости у платеозавра, который жил в конце триаса и имел около 10 м в длину. Изучив останки более сорока особей, учёные показали, что некоторые животные достигли полного размера всего за 12 лет.

    Быстрый рост более характерен для теплокровных животных — возможно, некоторые динозавры и впрямь имели повышенную температуру тела. Недавно Роберт Игл, геохимик из Калифорнийского технологического института (США), и его коллеги вычислили, что гигантские зауроподы брахиозавр и камаразавр были на 5–12 ˚С теплее, чем современные аллигаторы.

    У платеозавра и прочих прозауроподов появились и другие анатомические изменения, которые помогли их потомкам приобрести баснословные размеры. Например, титану нужен усиленный крестец. Так вот, у ранних зауроподоморфов было два крестцовых позвонка, а у прозауроподов — уже три.

    Эти и другие нововведения привели к эволюционному скачку в конце триаса: семикилограммовых зауроподоморфов (например, Panphagia) сменили четырёхтонные платеозавры. «Резкое увеличение размера наблюдаются в течение первых 25 млн лет истории зауроподоморфов, — говорит Мартин Эскурра, палеонтолог Аргентинского музей естественных наук им. Бернардино Ривадавии. — Это самый быстрый прогресс в истории жизни на Земле».

    Этап III: на ступенях трона

    Представителей этой стадии (их можно назвать почти зауроподами) нашёл Адам Йейтс из Университета Витватерсранда (ЮАР) в Южной Африке. Он и его коллеги сорвали куш на холме Спион-Коп.

Новый вид назвали Aardonyx celestae. По нижней челюсти животного учёные определили, что динозавр не обладал мясистыми щеками, которые не позволяли открывать рот широко. Иными словами, вместо того чтобы отрывать маленькие кусочки и жевать, как это делали его старшие родственники, Aardonyx делал мощные глотки.

    Это приспособление покончило с необходимостью в больших мышцах челюсти и массивной голове и позволило развиться длинной шее, указывает г-н Зандер.

    Aardonyx был двуногим, но его ноги уже имели то, что впоследствии привело к передвижению на четырёх конечностях. Мэтью Боннан из Западного Иллинойсского университета (США) отмечает, что бедро существа было длиннее голени (в отличие от ранних зауроподоморфов, у которых эти кости были примерно одинакового размера). «Это позволяет предположить, что животным была нужна не столько скорость, сколько поддержка», — говорит учёный.

    Передние конечности динозавра не отставали. У истинных зауроподов пара длинных костей предплечья сцеплена таким образом, чтобы конечности были крепче. Aardonyx находился на более ранней стадии такого переплетённого предплечья.

    В этом году был описан почти зауропод из ранней юры Leonerasaurus taquetrensis, который имел всего лишь 2,5 м в длину и ходил на двух ногах. Но имел четыре крестцовых позвонка. В прошлом году г-н Йейтс предположил, что четыре крестцовых позвонка — верный признак четвероногости.

    Г-н Барретт также обнаружил, что леонеразавр располагал ложковидными, наклонёнными вперёд передними зубами, которыми легко было загребать растительность — так же, как это позднее делали истинные зауроподы.

    Исследователи отмечают, что Leonerasaurus и другие зауроподоморфы не были предками зауроподов. Поскольку в палеонтологической летописи много пробелов, прямых предшественников определить трудно. Они просто дают нам понять, как могла проходить эволюция зауроподов.

    Этап IV: на четвереньках

    Многие зауроподоморфы позднего триаса и ранней юры могли передвигаться по мере необходимости и на двух, и на четырёх ногах. Только в 2008 году Ронан Аллен из Национального музея естественной истории (Франция) и Наджат Акесби из Университета Мохаммеда V (Марокко) описали жителя поздней юры, который не вставал с четверенек.               

    «Тазудазавра можно считать самым старым истинным зауроподом», — говорит г-н Аллен. В отличие от своих предков, у которых были длинные хватательные пальцы, это 9-метровое животное имело короткие руки, на которые можно опираться. Tazoudasaurus попал в новую группу зауроподов под названием Gravisauria («тяжёлые ящеры»).

    «Тяжесть» — понятие относительное: самые массивные зауроподы возникли только через 90 млн лет после этого. К началу мелового периода длина тела некоторых видов достигла 40 м, а масса тела приблизилась к 100 т. Но по сравнению с более ранними ступенями эволюции в этот период появилось очень мало новых хитростей.

    История зауроподов — великолепный пример важности предварительной адаптации. Новые черты могут быть нейтральными или служить какой-то совсем другой цели, но позже складываются вместе, и тогда... «У истинных зауроподов просто всё встало на свои места, — говорит г-н Уэдел. — Каким-то образом они получили весь набор функций, позволивших им вырасти».


Источник:  КОМПЬЮЛЕНТА


 

 

 

Змеи оказались ближе к варанам, а не двуходкам — безногим рептилиям с большой головой, как считалось раньше. К этому выводу пришли палеонтологи, изучавшие ископаемую ящерицу эпохи эоцена Cryptolacerta hassiaca.

Скелет ящерицы Cryptolacerta hassiacaСкелет ящерицы Cryptolacerta hassiacaВопрос о происхождении змей волнует палеонтологов уже давно. Правда, окончательно решить проблему пока что не удалось. Например, генетические исследования говорят о том, что змеи ближе всего к варанам и игуанам. А морфологический анализ это не подтверждает, а указывает на то, что змеи очень похожи на двуходок. Двуходки – это большая группа безногих рептилий. Их отличительная особенность – голова с сильно развитыми костями черепа, что позволяет этим животным легко проделывать в земле ходы.

Группе ученых под руководством профессора Мюллера (J. Muller) из Музея естественной истории (Берлин), похоже, удалось прояснить вопрос о происхождении змей при помощи ископаемой ящерицы Cryptolacerta hassiaca. Она была найдена в знаментом карьере Мессель, расположенном рядом с Франкфуртом-на-Майне, где залегает множество ископаемых останков животных эпохи эоцена. Возраст находки – приблизительно 47 млн. лет, а размеры совсем крошечные — длина тела ящерицы всего семь сантиметров.

При помощи компьютерной томографии ученые изучили анатомическое строение ископаемой ящерицы, а затем сравнили эти данные с анатомией современных ящериц и змей. По их мнению ящерица оказалась промежуточной формой между варанами и змеями. «Анализ ящерицы Cryptolacerta hassiaca, который мы провели, опровергает теорию о том, что змеи и тихоходки имеют общего предка. Нам удалось показать, что эти группы животных развивались параллельно, но совершенно независимо друг от друга», — говорит профессор Мюллер.

По словам ученых, ископаемая ящерица унаследовала черты тихоходок – крупную голову с утолщенными костями черепа. Эти две группы животных тесно связаны с настоящими ящерицами. А змеи по своему строению и генетическим данным оказались ближе всего к варанам. «Змеи и двуходки имеют много общих черт, например, удлиненное тело, отсутствие конечностей и развитые кости черепа, но развивались эти животные независимо друг от друга», — подводит итог своего исследования Мюллер.


Источник: Infox.ru


Ленивцы отличаются от прочих млекопитающих в первую очередь тем, что их шея содержит самое большое среди представителей этой группы число позвонков. А у ламантинов ситуация другая — число их шейных позвонков минимально среди млекопитающих. Любопытно, что оба этих приспособления связаны с медлительностью данных животных.

ЛенивецЛенивецУ всех млекопитающих число шейных позвонков одинаковое: что у жирафа, что у мыши, что у человека — у всех ровно по семь позвонков. Впрочем, не бывает правил без исключений. У одного представителя фауны — ленивца — шейных позвонков больше, чем у остальных млекопитающих.

Птицы, рептилии и амфибии могут иметь разное количество позвонков. У лебедя, например, их от 22 до 25. С млекопитающими другая история: дополнительные позвонки, внезапно "выросшие" на стадии эмбриона, повышают риск мертворождения, а если зверушка родилась живой, ей грозит рак или проблемы с нервной системой.

А вот ленивцам прекрасно живется с "неправильным" количеством позвонков. Причем у каждого семейства этих зверей их количество разное: у двупалых ленивцев (Choloepus) шейных позвонков бывает от пяти до семи, а у трехпалых (Bradypus) — по восемь или девять. У отдельных экземпляров из этого семейства бывает даже по 10 шейных позвонков. И ничего — живут, не жалуются.

Во время формирования позвоночник млекопитающих проходит несколько стадий: позвонки окостеневают сначала в грудном отделе, а затем в шейном. В случае с ленивцами окостенение начинается сразу и в грудном отделе, и нескольких примыкающих к нему безреберных позвонках, которые обычно относят к шейным, хотя, исходя из особенностей формирования их было бы правильнее считать грудными. Кроме того, на одном-двух последних шейных позвонках сохранились рудиментарные ребра, правда, не доходящие до грудины.

Почему так получилось — это давняя загадка. Еще до публикации знаменитой теории эволюции Чарльза Дарвина среди зоологов возникали горячие дискуссии на эту тему. Однако объяснить этот факт не смог даже такой блестящий специалист по сравнительной анатомии как Жорж Кювье. По правде сказать, ученые до сих пор точно не знают, почему в процессе эволюции у ленивцев вдруг аномально удлинилась шея. Однако некоторые гипотезы, пытающиеся объяснить данный феномен, тем не менее, есть.

Скелет ленивца

Согласно одной из версий, увеличение количества шейных позвонков могло быть вызвано произвольной мутацией гомеозисных генов, (которые также называют Hox-генами) которые контролируют раннее развитие организма и отвечают за дифференцировку тканей и закладку органов у зародыша. Правда, в таком случае изменения должны касаться не только позвоночника, но и остальных органов. И, кроме того, логично предположить, что раз данная мутация была поддержана естественным отборам, то, следовательно, мутант получил от нее какую-то выгоду. Но какую?Скелет ленивцаСкелет ленивца

То, что изменение коснулось многих внутренних органов, блестяще подтверждается данными биологов, исследовавших внутреннее строение ленивцев. Известно, что у Bradypus имеется ассиметрия ребер, искривление трахеи, сращивание позвонков и окостенение таза. Несомненно, все это является следствием увеличения количества позвонков. Куда сложнее ответить на вопрос — для чего ленивцам потребовалось так уродовать себя? Видимо, это объясняется какими-то особенностями их образа жизни.

Представитель Нидерландского центра по биоразнообразию доктор Галис говорит, что единственное, что спасает ленивцев от всех неприятных последствий, которыми чревата восьми- или девятипозвонковость — это их замедленный метаболизм. Действительно, с точки зрения физиологии эти забавные существа являются скорее рептилиями, нежели млекопитающими. Температура их тела может колебаться от 24 до 33-35°С, то есть практически на 10°С, что является обычным именно для пресмыкающихся, но не для их теплокровных потомков. Именно поэтому часто переваривание порции съеденных листьев может занимать у ленивцев около месяца, а ходить в туалет они могут всего лишь раз в две недели.

Правда, неспешный обмен веществ и пониженная температура защищает этих "рептильных" млекопитающих от ряда заболеваний — таких как рак, например. Однако и неудобств они причиняют немало — в частности, когда температура низкая, то снабжение мышц энергией замедляется, поэтому передвигаться им становится весьма тяжело. Вот тут-то и помогает аномально длинная шея — она позволяет этим медлительным животным поворачивать голову на 270 градусов, отчасти компенсируя, таким образом, ограниченную способность к передвижению: вися на дереве, ленивец, чтобы добраться до свежей листвы, крутит шеей, сам при этом оставаясь на месте. На работу же шейных мышц много энергии тратить не надо.

Ламантин

Справедливости ради стоит добавить, что в царстве млекопитающих есть и еще одно "исключение из позвоночного правила". Это ламантин (Trichechus), огромное водное животное отряда сирен (Sirenia). У ламантинов всего шесть шейных позвонков, которые вдобавок слиты и укорочены. Интересно, что причиной, скорее всего, тоже является образ жизни этого существа.

ЛамантинЛамантинНапомню, что, в отличие от тюленей и моржей, ламантины являются вегетарианцами. Эти медлительные и добродушные существа неторопливо пасутся на водорослевых лугах подобно наземным коровам. Врагов у ламантинов в мире животных практически нет — мало кто сможет справиться со зверем, обладающем столь внушительными размерами (до 5 метров в длину при весе в полтонны), а крупные акулы, которым это было бы под силу, редко посещают мелководья, где обитают эти увальни.

Из-за подобного образа жизни подвижность шеи для этих животных стала не особенно актуальной. А уменьшение ее длины, наоборот, выгодно — в результате такой перестройки ламантины получили возможность приблизить голову к туловищу, что положительно сказалось на общей плавучести организма (тело стало по форме близко к овалу, а эта форма наиболее выгодна для тех, кто парит в толще воды).

Как видите, у некоторых в результате медлительности шея увеличивается, а у некоторых укорачивается. Что и говорить, эволюция иногда парадоксальна.

 


 

Источник: Pravda.ru


 

На территории Китая палеонтологи нашли древнее млекопитающее, чьи слуховые кости в составе стремечка, молоточка и наковальни еще не утратили прямую связь с нижней челюстью. Эта находка наконец-то окончательно подтвердила справедливость предположения о том, что элементы среднего уха наземных позвоночных произошли из костей челюстного аппарата.

Переходная формаНедавно китайские палеонтологи сделали открытие, которое смогло подтвердить справедливость одной старой эволюционной реконструкции, которая, кстати, до сих пор присутствует в большинстве отечественных учебников по зоологии. Им удалось фактически доказать, что кости среднего уха современных наземных позвоночных произошли от челюстных элементов предковых форм. Найденное учеными Поднебесной примитивное млекопитающее, обитавшее примерно 120 миллионов лет тому назад явилось тем самым недостающим переходным звеном, которое так долго искали эволюционисты.

Собственно говоря, кому-то, может быть, подобное открытие покажется смешным — экая невидаль, итак любой школьник знает, откуда у млекопитающих взялось среднее ухо. На самом деле здесь не все так просто. Дело в том, что данная реконструкция, которую многие поколения отечественных учащихся принимало как нечто, уже давно доказанное, на самом деле таковой, строго говоря, не являлось.

Как известно, в науке ни одну теорию или даже гипотезу нельзя принимать на веру, то есть без соответствующих доказательств (именно этим наука отличается от других мировоззренческих систем, например, религии). Однако доказательства часто невозможно предъявить сразу — иногда на то, что бы добыть их, уходят годы или даже десятилетия. Кстати, если речь идет об эволюционных реконструкциях, то в этой области подобный временной разрыв между предположением и окончательным выводом — обычный случай.

До тех пор, пока нет четких доказательств, любая гипотеза принимается учеными в лучшем случае как презумпция (то есть с условием: "данное утверждение считается верным до тех пор, пока не доказано обратное"). В худшем же случае — просто как одна из рабочих версий. Многие известные нынче научные теории и законы существовали в виде презумпций достаточно длительное время (например, между появлением знаменитой теории относительности Эйнштейна и ее первым фактическим доказательством прошло больше десяти лет), а некоторые и поныне являются таковыми (всем известный закон сохранения массы и энергии).

Так вот, реконструкция, выводящая среднее ухо наземных позвоночных из челюстных элементов предковых форм появилась еще в конце XIX — начале XX веков. Ряд биологов, в числе которых были и знаменитые отечественные эволюционисты А. Н. Северцов и И. И. Шмальгаузен сделали подобное предположение, исходя, однако, не из палеонтологических, а из эмбриологических данных. Суть этой гипотезы заключалось в следующем.

Косточек среднего уха (у млекопитающих это стремечко, молоточек и наковальня, а у птиц и рептилий — только стремечко), как известно, нет ни у амфибий, ни у рыб, являющихся предками всех наземных позвоночных. Зато у последних имеется так называемый гиомандибулярный аппарат (комплекс из нескольких костей и хрящей), который осуществлял связь челюстей друг с другом, а также с черепом и жаберными дугами. Однако когда на базе древних рыб возникли первые земноводные, их череп несколько изменился, а жаберный аппарат вообще исчез.

News10a20a2В новом черепе этот гиомандибулярный аппарат утратил прежнюю роль подвеска челюстей. Кроме того, замена жаберного дыхания легочным (и кожным) сопровождалась прекращением деятельности вентиляционного механизма жаберной крышки, которая также редуцировалась за ненадобностью. В итоге, потеряв обе свои прежние функции, рассматриваемый нами элемент черепа также подвергся некоторой редукции.

Однако - поскольку гиомандибулярный аппарат располагался в черепе сбоку от слуховой капсулы и его отростки упирались в стенку последней и в накладные кости височной области черепа, под которыми здесь располагается полость - ему нашлось весьма интересное применение. Дело в том, что при нахождении организма предка всех позвоночных на суше эта полость оказалась заполненной воздухом и ее наружная стенка после редукции жаберной крышки стала относительно тонкой. Предполагается, что она могла вибрировать в ответ на колебания окружающего воздуха, как барабанная перепонка. А гиомандибулярный аппарат, упиравшийся в данную перепонку и в стенку слуховой капсулы, скорее всего, передавал трансформированные колебания воздуха к внутреннему уху. Так этот исходный элемент челюсти функционально превратился в составляющую примитивного среднего уха.

Далее его судьба у разных потомков древних амфибий была различной. У так называемых завроморфных рептилий, которые стали предками современных пресмыкающихся, динозавров и птиц от гиомандибулярного аппарата произошла только одна слуховая кость — стремечко, или слуховой столбик (это было доказано отечественными палеонтологами на примере черепа древней ящерицеподобной рептилии Bashkyroleter mesensis). В принципе этим животным, которые исходно представляли собой засадных хищников и очень медлительных бронированных фитофагов, для которых основным способом получения информации является зрение, дальнейшее усовершенствование слухового аппарата было просто не нужно — оно не несло никаких эволюционныТероморфых выгод.

А вот более активные тероморфные рептилии, от которых впоследствии произошли млекопитающие, добавили к стремечку еще две кости нижней челюсти, функционально связанные с гиомандибулярным аппаратом (проще говоря, он за них цеплялся) — сочленовую и квадратную. В результате тероморфы остались с укороченной нижней челюстью (видимо, именно это потом подвигло их на дифференцировку зубов на резцы, клыки и коренные) и совершенным слуховым аппаратом среднего уха, состоящего из трех "усилителей" — стремечка, молоточка и наковальни. Им такой "радар" был жизненно необходим, поскольку в основном это были сумеречные хищники, привыкшие больше доверять своим ушам, нежели глазам.

По мнению ученых, эти процессы у древних наземных позвоночных происходили в интервале от 270 до 115 миллионов лет назад. Однако долгое время прямых подтверждений из палеонтологической летописи эта схема не имела — исследователи просто не находили останков промежуточных форм. Так что до начал нынешнего века данная гипотеза держалась лишь на данных по развитию зародышей наземных позвоночных — еще в первой половине прошлого века было установлено происхождение из одних и тех же структур зародыша квадратной и суставной костей в челюстях у рептилий и молоточка и наковальни в среднем ухе у млекопитающих.

News10a20a3Однако, как вы сами понимаете, подобное доказательство, строго говоря, не является исчерпывающим — оно позволяет лишь говорить о том, что так могло быть в процессе эволюции, но не о том, что так было на самом деле. Однако недавно китайским палеонтологам удалось добыть более авторитетные доказательства и перевести данную реконструкцию из разряда вероятных в разряд достоверных.

Еще в 2009 году ими был найден зверёк размером с бурундука, получивший название Maotherium asiaticus из группы древних млекопитающих морганукодонов (Morganucodon), которые вымерли, не оставив потомков. Их меккелев хрящ (производная гиомандибулярного аппарата) уже находился в состоянии окостенения, что может свидетельствовать о его грядущей утрате у более поздних видов и развитии на этом месте слуховых косточек. Произошло это 200-125 миллионов лет назад. Такой окостеневший гиомандибулярный аппарат уже был связан со слуховой капсулой и, скорее всего, играл роль "усилителя". Однако сочленовая и квадратная кость у данного животного еще находятся в составе нижней челюсти, хотя остаются с ним связанными.

А вот совсем недавно было найдено еще одно "недостающее звено". В Поднебесной было найдено древнее млекопитающее из рода Liaoconodon. Этот похожий на белку зверек обитал на нашей планете около 120 миллионов лет назад. Так вот, у него меккелев хрящ уже представляет собой настоящую кость (подобную слуховому столбику рептилий) и на найденном образце достаточно хорошо видно, что он служит связующим звеном между слуховой капсулой и квадратной и сочленовой костью, которые уже отделились от нижней челюсти, хотя находятся непосредственно рядом с ней. Как видите, это и есть тот самый промежуточный вариант, существование которого почти сто лет назад предсказал А. Н. Северцов.

"Это первое недвусмысленное доказательство, являющееся переходной формой", — говорит автор находки палеонтолог Цзинь Мэн. По словам ученого, с таким слуховым аппаратом этот зверек обладал уже очень хорошим слухом (по сравнению с рептилиями), чувствительным к высоким частотам, что возможно помогало ему в поиске насекомых в темноте ночного леса (он был активен по ночам, об этом говорят его весьма крупные глаза). Что, кстати, тоже подтверждает одно из вышеупомянутых предположений о причине дальнейшего совершенствования среднего уха у тероморф.

Итак, еще одна палеонтологическая реконструкция пополнилась рядом из промежуточных форм, который доказывает ее корректность. Так что теперь школьники и студенты, читающие об эволюции среднего уха древних позвоночных, могут быть уверены в том, что давным-давно, в юрском, а затем и в раннем меловом периоде все именно так и было…

 


 

Источник: Pravda.ru


 

Генетики выяснили, кто же настоящие предки человека. А также откуда и как взялись они, сами приматы и, собственно, люди. Древо получилось загибистым и ветвистым.

Руконожка мадагаскарская Руконожка мадагаскарская Большая международная команда исследователей из США, Бразилии, Франции и Германии секвенировала фрагменты 54 ядерных генов (34927 пар оснований) от 186 видов приматов. Эти виды принадлежат к 61 роду, что составляет 90% всех живущих на земле родов отряда приматы. В результате ученые составили новое молекулярно-генетическое древо приматов и уточнили многие спорные вопросы их систематики. Они проследили, как приматам удалось достигнуть такого разнообразия (например, лемур совсем не похож на орангутана), как происходило образование новых видов и освоение ими новых территорий. И заодно узнали много нового об эволюции человеческих генов.

Неожиданное родство

Ученые сравнили строение аналогичных участков генома у разных приматов и нашли места точечных мутаций – нуклеотидных замен, выпадения (делеции) фрагментов ДНК и иные хромосомные перестройки. Это позволило им выяснить, кто, когда и от кого произошел. Происхождение всего отряда приматов до сих пор оставалось спорным вопросом. Полина Перельман (Polina Perelman) из National Cancer Institute–Frederick, Frederick, Maryland и ее соавторы показали, что ныне живущие приматы появились примерно 85 млн лет назад от общего предка. По-видимому, это произошло в Азии, где живут наиболее близкие родственники приматов – как ни удивительно, это шерстокрылы. Это древесные млекопитающие, имеющие перепонки между лапами, что позволяет им планировать в прыжке с ветки на ветку наподобие летяг. За ними по близости родства к приматам следуют тупайи.

Обезьяны с разными носами

ТупайяТупайяБиологи уточнили место на эволюционном древе самой примитивной группы приматов – мокроносых обезьян (Strepsirrhini), которых раньше некоторые специалисты относили к полуобезьянам. Гены показали, что они отделились от сухоносых обезьян (Haplorrhini) 87 млн лет назад. А примерно 68,7 млн лет назад мокроносые разделились на две ветви. Одна из них колонизировала остров Мадагаскар, и здесь от общих предков произошли лемуры, индриды и руконожки (современный представитель — руконожка мадагаскарская). Другая ветвь породила семейства лори и галаго. От ветви сухоносых обезьян первыми отделились долгопяты (Tarsius), которых раньше тоже обезьянами не считали. О древности долгопятов свидетельствуют 25 делеций в исследуемых участках генома, накопившихся за время их истории.

Широконосые, или обезьяны Нового света (Platyrrhini) отделились от общего предка с узконосыми обезьянами Старого света (Catarrhini) примерно 43,5 млн лет назад. Открытым остается вопрос, как им удалось завоевать Америку, и повлияли ли на это изменения климата. Но разделение широконосых на отдельные семейства произошло 24,8 млн лет назад в тропических лесах Амазонки. Исследователи уточнили, в какой последовательности и в какое время возникли паукообразные обезьяны, ревуны, цебусы, саймири, мармазетки и тамариски. Они выяснили, какие точечные мутации привели к возникновению ночных обезьян (Aotidae) – единственной группы приматов Нового света, которые перешли к ночному образу жизни.

Среди узконосых обезьян Старого света мартышковые (Cercopithecidae) разделились на подсемейства и роды 18 млн лет назад. Биологи уточнили, когда и как появились колобусы, тонкотелы, павианы, макаки, мандрилы и, собственно, мартышки. Один из самых известных родов – макаки, возник 5,1 млн лет назад.

На вершине дерева

Наконец, гоминоиды (Hominoidea) – высшие узконосые обезьяны, появились примерно 13 млн лет назад. Первыми от них отделилась ветвь гиббонов, затем – ветвь орангутанов. Подсемейство гоминин (Homininae), к которым принадлежат роды горилла, шимпанзе и человек (Gorilla, Pan, Homo), продолжала развиваться дальше. Отделение гориллы не сопровождалось делециями в изучаемых участках ДНК, а отделение шимпанзе от человеческой ветви произошло с участием двух делеций.

Анализ показал относительно недавние генетические изменения у мартышковых и более древние у мокроносых обезьян. Средняя скорость нуклекотидных замен у приматов – 6,163 х 10−4 на точку в миллион лет, но она сильно различается в разных группах. Ученые показали, что у более «продвинутых» узконосых обезьян изменения происходят с меньшей скоростью, чем у широконосых и мокроносых. А самая высокая скорость оказалась у лори и у ночных обезьян. То есть, эволюция приматов от древних к современным замедляется.

Авторы считают, что их результаты имеют практическое значение для человека: «Понимание генетической природы разных заболеваний не может быть полным без знания предыдущей генетической истории».

 


 

Источник: Infox.ru


 

Энтомологи сумели построить эволюционное древо, включающее в себя все известные на сегодня виды двукрылых.

Бескрылое двукрылое — кровососущий паразит рунец овечий (Melophagus ovinus)  (фото Carolina Biological) Бескрылое двукрылое — кровососущий паразит рунец овечий (Melophagus ovinus) (фото Carolina Biological) По словам самих учёных, создана «периодическая таблица мух». Впрочем, сразу скажем, что «мухи» — это общее название огромного отряда двукрылых (Diptera), в который входят всем знакомые домашние мухи, дрозофилы, москиты, комары и многие, многие другие. Степень пластичности этого отряда насекомых поражает: личинки двукрылых можно найти в бензине, в горячих источниках, в ульях пчёл, в жабрах тропических крабов и так далее и тому подобное. Полученное родословное мушиное древо показывает, какими путями шла эволюция этих созданий и как двукрылым удалось распространиться столь широко.

Эволюционно-генетическое древо строили, исходя из самых полных данных по анатомии и генетике видов Diptera, имеющихся на сегодня. Древнейшие из сохранившихся видов имеют причудливую внешность с чрезмерно удлинёнными ногами и крыльями и предпочитают жить вблизи высокогорных источников. Как говорит профессор Брайан Вигман из Университета Северной Каролины (США), двукрылые начали своё наступление из влажных, околоводных мест обитания, занимая постепенно всё более засушливые районы. Необычайная пластичность этой группы позволила её участникам процветать сразу в нескольких эволюционных направлениях.

Эволюционное древо двукрылых (из статьи авторов исследования)Эволюционное древо двукрылых (из статьи авторов исследования)Эволюционное развитие двукрылых отражает вспышки общего видового разнообразия, имевшие место в далёком прошлом. Самыми щедрыми на новые виды двукрылых оказались три периода — 220, 180 и 65 млн лет назад. Когда время динозавров подходило к концу, царями планеты оказались двукрылые и чешуекрылые, то есть мухи и бабочки. В работе энтомологов отмечены моменты, когда мухи крайне резко меняли «стиль и образ жизни»; так, зафиксировано 12 случаев, когда разные виды независимо от других обретали «вкус к крови» и начинали истязать млекопитающих, и 18 случаев, когда мухи теряли крылья, превращаясь в бескрылых паразитов.

Прояснились и некоторые удивительные родственные связи между разными видами. Например, ближайшими родственниками плодовой мушки дрозофилы, с которой связаны ключевые открытия в генетике и молекулярной биологии, оказались два необычных паразита: бескрылая пчелиная вошь, причина недуга по имени браулёз у пчел, и семейство Cryptochetidae, которое используется для контроля над сельскохозяйственными вредителями червецами.

Работа энтомологов опубликована на сайте журнала PNAS.

На сегодня известно 152 000 видов двукрылых, и это не предел: энтомологи постоянно открывают новые виды этих насекомых. Теперь, имея под рукой «периодическую систему двукрылых», будет проще соотносить новые виды с их родственниками, уже известными науке. С двукрылыми связаны не только малярия и сотни других болезней: они являются опылителями и важнейшими редуцентами, организмами-мусорщиками. Понимание эволюционно-родственных взаимосвязей внутри группы поможет нам выработать грамотные способы влияния на этих полезных и опасных насекомых.


Источник: КОМПЬЮЛЕНТА


 

Американские биологи подвергли сомнению теорию о том, что «эволюция потакает посредственностям».

Два разных вида черепах — последствия разделяющего отбора:  у общего предка большие и маленькие особи разошлись и  основали по собственному виду. (Фото Tea Lover For Ever.) Два разных вида черепах — последствия разделяющего отбора: у общего предка большие и маленькие особи разошлись и основали по собственному виду. (Фото Tea Lover For Ever.) Считается, что эволюция усредняет: самые успешные с точки зрения естественного отбора особи имеют среднюю величину тела и умеренную скорость развития. Наиболее распространённый пример — новорождённые с завышенным или заниженным весом имеют меньше шансов выжить, чем нормальные («усреднённые») малыши.

Именно таким отбором движется эволюция; случаи выигрыша эволюционной гонки особями, существенно отклонившимися от нормы, редки. На долю разделяющего отбора, когда в выигрыше оказываются «отклонения от нормы», приходятся редкие случаи видообразования: большие и малые особи расходятся и основывают по собственному виду.

В работе биологов-эволюционистов из Университета Северной Каролины в Чапел-Хилле доказывается обратное: больше — значит, лучше. Джоэл Кингсолвер, один из соавторов исследования, говорит, что стабилизирующий отбор, потакающий «посредственностям», не такое уж распространённое явление в эволюции, как принято считать. Учёные проанализировали более сотни видов птиц, ящериц, змей, насекомых и растений; для каждого вида было известно, как менялся внешний облик и поведение в нескольких поколениях, иначе говоря, в каком направлении действовал естественный отбор. Оказалось, что крупные и быстро вырастающие и созревающие акселераты — те, что раньше начинают спариваться, цвести и плодоносить, — имеют бόльшие шансы выжить и оставить потомство.

Правда, тут же перед нами встаёт другой вопрос: если больше означает лучше, то почему мы не живём в мире гигантов? Объяснения этому могут быть следующие: во-первых, не всё то, что хорошо для размножения, хорошо для выживания, и обратно. Например, у рыб ярко окрашенный крупный самец с бóльшим успехом может привлечь как самок, так и хищников. Во-вторых, не всё, что хорошо сегодня, будет столь же благоприятным завтра. Авторы поясняют это на примере вьюрков: птицы с крупным клювом могут есть крупные семена, но если на следующий год уродятся растения с мелкими семенами, большим вьюркам придётся туго: их клюв не в состоянии работать с мелкой пищей. И в-третьих: укрупнение тела не может выходить за рамки разумных пропорций и подчинено «инженерным» соображениям. Например, у летающих насекомых наибольшая эффективность полёта достигается при больших крыльях и маленьком теле.

Впрочем, исследователи признают, что не могут найти препятствий для временной акселерации. Понятно, что именно действует против всеобщего отбора в пользу крупных форм. Но нет ясности с тем, почему мир всё ещё не захвачен быстрорастущими и скороспелыми особями.

Рассмотренная работа опубликована в мартовском номере журнала American Naturalist


Источник: КОМПЬЮЛЕНТА


 

Американские исследователи сумели наглядно продемонстрировать работу   естественного отбора на примере древних лошадей. Эволюция этих животных шла следом за перестройками в рационе, которые происходили во время климатических изменений.

Все мы немножечко лошади, фотограф... (Снимок !.Keesssss.!.)Все мы немножечко лошади, фотограф... (Снимок !.Keesssss.!.)    В теории эволюции часто оказывается невозможным подтвердить гипотезу об эволюционном пути того или иного вида. Это случается, когда все ближайшие родственники изучаемой группы животных давно вымерли. Например, принято считать, что развитие современных лошадей есть классический пример действия естественного отбора. Лошади изменялись вслед за изменениями в питании, то есть переходя в еде с одного вида растительности на другой.

    Эта теория долгое время подтверждалась косвенными   палеонтологическими данными и умозрительными рассуждениями. И вот два исследователя из Нью-Йоркского технологического института, Мэтью   Милбахлер и Никос Солуниас, сумели достоверно показать, как шла эволюция лошадей   в соответствии с изменениями в их рационе.

    Г-да Милбахлер и Солуниас в прямом смысле посмотрели «коню в зубы»   — проанализировали зубы в 6 500 ископаемых останков более чем 70 вымерших видов   лошадей. При этом они исходили из того, что пища оставляет специфические следы  на зубах, которые можно увидеть спустя века. И хотя все лошади были и остаются травоядными, по степени и характеру изношенности зубов можно сказать, какую именно растительную пищу они ели.

    Рацион древних лошадей трансформировался вслед за климатическими   изменениями: с похолоданием животные перешли с плодов и мягкой листвы дождевых лесов на луговые травы. При этом учёные заметили, что поначалу лошади имели зубы, которыми можно было есть мягкие плоды и листву, затем на них стали   оставаться следы жёсткого воздействия нового травянистого рациона. Наконец,  через миллион и более лет зубы перестают сильно изнашиваться и адаптируются к   новому рациону. Важно отметить, что временной разрыв между изменением в рационе и перестройкой зубов соответствует эволюционным масштабам: в ходе естественного отбора появились виды, у которых зубы не изнашивались и были более приспособлены к новой еде.

    Работа опубликована в мартовском номере журнала Science. Один из глобальных принципов теории эволюции и биологии вообще — «Ты то, что ты ешь» — наконец-то получил наглядное доказательство.


Источник:  КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Ученые нашли в Австралии останки сумчатого льва размером с крысу

24-08-2016 Просмотров:3471 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ученые нашли в Австралии останки сумчатого льва размером с крысу

Палеонтологи обнаружили в Австралии останки необычно маленького сумчатого льва, который был назван в честь известного телеведущего и натуралиста Дэвида Аттенборо, британского "кузена" и друга Николая Дроздова, говорится в статье, опубликованной в журнале Palaeontologia Electronica. Microleo attenboroughi"Microleo attenboroughi...

Задние крылья помогали микрораптору управлять полётом

24-10-2012 Просмотров:7907 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Задние крылья помогали микрораптору управлять полётом

Зачем динозаврам хорошо развитые перья на всех четырёх конечностях? Этот вопрос встал перед учёными в 2003 году, с обнаружением на северо-востоке Китая останков вида Microraptor gui, жившего в меловом периоде...

Найден крупнейший овираптозавр Америки

22-03-2014 Просмотров:4760 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Найден крупнейший овираптозавр Америки

Что получится, если скрестить эму с тираннозавром? По-видимому, нечто, напоминающее Anzu wyliei — новый вид двуногих динозавров. Три экземпляра этих животных с оперёнными передними конечностями и хвостами были найдены в...

Палеонтолог выяснил, как первые членистоногие обзавелись головой

08-05-2015 Просмотров:4798 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтолог выяснил, как первые членистоногие обзавелись головой

Палеонтолог нашел в Канаде великолепно сохранившийся отпечаток "мозга" древнего членистоногого существа, который помог ему понять, когда предки насекомых, пауков и ракообразных обзавелись обособленной головой, защищенной броней из хитина, говорится в статье, опубликованной в журнале Current Biology. Отпечаток...

Шимпанзе знают толк в детских игрушках

23-12-2010 Просмотров:7939 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Шимпанзе знают толк в детских игрушках

14-летнее наблюдение за молодыми шимпанзе национального парка Кибале (Уганда) показало удивительную вещь: у животных есть игрушки! Из трёх видов человекообразных обезьян шимпанзе встречаются чаще всего. (Фото Ian Press.) Юные самцы и...

top-iconВверх

© 2009-2017 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.