Мир дикой природы на wwlife.ru
Вы находитесь здесь:Звуки>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Нервные клетки общаются друг с другом мгновенными электрическими импульсами, при этом как-то ухитряясь годами удерживать информацию, которую они некогда получили. Считается, что работа нервных клеток сводится не только к мимолётным импульсам, что есть ещё какие-то процессы, создающие и поддерживающие длительные изменения. Но если мы говорим о «длительных изменениях», то это почти всегда приводит нас к ДНК и обслуживающему её аппарату.

Дендритный шипик — место формирования синапса возбуждения на нейронном отростке-дендрите. (Фото Dennis Kunkel Microscopy, Inc..)Дендритный шипик — место формирования синапса возбуждения на нейронном отростке-дендрите. (Фото Dennis Kunkel Microscopy, Inc..)То, что деятельность нейронов отражается на их ДНК, косвенным образом подтверждается тем, что у нейронов после проведения того или иного сигнала усиливаются или ослабляются синапсы с другими клетками. Известно также, что у нейронов могут происходить долговременные изменения в активности генов, причём они зависят от местоположения клетки. Исследователям из Университета Алабамы в Бирмингеме (США) удалось обнаружить, с чем связаны некоторые из изменений, сопровождающих запись положительных воспоминаний.

В действительности команда Дэвида Суитта проверяла известную гипотезу о том, что формирование долговременной памяти подключает эпигенетические механизмы, которые ведут к модификациям ДНК клетки. Эпигенетические модификации влияют на доступ белков к ДНК, и они могут касаться либо белков-гистонов, упаковывающих ДНК, либо самой нуклеиновой кислоты. Ряд работ свидетельствовал в пользу того, что для долговременной памяти необходимо метилирование ДНК — присоединение к нуклеиновой кислоте метильной группы. И вот было решено проверить это напрямую. 

Для этого мышей учили узнавать определённый звук, после которого животные получали порцию сладкого. Это довольно стандартный опыт, и давно уже известно, какие области мозга отвечают за такую ассоциацию, а также то, какие гены нужны для запоминания связи того и другого. В журнале Nature Neuroscience авторы пишут, что изменения в активности этих генов действительно начинались тогда, когда животные выучивали, что за звуком следует угощение. Более того, удалось увидеть, как и в каких участках меняется метилирование ДНК, кодирующей эти гены, и как с этой ДНК взаимодействует фермент, отвечающий за метилирование: он начинал работать опять-таки как раз к тому моменту, когда мыши более-менее запоминали то, что нужно. 

Когда исследователи вводили животным вещества, блокирующие метилирование в этом месте, то старая память у мышей оставалась нетронутой, однако ничего нового они запомнить надолго уже не могли. Если модификациям ДНК ставили блок в другом месте, то на запоминание «звука с сахаром» это никак не влияло.

Иными словами, животным (да и нам, скорее всего) для памяти действительно нужны эпигенетические «резцы», которые эту память «прорезали» бы ещё и на молекулярном уровне, уровне ДНК. 

Нет нужды говорить, какое нейротехнологическое будущее открывается перед нами благодаря подобным исследованиям. Однако вопросов тут пока что больше, чем ответов. Например, авторы в данном случае имели дело с положительной ассоциацией — и хотелось бы знать, какой механизм работает при отрицательных ассоциациях, связанных со страхом, отторжением и т. п.

Во-вторых, предстоит ещё выяснить, как эпигенетические молекулярные танцы взаимодействуют с электрохимическими импульсами и как эпигенетическим модификациям удаётся на покидать строго очерченной зоны коры мозга.

 


Источник: КОМПЬЮЛЕНТА


Во время биосинтеза рибосома строит полипептидную цепь в соответствии с кодом, который она читает на матричной РНК. Сырьё для постройки белка приходит к рибосоме в виде аминоацилированных транспортных РНК: к каждой такой тРНК прикреплена аминокислота. тРНК нужна для того, чтобы распознать трёхнуклеотидное слово в мРНК. Не вдаваясь в подробности, скажем, что для каждой аминокислоты есть своя тРНК-переводчик, и аминокислота должна соединиться с той тРНК, которая соответствует нужному нуклеотидному слову в мРНК. 

Приблизительная схема молекулы одной из аминоацил-тРНК-синтетаз (иллюстрация C4ptain_Mike).Приблизительная схема молекулы одной из аминоацил-тРНК-синтетаз (иллюстрация C4ptain_Mike).Аминокислот, участвующих в биосинтезе белка, двадцать, и важно, чтобы каждая из них нашла свою тРНК. И тут на сцене появляются особые ферменты, называемые аминоацил-тРНК-синтетазами: они и соединяют аминокислоты и тРНК. Но не просто соединяют: они ещё и проверяют правильность соединения, то есть выполняют редакторскую работу: если аминокислота связалась с чужой тРНК, фермент разрушает связь и образует новую, уже с другой тРНК. Такое редактирование происходит и в рибосоме, которая сверяет тРНК с последовательностью в мРНК, однако точность редактирования на уровне аминоацил-тРНК-синтетаз в 100 раз выше, чем на рибосоме. Следовательно, важность этих ферментов трудно переоценить, и механизм их работы изучали целые армии исследователей. 

Однако после того, как механизм работы этих ферментов стал более или менее понятен, возник другой вопрос — об их эволюции. Как развивались аминоацил-тРНК-синтетазы, были ли у них какие-то предки, с чем они работали на заре своей истории? Отчасти на эти вопросы отвечает работа Густаво Каэтано-Анольеса и его сотрудников из Иллинойсского университета в Урбане и Шампейне (США), опубликованная в PLoS ONE. Профессор Каэтано-Анольес известен своим интересом к эволюции процесса биосинтеза (так, он противник гипотезы «мира РНК»), поэтому его очередная статья, как выражаются в таких случаях, «является частью большого проекта». 

На этот раз исследователи попытались проследить эволюционную судьбу различных доменов (или структурно-функциональных единиц) молекул аминоацил-тРНК-синтетаз. Логика тут, если опять же не вдаваться в тонкости, довольно простая: если какое-то изменение, какая-то мутация в молекуле встречается у небольшого числа организмов, то эта черта относительно свежая, эволюционно молодая. Если же какая-то особенность в молекуле наблюдается у многих разновидностей белка, то это говорит об эволюционной древности. 

Оказалось, что в молекулах аминоацил-тРНК-синтетаз самые древние части — те, что соединяют аминокислоту и тРНК и разрывают связь, если она оказалась неправильной. А вот области белка, которые отвечают за распознавание самой тРНК и дают указание, какую аминокислоту нужно присоединить, оказались эволюционно молодыми. То есть аминоацил-тРНК-синтетазы как будто научились сначала сшивать две молекулы и только потом распознавать, что именно они сшивают. 

Из этого можно было бы сделать вывод, что прежде аминоацил-тРНК-синтетазы работали с какими-то другими молекулами. Исследователям удалось установить сходство ферментов с другими белками, которые могут образовывать дипептиды (то есть сшивать вместе две аминокислоты) безо всякой рибосомы. О том, что какой-то безрибосомный белковый синтез, ограниченный вот такими дипептидами, существует в природе, известно было давно, но никто не рассматривал его как предковую форму рибосомного биосинтеза. 

Иными словами, биосинтез белка мог в какой-то мере существовать и без сложнейшей рибосомной машинерии, с её кучей белков и специальных рибосомных РНК. Потом уже, по мере развития нуклеиновых кислот и усиления взаимодействия между ними и белками, аминоацил-тРНК-синтетазы приобрели «надстройки», позволяющие им работать с новыми партнёрами.

Впрочем, считаем нужным напомнить сторонникам и противникам «белковых» и «нуклеиновых» теорий возникновения жизни, что и та и другая остаются пока лишь гипотезами, не имеющими окончательного подтверждения.

 


Источник: КОМПЬЮЛЕНТА


 

Древесную (или лесную) лягушку Rana sylvatica можно встретить там, куда обычные амфибии заходить поостереглись бы: Rana sylvatica обитает на севере США, на Аляске и в Канаде. Нет нужды объяснять, что за климат царит в этих местах, однако героиня нашей заметки каким-то образом выдерживает местные холода и с лёгкостью переносит замерзание в собственном теле двух третей объёма жидкости. 

Чтобы не замёрзнуть зимой, аляскинские лесные лягушки обеспечивают себя повышенной концентрацией криопротекторов. (Фото Steve Kaufman.)Чтобы не замёрзнуть зимой, аляскинские лесные лягушки обеспечивают себя повышенной концентрацией криопротекторов. (Фото Steve Kaufman.)Джонатан Констанцо вместе с коллегами из Университета Майами в Оксфорде(США) не первый год пытается разгадать загадку морозоустойчивости этих амфибий. Обычно животные в таких случаях накапливают побольше веществ-криопротекторов — глюкозы, мочевины, глицерина и т. д., которые снижают температуру замерзания, из-за чего кровь и прочие биологические жидкости остаются незамерзающими при температурах заметно ниже 0 ˚C. И для лягушек, живущих, например, в Огайо, этого вполне достаточно, поскольку температура в этом штате обычно не падает ниже -5 ˚C. Но на Аляске бывает и -30 ˚C, так что исследователи решили изучить аляскинскую популяцию амфибий подробнее, чтобы выявить все добавочные уловки, защищающие от замерзания. 

Лягушек отлавливали и переправляли в лабораторию, где им устраивали осень «по-аляскински», постепенно уменьшая продолжительность светового дня и снижая температуру. Их подвергали разным режимам охлаждения: одних держали две недели при -16 ˚C, других — 12 недель при -4 ˚C. Однако, как пишут исследователи в Journal of Experimental Biology в любом случае аляскинские лягушки довольно быстро приходили в себя после «зимовки»: в среднем пробуждение занимало у них около двух дней. Rana sylvatica, которые жили южнее, просыпались намного дольше. 

Зоологи обнаружили одно разительное отличие южных лягушек от северных: их печень имела разный размер. У южных она составляла всего 8% от общей массы тела, а у аляскинских амфибий к осени и зиме достигала 22%.

Такая огромная печень, по мнению учёных, нужна лягушкам, чтобы иметь большой запас гликогена, из которого получается глюкоза, служащая криопротектором. На производство гликогена у лягушек идут жиры и даже некоторые мышечные белки. 

Кроме того, в плазме крови осенне-зимних аляскинских лягушек очень сильно (в 10 раз) повышался уровень мочевины.

 Чтобы пережить северные холода, R. sylvatica нужно в несколько раз больше криопротекторов, что, в частности, и заставляет амфибий «раскармливать» собственную печень. Однако исследователи отмечают, что суммарная концентрация всех растворённых веществ в плазме крови северных лягушек оказывается больше той, которую можно посчитать, сложив концентрации глюкозы, мочевины и других известных веществ. А это значит, что аляскинские R. sylvatica пользуются ещё какими-то биохимическими уловками, какими-то дополнительными веществами, которые нам пока что неизвестны. 

 


Источник: КОМРЬЮЛЕНТА


Летающие насекомые машут крыльями с чудовищной частотой: например, у комара она может достигать 500 взмахов в секунду. И довольно долго учёные пытались выяснить, как насекомым это удаётся. Можно было бы предположить, что они машут крыльями как-то иначе, чем мы, то есть позвоночные, двигаем крыльями, лапами, ногами и руками, что у насекомых работает какой-то свой механизм. Но нет. Молекулярные исследования, проведённые в научно-исследовательском институте JASRI (Япония), привели к неожиданному результату: оказалось, никакого особенного «насекомого» механизма для махания крыльями нет, механика тут та же, что и в наших с вами мышцах. 

Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина. (Рисунок Shutterstock.)Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина. (Рисунок Shutterstock.)Любое мышечное сокращение начинается с того, что на мышечную клетку приходит нервный импульс, который открывает в мембране мышечной клетки каналы для ионов кальция. Кальций связывается с белком тропонином, который находится в связке с нитевидным полимерным белком актином. Ионы заставляют тропонин изменить своё положение на актине так, что с ним теперь может провзаимодействовать другой белок — миозин. Длинная молекула миозина начинает изгибаться и как бы идти по нити актина; это смещение актиновых и миозиновых нитей относительно друг друга и приводит к сокращению мышцы.

Но если речь идёт о сверхчастых сокращениях, как в случае крыльев насекомых, такой механизм не работает: кальциевые насосы просто не успевали бы включать и выключать потоки ионов в ответ на нейронный импульс. И у насекомых никаких сверхчастых потоков кальциевых ионов действительно нет. После того как к мышце приходит импульс, она начинает осциллировать, то есть в ответ на один импульс производится множество сокращений. Это можно сравнить с тем, как маятник какое-то время качается по инерции от одного-единственного толчка. При этом сокращения мышц поддерживаются сами собой: чем сильнее мышца-антагонист сократится и тем самым растянет мышцу напарника, тем сильнее потом сократится вторая мышца. То есть растяжение тут стимулирует последующее сокращение. 

Этот феномен известен давно, и свойствен он тем мышцам, от которых требуются ритмичные сокращения, — например, сердцу. Но и у сердца в ритмичных сокращениях задействованы кальциевые каналы. У насекомых же они во время работы крыльев молчат. Такую особенность пытались объяснить тем, что растяжение мышцы даёт больше возможностей миозину связаться с актином. Но это одновременно предполагало и то, что тропонину не нужна кальциевая стимуляция, чтобы освободить от себя актин, а отсюда, в свою очередь, вытекало, что сократительные белки насекомых принципиально отличаются от белков позвоночных.

Хироюки Ивамото и Наото Яги проанализировали структурные изменения в мышечных белках насекомых, происходившие во время полёта. Объектом исследования послужил шмель, которого просвечивали рентгеновскими лучами, пока он махал крыльями, и всё это снимали на камеру с частотой 5 000 кадров в секунду. Учёные убедились, что у насекомых (у шмелей по крайней мере) нет никаких принципиальных модификаций молекулярного механизма мышц. Первичный нейронный импульс запускает серию сокращений, которые поддерживаются вышеописанной «активацией на растяжение»: чем сильнее растягивается мышца, тем сильнее она потом сократится. 

Единственная особенность была в том, что растяжение провоцировало структурные деформации в миозине, из-за которых он прочнее связывался с актином, что и повышало силу сокращения. В остальном же всё было так, как обычно: и кальций-зависимое поведение тропонина, и скольжение миозина и актина друг относительно друга. Иными словами, насекомые просто реализовали скрытые возможности того же самого молекулярного механизма, с помощью которого, например, птицы машут крыльями. 

Надо сказать, что попытки сделать рентгеноструктурный «портрет» летящего насекомого предпринимались неоднократно, однако получить полную информацию о работе крыльев мешало несовершенство техники. И надо было дождаться наших дней, когда появились камеры, способные делать 40 кадров на один взмах шмелиного крыла, чтобы понять, как всё-таки насекомые летают. 

Результаты исследования опубликованы в журнале Science

 


Источник: КОМПЬЮЛЕНТА


Воскресенье, 25 Август 2013 17:45

Городская жизнь делает зверей умнее

Нет нужды описывать, как человеческая деятельность меняет окружающую среду. Дома, дороги, города — всего этого природа никогда не видела. Но стоит также помнить о том, что все эти изменения начались давно, и у животных с растениями, что живут бок о бок с человеком, было время к ним приспособиться. Иными словами, антропогенные факторы среды уже давно стали одним из инструментов эволюции, вопрос лишь в том, что за изменения они вызвали в самих организмах. 

Жизнь рядом с человеком делает зверей смелее и умнее. (Фото Alex W S.)Жизнь рядом с человеком делает зверей смелее и умнее. (Фото Alex W S.)Следует также помнить, что разные виды адаптировались к жизни рядом с человеком по-разному. Некоторым везло, и они находили, например, в городе такие же экологические ниши, что и в дикой природе; чем, скажем, высотные дома не скалы? Другие оказывались в совершенно новом для себя окружении, но благодаря своему потенциалу осваивали новые навыки и способы поведения (привет, вороны!). Кроме того, динамика переселения в те же города в разное время различалась: если раньше животные могли усиленно избегать городов, то теперь они свободно перемещаются между городской и дикой, природной средой. 

И всё это не могло не наложить отпечаток на облик таких животных, на их поведение, физиологию и анатомию. Один из самых неожиданных «отпечатков цивилизации» описывают в Proceedings of the Royal Society B исследователи из Миннесотского университета (США). Эмили Снелл-Руд и Наоми Уик сделали простую вещь: они сравнили размеры черепов нескольких мелких млекопитающих, которые стали обычными жителями «очеловеченных» пространств и ландшафтов, а именно землероек, мышей, летучих мышей, белок и т. д.

В руках учёных были музейные образцы, собранные в городах и за их пределами на протяжении всего ХХ века. И вот оказалось, что у городских зверей размер черепа всё это время потихоньку увеличивался. То есть жизнь в городах пошла мозгу на пользу. И можно предположить, что именно новые, непривычные условия, новое, гораздо более сложное окружение, с новыми опасностями и т. п. было тому причиной, ведь чтобы выживать в городе, нужно обладать более развитыми когнитивными навыками.

Впрочем, не стоит забывать о том, что размер мозга — это очень грубый критерий; гораздо больше о когнитивных способностях может сказать либо поведение, либо исследование тонкой структуры мозга. Так что ограничимся следующим заявлением: городские животные могли стать в чём-то умнее благодаря увеличившемуся мозгу, но в чём именно, точно сказать нельзя. 

С другой стороны, все мы знаем некоторые особенности поведения, отличающие городских животных. Птицы и звери, живущие в городе, например, куда менее пугливы, чем их «природные» сородичи. Можно сказать, что такая храбрость — это защитная реакция от повышенного стресса, ведь если бы животное пугалось всего незнакомого и подозрительного так, как пугается всегда, оно не прижилось бы в городе. Это, между прочим, подтверждается и физиологическими исследованиями, показавшими, что в стрессовых ситуациях у городских животных вообще выделяется меньше стрессовых гормонов — а значит, организму меньше угрожают воспаления и прочие неприятности, связанные со стрессом.

Многие изменения, происходящие с городскими животными, откладываются в их генах, но есть и такие, которые возникли в результате своеобразного «культурного обмена» и пластичности поведения. Например, птицы в шумном городе поют громче, но стоит им оказаться в тихом месте, как они тут же сбавляют тон. А городские белки, которые порой не могут перекричать шум улиц, научились общаться хвостами, то есть буквально на языке жестов! И это не говоря уже о воронах, которые учатся различать людей по голосу и внешнему виду. Такие особенности интересуют биологов в первую очередь, однако далеко не все они подкреплены генетическими изменениями. Последние же, с другой стороны, указывают не те особенности, которые, так сказать, уже не «вырубишь топором» и которые могут послужить даже основой для появления нового, «городского» вида. 


Источник: КОМПЬЮЛЕНТА


Гранд-Каньон может сколько угодно казаться умопомрачительно огромным, но конкуренты у него всё-таки есть. В Южной Азии течёт река Брахмапутра, которая в Тибете носит название Ярлунг-Цангпо. В том месте, где она меняет направление с восточного на южное, пробиваясь через Гималаи, река образует ущелье Цангпо. Ширина русла равна там всего 200 м, а стены каньона в некоторых местах уходят ввысь более чем на 4 тыс. м. По сравнению с этим Гранд-Каньон выглядит карликом. 

Намча-Барва, высочайшая вершина ущелья Цангпо (фото 欧阳 可知).Намча-Барва, высочайшая вершина ущелья Цангпо (фото 欧阳 可知).Этот невероятный разрез является результатом быстрого роста Гималаев в течение последних 10 млн лет. Большому поднятию земной коры сопутствует большая эрозия: каждый год по всему региону снимается от 5 до 10 мм поверхностных пород, что лишь ускоряет углубление пропасти. Недавние исследования чуть выше по течению от ущелья Цангпо выявили кое-какие интересные детали его истории, а точнее — масштабные наводнения, которые могли выполнить эквивалент тысячелетней работы эрозии за геологическое мгновение.

В 2004 году геоморфолог Дэвид Монтгомери из Вашингтонского университета (США) и его коллеги рассказали об открытии отложений, оставленных озёрами, которые сформировали долину Ярлунг-Цангпо, когда река была запружена ледниками. После того как ледники ушли, из озёр вырвалось огромное количество воды (аналог — Ченнелд-скэбленд в Северной Америке). В результате одного из таких наводнений, случившегося примерно 9 тыс. лет назад, было выделено больше воды, чем в озере Эри. Поток мог сдвинуть с места валуны диаметром до 18 м, а метровые камни он нёс как песчинки. 

Эрозийный потенциал подобного явления трудно переоценить. Во времена, когда ледники продвигались вниз в долину, наводнения такой величины могли происходить регулярно, потому что разрушенные ледовые дамбы формировались заново за считанные десятилетия. Может быть, эти наводнения и вырезали ущелье Цангпо? 

На этот раз г-н Монтгомери и его группа изучили кристаллы циркона в современных речных и паводковых отложениях. Замечательно прочный циркон — своеобразная капсула времени благодаря запертому в нём урану. В данном случае возраст кристаллов смог рассказать о том, откуда они взялись. Ущелье Цангпо начинается близ перехода между коренной подстилающей породой Тибета (молодой) и Гималаев (старой). По возрасту циркона можно судить о том, какой процент отложений — результат эрозии в ущелье, а какой — результат эрозии выше по течению. 

Чуть меньше половины осадка, текущего сегодня по ущелью, происходит из него самого. Наводнения, которые случались после разрушения ледниковых запруд, происходили примерно в 150 м над нынешним уровнем реки, поэтому их отложения легко распознать. В этом материале количество осадка из ущелья превышает 80%. Следовательно, наводнения хорошо потрудились над тем, чтобы вырезать каньон. 

Возможно, эффективность наводнений связана с тем, что они становились причиной оползней в ущелье, из-за чего материал удалялся сравнительно быстро. Стены каньона настолько круты, что эрозия в его основании могла вызвать обрушение всего вышележащего склона. По оценкам исследователей, одного наводнения могло оказаться достаточно, чтобы выполнить работу, с которой «обычная» эрозия справилась бы только за 1–4 тыс. лет. 

Геология много сделала для того, чтобы доказать невозможность катастрофических явлений, напоминающих библейский потоп. Говорилось о том, что геологические процессы протекают медленно, а не одномоментно. Но иногда мифы действительно могут иметь реальную основу. 

Результаты исследования опубликованы в журнале Geology.

 


Источник: КОМПЬЮЛЕНТА


Китайские палеонтологи описали самых древних насекомых, щеголявших перед самками гипертрофированными мужскими половыми органами. Как оказалось, увеличивать гениталии в ущерб мобильности некоторые группы начали еще в юрском периоде.

Современная скорпионница Panorpa dubiaСовременная скорпионница Panorpa dubia У самцов многих современных животных отдельные увеличенные органы выполняют демонстративную, а зачастую и оборонительную функции. Так, например, олени и лоси носят развесистые рога, а самцы райских птиц отращивают яркое и длинное оперение. Среди насекомых это явление известно у жуков-оленей и жуков-носорогов, использующих выросты на голове для привлечения самок и борьбы с другими самцами.

Окаменелость и реконструкция Fortiholcorpa paradoxaОкаменелость и реконструкция Fortiholcorpa paradoxaДо сих пор самым древним свидетельством такого рода приспособлений были два окаменевших самца скорпионниц семейства Holcorpidae из эоценовой эпохи. Значительно продлить в прошлое историю гипертрофии гениталий позволило новое открытие китайских палеонтологов Столичного университета в Пекине. В среднеюрских отложениях северо-восточного Китая они обнаружили остатки двух новых родов скорпионниц, у самцов которых половые органы выглядели уже весьма внушительно.

Насекомые отлично сохранились, на их крыльях можно, например, пересчитать все жилки и различить их общий рисунок. Но куда больше, чем крылья, внимание ученых привлек конец брюшка животных, загнутый вверх и вперед наподобие хвоста скорпиона. (Именно за эту особенность строения группа и получила свое русское название.) На последних сегментах брюшка размещались очень крупные гениталии, по размерам даже превосходившие соответствующие органы современных представителей скорпионниц.

По всей вероятности, носители столь выдающихся гениталий получали преимущества при половом отборе перед обладателями более скромного хозяйства. Причем эволюцию данного признака не смогло остановить даже очевидное неудобство чрезмерно развитых органов для жизни конкретной особи – они должны были уступать своим менее мужественным собратьям в маневренности и мобильности, что довольно критично для выживания. Однако преимущества, получаемые при размножении, очевидно, компенсировали все неудобства.

Два новых вида, описанных из юры Китая, получили названия Fortiholcorpa paradoxa и Miriholcorpa forcipata. Благодаря им время появления гипертрофированных гениталий у скорпионниц отодвинулось в прошлое как минимум на полтора геологических периода.

Статья «The Earliest Case of Extreme Sexual Display with Exaggerated Male Organs by Two Middle Jurassic Mecopterans» доступна на портале PLOS ONE

 


Источник: PaleoNews


Неожиданную реконструкцию спинозавра (Spinosaurus) предложил итальянский палеонтолог Андреа Кау. Традиционно изображаемый как длинномордый тираннозавр с парусом на спине, в его интерпретации древний хищник оказался больше похож на тяжеловесного и неповоротливого зауропода.

Спинозавр (Spinosaurus)Спинозавр (Spinosaurus) "Настоящие ученые должны признавать свои ошибки и уметь исправить причиненный ими вред. У меня нет с этим проблем, и я заявляю, что прежние реконструкции спинозавра не соответствовали действительности, –  заявил Кау. – Spinosaurus является очень своеобразным тероподом, и его странности требуют научного объяснения. Я много думал над этим и пришел к выводу, что спинозавр был зауроподоподобным тероподом".

В качестве аргументов этого неожиданного решения специалист по палеонтологии позвоночных Геологического музея Джованни Капеллини в Болонье приводит целый ряд аргументов. Например, морда спинозавра была очень длинной, но в то же время легкой и жесткой, как у всех длинношеих теропод. И этим она напоминает зауроподов. Кроме того, у обеих групп были слабо развитые носовые кости.

Область основания черепа спинозавра характеризуется выраженной вентральной кривизной (судя по черепам близких родов – Baryonyx и Irritator), что напоминает черепа диплодоков. Зубы не зазубренные, а скорее округлые, и это также напоминает диплодоков.

Спинозавр (Spinosaurus)Спинозавр (Spinosaurus)Тела позвонков довольно удлиненные, и сам позвоночник, судя по всему, был довольно длинным. Так же, как у зауропод. Остистые отростки позвонков очень высокие, и вероятно, служили для крепления длинных продольных мышц, поддерживающих тело. Примерно такая же картина вырисовывается и у некоторых диплодоков.

В свете этих данных было бы логично предположить, что у шея спинозавра, намного длинная, чем у других крупных теропод, переходила в широкую и удлиненную грудь, а длинный хвост уравновешивал переднюю половину тела. Если все эти предположения верны, то длина спинозавра превышала 20 метров и вполне могла достигать 23 метров, а масса наверняка была больше 15 тонн.

При такой нагрузке задние лапы должны были иметь короткую столбчатую форму. Ни о каких согнутых в колене ногах, как обычно рисуют этих теропод, речи идти, разумеется, не может. Ноги спинозавра были короткими и толстыми, заключает ученый.

 Попытки изобразить спинозавра этаким 17-метровым бариониксом не соответствуют действительности, пишет Кау в блоге Theropoda, оговариваясь, впрочем, что его реконструкция имеет столько же прав на существование, сколько и все прочие, циркулирующие в Интернете.

 К сожалению, в распоряжении ученых сегодня имеется слишком мало остатков спинозавра, чтобы вынести однозначное суждение о его облике. Все дошедшие до наших дней кости этого гигантского обитателя Африки мелового периода выделены на силуэте белым цветом.

 


Источник: PaleoNews


Четверг, 22 Август 2013 15:21

Земная гравитация

В центре изображения находится Эверест: чем больше красного, тем меньше сила тяжести. (Изображение GGMplus / Curtin University.)Земная гравитация не одинакова по всей нашей планете. Сила притяжения слабее на экваторе и на вершинах гор. Эксперименты показали, что самое низкое ускорение свободного падения находится на горе Уаскаран в Перу (9,7639 м/с²), а самое высокое — на поверхности Северного Ледовитого океана (9,8337 м/с²).

 

Подробнее...

Восстановив в общих чертах эволюцию живых организмов на протяжении последнего полумиллиарда лет, палеонтологи все еще чрезвычайно мало знают об эволюции белка. Испанским исследователям удалось реконструировать это химическое соединение, существовавшее ни много ни мало четыре миллиарда лет назад.

Модель белкаМодель белка "До сих пор все попытки изучить эволюцию белковых структур были основаны на сравнении современных белков, – рассказал ведущий автор исследования Хосе Санчем-Руис из университета Гранады. – Это примерно то же самое, что пытаться изучать эволюцию птиц, сравнивая между собой несколько современных представителей этого класса". По словам ученого, наиболее перспективным для эволюционных исследований считается изучение окаменелостей, и поэтому его собственный подход к проблеме можно назвать "раскопками ископаемых белковых структур".

 Санчес-Руис вместе с коллегами построил филогенетическое древо белковых последовательностей, воспользовавшись для этого анализом аминокислотных последовательностей тиоредоксина – белка, участвующего в восстановлении рибонуклеотидов в дезоксирибонуклеотиды и обнаруженного у всех представителей живых существ, включая архебактерий и эукариот. С помощью этого древа испанским ученым затем удалось воскресить докембрийские белки в лабораторных условиях и охарактеризовать их свойства.

 Как оказалось, современная структура тиредоксина удивительно похожа на ту, что существовала на заре возникновения жизни, а вот аминокислотные последовательности у них сильно разнятся. Эти данные подтверждают эволюционную модель прерывистого равновесия, согласно которой белковые структуры остаются неизменными в течение долгого времени, а все новые изменения, их затрагивающие, происходят за очень короткие временные промежутки, пишет EurekAlert!

 "В дополнение к раскрытию основных принципов эволюции белковых структур наша методика обеспечивает еще и бесценную информацию о том, как трехмерная структура белка закодирована его аминокислотной последовательностью, – отметил Санчес-Руис. – Она также может предоставлять данные о такой важной цели белковой инженерии и биотехнологии, как проектирование белков с новой структурой".

 


Источник: PaleoNews


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Новый вид зеленой ящерицы рода алопоглоссус найден в тропических Андах

27-05-2014 Просмотров:7814 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Новый вид зеленой ящерицы рода алопоглоссус найден в тропических Андах

Новый вид ящерицы Alopoglossus viridiceps, найденный в тропических Андах, в Эквадоре,  уникален. У нее  яркий окрас : изумрудная голова и ярко-оранжевый живот, сообщает National Geographic . Alopoglossus viridicepsИсследователи случайно встретили рептилию во  время...

Доступна ли шимпанзе честность?

15-01-2013 Просмотров:11087 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Доступна ли шимпанзе честность?

Чтобы проверить, насколько человек честен с себе подобными, учёные используют специальный психолого-экономический тест, название которого можно перевести как «игра "Ультиматум"» (Ultimatum Game). Суть этой игры в том, что один человек...

Скелет кита сообщил о поднятии Восточно-Африканской равнины

17-03-2015 Просмотров:7651 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Скелет кита сообщил о поднятии Восточно-Африканской равнины

Поднятие Восточно-Африканской равнины произошло в период между 17 и 13,5 млн лет назад. Ученым из университета Потсдама (Германия) под руководством Генри Вичура (Henry Wichura) удалось установить этот факт, датировав возраст...

Ученые вычислили родину мухи, атакующей дарвиновских вьюрков

21-04-2015 Просмотров:7588 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Ученые вычислили родину мухи, атакующей дарвиновских вьюрков

Энтомологи разобрались с происхождением мухи, которая была завезена на Галапагосские острова. Оказалось, что паразитическое насекомое занесли туристы, следующие через Эквадор. Philornis downsiОб этом говорится в статье американских специалистов из Университета Миннесоты, опубликованной в...

Хранилища памяти в головном мозгу построены из нейронных «кирпичиков»

20-03-2011 Просмотров:10638 Новости Нейробиологии Антоненко Андрей - avatar Антоненко Андрей

Хранилища памяти в головном мозгу построены из нейронных «кирпичиков»

Исследователи выяснили, что нейроны головного мозга взаимодействуют между собой легче и надёжнее, если они входят в группы по 40–50 клеток. Нейронная сеть (фото Eran Lahav)Среди исследователей головного мозга бытует мнение, что...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.