Африканские рыбы нотобранхии Nothobranchius kadleci и Nothobranchius furzeri достигают половой зрелости в рекордные сроки — всего лишь за 17–18 дней с момента появления на свет.
Такой скороспелости нет больше ни у кого из позвоночных.
Это обнаружили Мартин Рейхард и его коллеги из Института биологии позвоночных Чешской академии наук. Зоологи изучали жизненный цикл этих двух видов, обитающих в прудах на севере Мозамбика. N. kadleci и N. furzeri приходится выживать в весьма экстремальных условиях, так как водоёмы, в которых они размножаются, существуют только во время сезона дождей. Появившиеся пруды высыхают за 3–4 недели, поэтому рыбам нужно сделать всё очень быстро.
Стоит также заметить, что оба вида уже появлялись в поле зрения учёных, и ранние наблюдения показали, что они созревают к размножению примерно за месяц. Правда, зоологи изучали нотобранхий, выращенных в неволе; сейчас же наблюдение велось за теми, кто родился в естественных условиях.
Как пишут авторы работы в EvoDevo, рыбы растут с необычайной скоростью: за день они могут вытянуться на четверть своей «взрослой» длины. При этом исследователи полагают, что такая скороспелость — ещё не предел, и при совсем уж благоприятных условиях (например, при избытке пищи или низкой плотности популяции) нотобранхии могут повзрослеть даже раньше 17-дневного срока.
Икра рыб ждёт целый год, когда снова придут дожди и можно будет завершить цикл развития. Некоторые яйца созревают опять-таки очень быстро — за 15 дней, что тоже рекорд среди позвоночных.
В целом такая скороспелость вполне укладывается в жизненные стратегии организмов-экстремофилов, которые вынуждены жить не просто в стабильно сложной экологической обстановке: их условия обитания нередко очень изменчивы, и, чтобы существовать, такие организмы должны созревать и размножаться в ускоренном темпе.
Истчоник: КОМПЬЮЛЕНТА
Это может показаться странным, но, хотя жить без сна невозможно, мы до сих пор не знаем, зачем спим. Считается, что во время сна происходит консолидация памяти, перевод информации из кратковременного хранилища в долговременное. Реорганизация памяти — одно из самых популярных объяснений того, зачем нужен сон, но пока это лишь гипотеза, хотя и собирающая всё больше доказательств в свою пользу.
А ещё считается, что во сне нейтрализуются токсины, образовавшиеся во время бодрствования, и происходит восполнение израсходованной энергии: сон помогает отрегулировать обмен веществ и температуру тела (которая, понятно, неразрывно связана с метаболизмом).
Учёные из Университета Дьюка (США) попробовали проверить последнее предположение с помощью толстохвостых лемуров. Сразу стоит сказать, что они изучали не обычный суточный сон, а спячку, в которой лемуры могут проводить до семи месяцев. В это время сердечный ритм зверьков замедляется со 120 ударов в минуту до 6, а температура тела поднимается или опускается в зависимости от того, что происходит на дворе. Сильные перепады температуры тела для млекопитающих вообще нехарактерны, однако лемурам такое умение сбивать собственную температуру просто необходимо: это позволяет им сохранить достаточно энергии, чтобы переждать зиму.
Чтобы проверить, взаимосвязаны ли терморегуляция и сон, Эндрю Кристал и его коллеги снабдили несколько диких лемуров электродами, считывавшими активность мозга животных, и отправили их спать. Кроме того, регистрировали потребление кислорода и некоторые другие физиологические параметры. Полученные данные сравнивались с тем, как вёл себя организм лемуров, содержащихся в неволе и не засыпавших на зиму.
Как известно, сон бывает медленноволновой (non-REM) и быстроволновой (REM). В веб-журнале PLoS ONE исследователи пишут, что зиму лемуры проводили без каких-либо признаков медленноволнового сна. ЭЭГ показала, что электрическая активность мозга в это время у лемуров сильно понижена, как и обмен веществ. Но стоило температуре вокруг подняться выше 25 ˚C, как электрические волны мозга лемуров указывали на быстрый сон, и одновременно у животных интенсифицировался обмен веществ. Такой распорядок сна был противоположен тому, что наблюдается, например, у сусликов: у них во время спячки есть только медленный сон, и только при относительно высокой температуре.
Словом, если и существует связь между метаболическим энергосбережением и сном, то очень своеобразная. Пусть даже у сна есть такая функция, но во время спячки, скорее всего, включаются какие-то другие механизмы энергосбережения.
Впрочем, чтобы это утверждать наверняка, нужно провести похожие исследования с ещё какими-нибудь впадающими в анабиоз млекопитающими. Именно это и собираются сделать авторы работы: героями их следующих опытов станут тенреки. Нельзя исключать и того, что во время обычного сна имеют место некие энергосберегающие процессы; просто они имеют иную природу, нежели те, что активируются при зимней спячке.
Истоник: КОМПЬЮЛЕНТА
У разных животных в ходе эволюции, бывает, возникают сходные черты — в этом случае говорят о конвергентной эволюции, которая происходит из-за сходных экологических условий. Один из самых известных примеров: пингвин и кит, птица и млекопитающее, которые похожи друг на друга формой тела, — а всё из-за того, что и пингвину, и киту нужно плавать в море.
Обычно в таких случаях говорят о внешнем сходстве, подразумевая, что генетическое решение у сходных признаков может быть разным — примерно как в арифметике можно сложить две двойки или прибавить единицу к тройке, но всё равно получить четыре. Однако, по-видимому, молекулярно-генетические конвергентные изменения до сих пор просто недооценивались, и вот один из примеров — эхолокация.
Она есть у ряда животных (самые известные примеры — летучие мыши и дельфины), и учёные довольно долго спорят о том, как эхолокация появлялась у разных групп. Стивен Росситер и его коллеги из Колледжа Королевы Марии Лондонского университета (Великобритания) проанализировали на предмет конвергентной эхолокационной эволюции свыше двух тысяч генов-ортологов у двадцати двух видов животных, среди которых были и летучие мыши, и дельфины.
И конвергентные признаки удалось обнаружить в почти 200 зонах генома. Сами исследователи ожидали увидеть сходство примерно в дюжине генах или около того: в конце концов, никакого запрета на схожие генетические изменения в эволюции нет. Но то, что их оказалось так много, всех сильно удивило. Преимущественно это касалось генов, участвующих в формировании слухового аппарата, однако были и такие, которые имели отношение, например, к зрению.
Исследования, в которых учёные пытались выяснить сходство между генами, контролирующими конвергентные признаки, до сих пор не рассматривали целые геномы целиком: этим, вероятно и объясняется, почему таких генов всё время оказывалось не много. Сейчас это стало возможным, так как накопились полностью прочитанные геномы самых разных млекопитающих и появились компьютерные программы, позволяющие обрабатывать много бόльшие, чем раньше, массивы генетических последовательностей.
Дело тут даже не столько в эхолокации, сколько в том, что учёные вдруг поняли, как конвергентная эволюция может влиять на генетический портрет. Схожим изменениям подвергаются не только самые очевидные гены, непосредственно участвующие в формировании признака, но и те, которые объединены с ними в регуляторную генетическую сеть и «полномочия» которых могут быть намного шире.
Вместе с тем однозначно утверждать о конвергентной эволюции генов, по мнению некоторых специалистов, можно будет лишь после того, как генетические последовательности сравнят с теми, что им предшествовали. Иными словами, после восстановления картины этой самой эволюции. Пусть у дельфинов и летучих мышей в ряде случаев гены, имеющие отношение к эхолокации, схожи — но тут нужно убедиться, что и процесс, который привёл к этим изменениям, шёл у этих групп сходным образом. Как говорит один из комментаторов работы, Антонис Рокас из Университета Вандербильта (США), аминокислотные последовательности «эхолокационных» белков должны сильно отличаться от тех, что были у животных-«эхолокаторов» ранее, — и лишь в этом случае можно будет говорить о настоящей эволюции, которая вела разные группы животных к одной цели.
Результаты исследования опубликованы в журнале Nature.
Источник: КОМПЬЮЛЕНТА
Первые 600 млн лет истории Земли называются катархеем, а по-английски — Hadean, что означает «гадесский». Причины, по которым этот период получил своё имя, очевидны: «Гадес» (он же Аид) — владыка ада, чьё имя и породило русское слово «ад».
Judith Coggon) из Боннского университета(Германия).
Считается, что условия на планете в то время были и впрямь адовы: Земля не имела твёрдой поверхности, то есть кора её была частично расплавлена (оттого осадочных пород не осталось). «Традиционно катархей рассматривается как период, когда наша молодая горячая планета была необитаемым местом», — подтверждает Джудит Коггон (Однако этот ад мог длиться сравнительно немного времени. Г-жа Коггон вместе с коллегами сделала вроде бы небольшое, но очень значимое открытие: камни из Гренландии, происходящие из мантии и имеющие возраст около 4,1 млрд лет, богаты золотом и платиной. А это всего на 400 млн позже образования Земли как планеты, что, казалось бы, выглядит очень странно.
Поясним: картина расплавленной поверхности вызывает массу вопросов. Вот, скажем, вода. По сегодняшним представлениям, слишком нагретая атмосфера ведёт к интенсивной потере водяного пара. А жидкая вода вряд ли может соседствовать с лавой, что вызывает вопрос о том, как получилось, что Земля из космоса выглядит голубой. Ведь вода в значительной степени должна была быть потеряна за четыре миллиарда лет, не так ли?
Другой момент: золото и платина «любят железо» (сидерофильны). В расплавленном виде они легко растворяются в жидком железе, а благодаря куда большему весу ещё и тонут в нём. Следовательно, «адов период» должен был легко и непринуждённо освободить верхние слои Земли от этих металлов. Факты тем не менее упрямы: и платина, и золото в коре есть.
Стандартное объяснение этому явлению совпадает с аналогичным вопросом о воде. В период поздней тяжёлой бомбардировки (примерно 3,9 млрд лет назад) кометы, богатые водным льдом, и астероиды, содержащие металлы платиновой группы, вернули нужные элементы в верхние слои нашей планеты. Это, напомним, суть гипотезы Late Veneer («Позднее покрытие»). На её основе несколько астрономов даже заявляли, что если в той или иной системе интенсивного перемещения комет с дальних орбит к внутренним планетам (~ тяжёлая бомбардировка) не происходило, то гидросфера там сформироваться не может, и жизнь тоже.
Только вот, как теперь оказывается, всё было не так. 4,1 млрд лет назад в верхних слоях уже были и платина, и золото. Они, против всяких ожиданий, не утонули, а вот гипотеза Late Veneer явно близка к этому.
Джудит Коггон сдержана в выводах: «Позднее покрытие» было нанесено на 200 млн лет раньше, чем считалось, примерно 4,36 млрд лет назад. Очевидно, на те же 200 млн лет «устарели» и земные океаны: если на планету попали металлы из платиновой обоймы, то должна была прийти и кометная вода. А там, где вода, есть и вероятность зарождения жизни, которая, выходит, могла возникнуть на Земле 4,1 млрд лет тому назад.
Впрочем, при всём уважении к осторожности исследовательницы, напомним, что в 2008 году гипотезе «Позднего покрытия» уже был нанесён серьёзный удар. Тогда Мунир Хамаюн (Munir Humayun) из Университета штата Флорида (США) на мощностях НАСА подверг нагреву и высокому давлению образцы геологических пород, сравнительно богатых палладием — другим сидерофильным элементом, и изучил его распределение в расплавленном, а затем остывшем конечном продукте. Тогда-то и выяснилось, что никаких изменений в распределении в сравнении с обычными горными породами нет, и, в принципе, «адово состояние» Земли не обязательно должно было привести к потере «любящих железо» металлов.
Так не пора ли задуматься о том, столь ли необходима поздняя тяжёлая бомбардировка для объяснения состава поверхности нашей планеты?..
Отчёт об исследовании опубликован в журнале Nature Geoscience.
Источник: КОМПЬЮЛЕНТА
230 млн лет назад, Польша находилась совершено в другом месте нежели сейчас. Она была частью гигантского суперконтинента Пангея, на котором круглый год был теплый климат и который населяли гигантские амфибии весом до 1,5 тонн и длиной достигавшие более трех метров. Одной из таких обитавших тогда гигантских амфибий являлся Metoposaurus diagnosticus, в его окружении было только два сезона – влажный и сухой. Как и современные земноводные метопозавры нуждались в воде, и чтобы пережить очень долгий засушливый сезон в триасовой Красеюве (польской деревушке, где была найдена амфибия) им приходилось рыть норы, где они впадали в спячку.
Способность метопозаврами рыть норы обнаружили Дорота Кониченко-Мейер из Боннского и польского университета Ополе и П. Мартин опубликовав статью в Journal of Vertebrate Paleontology. В своем исследовани они рассматривали общее строение скелета Metoposaurus diagnosticus и микроскопические срезы его костей.
Широкая плоская голова с широкими плоскими руками и кистями рук, а так же большой хвост Metoposaurus diagnosticus навели их на мысль о том, что во время влажного сезона Metoposaurus diagnosticus плавал во временных озерах, а при высыхании этих озер в засушливый период с помощью своей плоской головы и лап, прорывал себе нору под землей. Авторы так же изучили сечения костей метопозавра и полученные при срезах узоры. Эти узоры аналогичны годовым кольцам деревьев в которых чередование светлых и темных полос указывают на годы роста. У более ранних ископаемых амфибий кольцо обычно состоит из широкой зоны быстрого роста (сезона дождей) чередуясь тонкой полосой медленного роста (сезона засухи), но у Metoposaurus diagnosticus, после периода медленного роста последовало прекращение роста. По словам Дорота, “гистология длинных костей метопозавра уникальна. По нашей интерпретации это соответствует двойному сезону климата с коротким благоприятным сезоном дождей и длинным сезоном засухи, когда условия жизни сильно ухудшались”.
Исследую строение этих костей, ученые смогли решить еще одну важную проблему: “основной проблемой этих крупных амфибий – рассказывает Сандер, являлось то, что по их размеру нельзя точно определить возраст этих земноводных. Иногда взрослые особи и молодые причисляют к разным видам. Наш метод решает данную проблему. Получается, что все экземпляры, найденные в Красеюве были молодыми особями. Самому маленькому из найденных экземпляров был всего один год, а самому большому – четыре. Взрослели, метопозавры к семи годам, но к сожалению пока что взрослые животные не были найдены вместе с подростками из-за чего до сих пор остается загадкой – закапывались ли взрослые вместе с молодняком в норы или нет”.
Д-р Мишель Лаурин из Национального музея естественной истории, прокомментировал эти исследования: “Данная интерпретация интересна, но проблематична в некоторых отношениях. Это животное было гораздо больше, чем любой из существующих роющих видов. Скорее всего, при выкапывании норы он в большей степени пользовался мордой и хвостом, чем конечностями, как мы можем наблюдать у большинства современных позвоночных”.
“Меня вновь поражает то, что, сколь много мы можем узнать об этих вымерших животных – заключает Сандер. Методы, которыми мы пользовались, были известны с 1840-х годов, но только за последние 20 лет, мы начали задавать правильные вопросы и проводить широкое сравнение с ныне живущими животными”.
Источник: ScienceDaily
Ученым впервые удалось увидеть, как глубоководный кальмар «рыбачит» при помощи своего длинного щупальца. Его вершина движется совершенно независимо от владельца и приманивает добычу.
Описание наблюдений, сделанных американскими специалистами из Национального музея естественной истории, опубликовано в журнале Proceedings of the Royal Society B: Biological Sciences.
Кальмар Grimalditeuthis bonplandi, обитающий на глубине около 2 тысяч метров, был открыт еще в 1839 году, но только в середине 2000-х он попал в руки ученых живьем. Лишь тогда специалисты поняли, что это животное снабжено очень длинным щупальцем с утолщением на конце (раньше щупальце просто отламывалось при его поимке).
Обычные кальмары охотятся, используя пару ловчих щупалец - они выбрасывают их, хватают добычу и подтягивают ее ко рту. Однако специалисты сразу поняли: очень длинное и тонкое щупальце Grimalditeuthis bonplandi функционирует по-другому. Чтобы разобраться с особенностями его работы, авторы статьи запустили в залив Монтерей у побережья Калифорнии автоматический подводный аппарат, оснащенный видеокамерой.
Кальмар несколько раз попал на видео – оказалось, что животное и его щупальце двигаются фактически независимо друг от друга. Когда кальмар отплывает в одну сторону, утолщение на конце щупальца гребет своими перепонками и может перемещаться в противоположном направлении. В результате складывается ощущение, что рядом с кальмаром плавает какое-то отдельное небольшое животное.
По мнению ученых, вершина щупальца приманивает креветок и других кальмаров – их остатки были найдены в кишечнике Grimalditeuthis bonplandi. Скорее всего, обманутые жертвы не обращают внимания на хозяина щупальца (в отличие от вершины, его длинный стебелек не светится) и подплывают слишком близко, после чего «рыбак» внезапно на них бросается.
Источник: infox.ru
ЦЕЛОМ (от греч. koiloma - полость) (вторичная полость тела), полость между стенкой тела и внутренними органами у животных; имеется у организмов, для зародышевого развития которых характерны 3 зародышевых листка. Образуется между внутренними и наружными листками боковых пластинок. У позвоночных из целома возникают околосердечная и брюшная полости.
Целом заполнен специальной жидкостью, которая участвует в обмене веществ. У разных групп животных целом может быть связан с работой пищеварительной, кровеносной, выделительной и других систем органов, а иногда функционально заменяет некоторые из них.
Целом служит опорой для кожно-мускульного мешка (прежде всего у кольчатых червей), выполняя роль гидроскелета. У многих форм червей, не имеющих перегородок между сегментами, за счет перекачивания целомической жидкости осуществляется перистальтическая локомоция.
Через стенки целома в его полость поступают питательные вещества из кишечника; затем они доставляются к тканям.
В целомической жидкости плавают специальные клетки, в некоторых из них питательные вещества могут накапливаться про запас.
В целом из всех органов тела поступают и вредные продукты обмена веществ. Отсюда они выводятся наружу через органы выделения.
В целоме образуются половые клетки. Будущие яйцеклетки и сперматозоиды образуют на стенках мешочков целома скопления-половые железы. Созревшие половые клетки выводятся из целома наружу; иногда просто через разрывы в стенках тела, а чаще — через специальные выводящие каналы.
Происхождение целома объясняется несколькими теориями. Согласно энтероцельной теории, целом развивается из периферических карманов кишки кишечнополостных. Сторонники гоноцельной теории считают целом разросшейся полостью половых желёз. По нефроцельной теории, целом гомологичен расширенным каналам протонефридиев. Согласно схизоцельной теории, целом считается результатом разрастания и усовершенствования межтканевых участков первичной полости тела.
Источники: Словопедия
Лягушки Sechellophryne gardineri проживающие на Сейшельских островах, являются одними из самых маленьких лягушек в мире. Не смотря на то, что у них отсутствуют слуховые косточки и барабанные перепонки, они способны квакать и при этом слышать друг друга. Международная группа ученых с помощью рентгеновских лучей смогла решить эту загадку, установив, что эти лягушки используют полость рта и ткани для передачи звуков на внутреннее ухо.
Однако, несмотря на это нам известен один вид лягушек, не имеющий барабанных перепонок и слуховых косточек, но при этом они способны квакать и слышать друг друга. “Это кажется противоречием” – говорит Рено Боистел. “Эти маленькие животные – гардинеры обитают изолированно в тропических лесах Сейшельских островов уже 47-65 млн. лет, с тех времен, как эти острова отделились от суперконтинента Гондваны. В результате чего, если они способны слышать, то их слуховая система должна была напоминать слуховую систему некоторых форм животных обитавших на древнем суперконтиненте”.
Следующим шагом ученые попытались определить механизм, с помощью которого эти, казалось бы, глухие лягушки слышали друг друга. В качестве звукопроводящего механизма рассматривались лёгкие, мышцы, которые у лягушки соединены с грудным поясом в области внутреннего уха, а так же костную проводимость. Вследствие малых габаритов Sechellophryne gardineri, достигающую всего лишь одного сантиметра в длину, зоологи решили воспользоваться рентгеновским аппаратом высокого разрешения.
Эксперименты и численное моделирование показало, что ни одна из гипотез была не верна. Оказалось, что звук попадал на рецепторы через рот земноводного.
Дело в том, что рот у гардинеры по объему больше, чем ее легкие и служит отличным резонатором, который усиливает звуки чужого кваканья. Для лучшего звукопроведения у Sechellophryne gardineri уменьшилась толщина тканей между внутренним ухом и полостью рта вследствие чего ткани стали более однородные, что привело к тому, что звук быстрее и полнее мог добираться до костей внутреннего уха. Кроме того, для лучшей слышимости звуков соперников, рот лягушки особенно хорошо резонирует на частотах пения других самцов. Скорее всего, столь примитивный слуховой аппарат позволяет амфибии слышать только своих сородичей и быть глухой к другим звукам.
Источник: ScienceDaily
Рекорд по продолжительности непрерывного бега или супермарафона поставил канадский спортсмен Дин Карназис. Он смог непрерывно бежать трое суток, по окончанию третьих суток ему пришолсь остановиться из-за того, что он начал засыпать на бегу.
Войну с малярией современные исследователи ведут сразу на двух фронтах: с одной стороны, они неустанно ищут средства против самих малярийных плазмодиев, с другой — пытаются найти управу на малярийных комаров, чтобы те оставили людей в покое.
по запаху пота и следам выдыхаемого углекислого газа. Однако комариное обоняние всё ещё не раскрыло все свои секреты, коль скоро учёные продолжают делать на нём новые открытия. Так, исследовательская группа из Университета Нотр-Дам (США) обнаружила, что обоняние малярийных комаров Anopheles gambiae обостряется ночью, то есть подчинено суточному ритму.
У комаров учёные обращают внимание в первую очередь на обоняние: ведь эти кровососы находят жертвВсё выглядит вполне логично: днём комары спят, а жертв вынюхивают по ночам. Хотя, с другой стороны, удивительно, что обонятельная система приняла к сведению такой образ жизни комаров. Ранее Сэмюэл Ранд и его коллеги сообщали, что некоторые гены малярийных комаров, возможно, имеющие отношение к обонянию, подвержены суточной регуляции. В новой статье в Scientific Reports авторы описывают, как они проследили за меняющимся в течение суток содержанием белков в обонятельных органах комара A. gambiae.
Важную роль в обонятельной системе комара играют белки семейства OBP (белки, связывающие пахучие вещества). Их задача — собрать, сконцентрировать запаховые молекулы и сопроводить их к обонятельным рецепторам. Вот именно уровень этих OBP, как оказалось, и меняется в течение суток, возрастая ночью и уменьшаясь днём.
Исследователям удалось не просто оценить содержание обонятельных белков, но и сопоставить их уровень с реакцией чувствительных нейронов и поведением насекомых: когда белков становилось больше, нейроны возбуждались на запах чаще и комары активнее демонстрировали готовность кого-нибудь укусить. Так было ночью, днём же комары спали спокойно. Даже если рядом витал заманчивый запах жертвы, насекомым просто нечем было его чуять: нужных белковых молекул для этого не было.
Опыты ставили, как уже сказано, на A. gambiae, который известен как один из основных переносчиков малярийной инфекции. Однако какие-либо практические и технологические рекомендации из проделанной работы извлечь пока сложно — разве что учёные найдут способ, как испортить у комара суточный генетический механизм, управляющий активностью обонятельных белков. С другой стороны, малярия до сих пор уносит около 1 млн жизней в год, так что тут пригодится всякая информация как о самой болезни, так и о её переносчиках.
Источник: КОМПЬЮЛЕНТА
18-02-2013 Просмотров:11067 Новости Зоологии Антоненко Андрей
Усы — или, точнее, вибриссы — нужны млекопитающим для осязания. Крысы, кроты, кошки, собаки с помощью вибриссов узнают, к примеру, направление воздушного потока, распознают препятствие на пути, оценивают размер какого-нибудь...
24-02-2016 Просмотров:6972 Новости Генетики Антоненко Андрей
Генетики восстановили митохондриальную ДНК глиптодонтов, древних двухтонных гигантских броненосцев, которая подтвердила, что эти причудливые представители мегафауны были предками современных броненосцев Южной Америки, говорится в статье, опубликованной в журнале Current Biology. Вымершие гигантские броненосцы Южной...
27-06-2018 Просмотров:2631 Новости Метеорологии Антоненко Андрей
Самая низкая температура на Земле составляет -98°C, выяснили ученые. Новый температурный рекорд был зафиксирован на севере Антарктиды. По мнению исследователей, температура может упасть и еще ниже, если для этого будут подходящие условия. АнтарктидаНесмотря на то, что человечество исследовало...
12-01-2015 Просмотров:7217 Новости Зоологии Антоненко Андрей
Команда ученых из Академии наук Китая под руководством Ненга Гонга (Neng Gong) по результатам экспериментов пришла к выводу, что макаки могут различать свое отражение в зеркале, если их предварительно обучить...
17-11-2012 Просмотров:11564 Новости Микробиологии Антоненко Андрей
Один из способов, которыми клетки (не только иммунные) борются с инфекцией, — это попросту поедание чужаков-патогенов. Клетка поглощает бактерию и переваривает её с помощью пищеварительных ферментов, которые содержатся в особых...
Ледниковый период не затронул некоторых древних морских млекопитающих, выяснили палеонтологи из старейшего в Новой Зеландии университета Отаго. Исследуя останки ископаемого кита герпетоцета, аспирант этого вуза Роберт Буссенекер (Robert Boessenecker) обнаружил,…
Несмотря на то что австралопитек афарский мог ходить на задних лапах, скорее всего, бóльшую часть времени он проводил на деревьях. Лопатка «Селам» (фото David J. Green)Вопрос о том, когда предок человека…
Самцам и самкам осы Ooencyrtus kuvanae, паразитирующей на яйцах непарного шелкопряда, найти друг друга легко. Непарный шелкопряд делает кладки, и оса-мать может заразить сразу много находящихся рядом яиц. Вылупившееся более…
Экзоскелет насекомых, состоящий из кутикулы, соединяет в себе несоединимое — исключительную жёсткость и беспримерную прочность. Экзоскелет насекомых образован кутикулой, которая может быть мягкой и тонкой, а может — чрезвычайно прочной и…
Гены в мозгу пчел видоизменяются, когда те меняют профессию. источник: flickr.com/photos/8510057@N02/Биологи из Университета Джона Хопкинса (США) выяснили, что перемена профессии у рабочих пчел сопровождается обратимыми изменениями ДНК. Результаты исследования опубликованы в…
Яркая раскраска знаменитого семейства жуков "Божья коровка" (Coccinellidae) предназначена для отпугивания их естественных врагов, и прежде всего птиц, которые соответствующим образом реагируют на эти предупредительные сигналы о токсичности потенциальной жертвы, считают ученые, опубликовавшие статью…
Динозавры лишь дали толчок к развитию млекопитающих. Однако новые хозяева планеты выросли в размерах удивительно быстро. Палеобиологи попытались выяснить, почему. Млекопитающие выросли от холода и простора Млекопитающие – самая разнообразная группа…
Российские исследователи в четверг во время буровых работ извлекли из скважины первый образец прозрачного льда, образовавшегося из воды реликтового озера Восток в Антарктиде, сообщает пресс-служба Арктического и антарктического научно-исследовательского института…
Очередная экспедиция Национального управления океанических и атмосферных исследований (National Oceanic and Atmospheric Administration, NOAA) на судне Okeanos Explorer проводится с 20 апреля по 10 июля 2016 года. Рыба семейства афионовых (Aphyonidae)Целью изучения является глубочайший океанский желоб. Он тянется вдоль Марианских…