Мир дикой природы на wwlife.ru
Вы находитесь здесь:Заповедники>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Ещё Карл Саган говорил, что в пору предполагаемого зарождения жизни на Земле 3,5 млрд лет назад светимость Солнца, согласно всем расчётам, должна была составлять 70% от нынешней. Однако обычные климатические модели при 30-процентном снижении инсоляции планеты дружно показывают вечное глобальное оледенение, что не очень подходит для образования жизни. Собственно, к этому и сводится весь парадокс слабого молодого Солнца: если тогда на планете было тепло, то почему сейчас мы не умираем от жары, и если сейчас мы вполне живы, то почему наши предки археи не замёрзли 3,5 млрд лет назад?

Поздний архей, 2,8 млрд лет назад. Даже в самом худшем случае, уверяют нас исследователи, значительная часть океанов должна была остаться свободной ото льда. Правда, геологических данных даже о частичных оледенениях планеты в те времена у нас нет, так что в принципе климат был не таким уж суровым. (Иллюстрация Charlie Meeks.)Поздний архей, 2,8 млрд лет назад. Даже в самом худшем случае, уверяют нас исследователи, значительная часть океанов должна была остаться свободной ото льда. Правда, геологических данных даже о частичных оледенениях планеты в те времена у нас нет, так что в принципе климат был не таким уж суровым. (Иллюстрация Charlie Meeks.)Эрик Вольф (Eric Wolf) и его коллеги по Колорадскому университету в Боулдере(США) попробовали ответить на этот вопрос с использованием 3D-модели изменений климата Земли 2,8 млрд лет назад. От обычной одномерной, самой простой для расчётов она отличается тем, что не рассматривает систему «инсоляция — атмосфера — поверхность» как некую практически одномерную цепочку-колонну от нашего светила к поверхности Земли, а учитывает эту систему в трёх измерениях, добавляя в уравнения перемешивание атмосферных слоёв, горизонтальный перенос воздушных масс, разное альбедо для океанской поверхности, суши и морского льда полярных шапок, а также образование облаков, тоже существенно меняющее альбедо планеты. Модель, названная Community Atmospheric Model v. 3.0, само собой, оказалась очень сложной в обсчёте и потому потребовала длительных вычислений на суперкомпьютере «Янус».

В итоге получилось, что простейшее решение, при котором климат выходит таким же мягким, как на сегодняшней Земле, требует присутствия в атмосфере 2% углекислого газа и 0,1% метана — в двадцать раз превосходящего первый газ по вкладу в парниковый эффект на единицу объёма.

Второй вариант, при котором метан в атмосфере считается равным нулю, требует наличия там 1,5–2% углекислого газа. Правда, он даёт существенно более холодный климат, чем сегодня, не исключающий тем не менее существования жидкой воды на поверхности.

«Даже если половина земной поверхности находилась ниже точки замерзания в архее, а другая половина — выше, по крайней мере половина океанов оставались бы отрытыми, то есть речь шла бы об обитаемом мире, — поясняет Эрик Вольф. — Большинство учёных не рассматривало вариант, когда климат в архее мог быть средним между современным и тем, что непригоден к жизни».

Позвольте, скажете вы, разумеется, они не рассматривали такой вариант, ведь вычисления г-на Вольфа относятся ко времени 2,8 млрд лет назад, то есть натурально к неоархею! А научного консенсуса о существовании оледенений в архее нет вовсе, и первым вполне достоверным считается гуронское, случившееся в следующую за археем геологическую эру — протерозой, через сотни миллионов лет после точки, которую моделировали авторы рассматриваемой работы. Иными словами, исходя из имеющихся данных, 2,8 млрд лет назад климат Земли не соответствовал в полной мере ни первому сценарию, обсчитанному ими, ни тем более второму — более прохладному, ибо и в плейстоценовом мире периодически случаются оледенения, в то время как 2,8 млрд лет назад их не было, что в теории должно соответствовать более мягким и стабильным погодам.

Как бы то ни было, эти выводы весьма интересны. Предложенная модель позволяет рассматривать архей как период, требующий сравнительно небольших количеств парниковых газов для поддержания жизни. Да, 2% СO2 могут показаться жутковатыми на фоне нынешних 0,4%, но по сути это не слишком большие отклонения — человек вполне может дышать таким воздухом. Важно и то, что эти данные не противоречат сравнительно скромным следам названного газа в древних породах той поры.

Другое дело, что до окончательного решения парадокса слабого молодого Солнца аналогичные выводы нужно получить и для периода более древнего, чем 2,8 млрд лет назад, да и сам факт существования метана в таких концентрациях не бесспорен. В архее, предположительно, не было озонового слоя (мало кислорода), а значит, ультрафиолет разрушал метан в атмосфере с высокой интенсивностью, так что гарантировать его наличие там в объёмах, потребных для мощного парникового эффекта, нельзя.

Отчёт об исследовании опубликован в журнале Astrobiology.

 


Источник: КОМПЬЛЕНТА


Алексей Федькин и Лоуренс Гроссман (Lawrence Grossman) из Чикагского университета (США) предложили новое объяснение для загадки хондр — быстро затвердевших капель расплавленных силикатов, составляющих основной компонент метеоритов хондритного типа.

Ранняя Солнечная система по-прежнему во многом остаётся для нас загадкой, но прогресс в её понимании налицо. (Здесь и ниже иллюстрации Steven Simon, NASA / JPL-Caltech / T. Pyle, SSC.) Ранняя Солнечная система по-прежнему во многом остаётся для нас загадкой, но прогресс в её понимании налицо. (Здесь и ниже иллюстрации Steven Simon, NASA / JPL-Caltech / T. Pyle, SSC.) Казалось бы, с момента их первого описания в 1877 году природа хондр была ясна. Но вот вопрос: что могло быстро охладить капли расплавленных силикатов в космосе, в том самом протопланетном облаке, из которого четыре с половиной миллиарда лет назад образовались и Солнечная система, и хондритные метеориты?

В этом процессе теоретически должно быть по меньшей мере два этапа: сначала вещество протопланетного диска должно охладиться, чтобы сконденсироваться и стать твёрдым, а затем нагреться — чтобы расплавиться с последующим быстрым охлаждением. Процессы эти в такой последовательности не так-то просто объяснить, особенно с учётом того, что они были характерны сразу для всего региона формирования хондр, то есть носили всесистемный характер.

Отдельная хондра под микроскопом.Отдельная хондра под микроскопом.Ещё хуже то, что в составе хондр часто находят оксиды железа. А они, вообще говоря, могут сформироваться только при относительно низкой температуре. Куда более низкой, чем та, при которой кремний и магний могли реагировать, образуя оливин и другие компоненты хондр. Тут и диффузия не поможет: слишком много времени понадобилось для того, чтобы добиться наблюдаемой концентрации окислов железа в хондрах.

Теория Федькина и Гроссмана, в принципе, объясняет эти довольно загадочные события. В центрах кристаллов хондр часто находят натрий. Когда оливин затвердевал в кристаллах при температуре примерно 2 000 К, бóльшая часть натрия испарялась, но какое-то количество в самом центре оставалось. Однако, по расчётам, общий объём натрия был таков, что при формировании хондр испарялось не более 10% его массы.

Но что мешало натрию испаряться? Для этого должны были сложиться условия, уверены авторы рассматриваемой работы, весьма неожиданные для ранней Солнечной системы. «Вы не можете сделать это в газопылевом облаке», — поясняет г-н Гроссман. Нечто подобное могло случиться после серии столкновений планетезималей, из которых впоследствии образовались планеты Солнечной системы.

Столкновения покрытых льдом планетезималий просто обязаны быстро разогреть их материал, а также создать среду с высоким давлением, в которой испарение того же натрия было бы существенно затруднено.

Остаётся вопрос: как в оливин попал оксид железа? Недавние работы по точной датировке хондр показали, что они на пару миллионов лет моложе других компонентов хондритов, что поддерживает теорию столкновения планетезималей как непременного условия образования таких пород. По мнению учёных, это значит, что сперва планетезимали имели достаточно времени для того, чтобы распад радиоактивных элементов в их недрах вызвал появление в их составе жидкой воды, постепенно проникавшей внутрь этих образований и окислявшей железо. Затем, при столкновении планетезималей, капельки оксида железа вылетали из окружавших их пород и улавливались хондровыми, образуя исходный материал для современных хондритных метеоритов.

Отчёт об исследовании опубликован в журнале Geochimica et Cosmochimica Acta.

 


 

Истчоник: КОМПЬЮЛЕНТА


 

Японские палеонтологи обнаружили несколько окаменелостей, принадлежавших хищному меловому динозавру. По предварительным оценкам, этот ящер был одним из самых крупных хищников, населявших нынешние Японские острова.

Зуб японского динозавраЗуб японского динозавра Японский город Нагасаки, ставший известным всему миру после взрыва там американской атомной бомбы, теперь может прославиться как родина динозавров. Два окаменевших обломка зубов этих животных были найдены в слое горных пород, датирующемся 84 млн лет назад и принадлежащем к меловому периоду мезозойской эры. Как сообщили представители Музея динозавров префектуры Фукуи и городского совета Нагасаки по образованию, определить вид динозавра по столь скудному материалу затруднительно, но его величина составляла не меньше семи метров.

Один из фрагментов, величиной 35,4 х 26,8 х 11,2 мм, представляет собой примерно половину зуба хищной рептилии. В целом состоянии и вместе с корнем зуб был бы размером порядка шести сантиметров, отметили ученые. Второй фрагмент оказался размером 34,2 х 13,6 мм. Зазубренные грани, сохранившиеся на обоих обломках, доказывают, что эти зубы прежде росли во рту хищника, а не растительноядного ящера.

Главный научный сотрудник Музея динозавров Кадзунори Мията обнаружил эти окаменелости на западном побережье полуострова Нагасаки в 2011 году. Они находились в так называемых слоях Мицузе, которые богаты окаменелостями. По словам Мияты, оттуда уже известны ископаемые остатки травоядных динозавров, летающих ящеров, крокодилов и черепах.

Как отмечает The Japan Times, новое открытие расширяет спектр известных хищных динозавров из 13 японских префектур – от Иваты на северо-востоке до Кагосимы на юго-западе.

Напомним, что в феврале 2013 года PaleoNews уже писали о находке на японском острове Кюсю остатков первого местного цератопса – рогатого динозавра из мелового периода. Окаменелости также представляли собой обломок зуба ящера и принадлежали особи размерами от двух до трех метров.

 


Источник: PaleoNews


Среди людей великолепные усы далеко не всегда свидетельствуют о достоинствах их обладателя, хотя сами усачи наверняка хотели бы убедить нас в обратном. Однако среди усатых чесночниц Leptobrachium boringii похвальбу усами игнорировать не принято, ибо выросты на верхней губе, которыми самцы обзаводятся к сезону размножения, служат им довольно грозным оружием.

Самец усатой чесночницы в начале (вверху) и в конце сезона размножения (внизу). (Фото авторов работы.)Самец усатой чесночницы в начале (вверху) и в конце сезона размножения (внизу). (Фото авторов работы.)Вообще для амфибий характерны более-менее мирные брачные сражения: если два самца решают выяснить, кто из них более достоин самки, то всё заканчивается или чем-то вроде реслинга, или просто демонстрацией боевых поз. Но и тут не обходится без исключений, и усатая чесночница — одно из них. Во-первых, это тот редкий видов амфибий, у которого самцы намного превосходят самок по размеру. Обычно это говорит о том, что самцы вынуждены участвовать в весьма ожесточённых схватках. И для таких схваток они часто обзаводятся оружием. В случае усатых чесночниц это острые выросты на верхней губе — «усы». К сезону размножения таких выростов появляется от 10 до 16 штук.

Большую часть года жабы проводят в лесу, но в феврале и марте, когда наступает сезон размножения, самцы выходят к рекам и ручьям, где занимают выгодные позиции на прибрежных камнях и начинают звать дам сердца. Кэмерон Хадсон и Цзинь Чжун Фу из Университета Гвельфа (Канада) в течение двух брачных сезонов следили за усатыми чесночницами, живущими вблизи гор Эмэйшань в провинции Сычуань (Китай). Как пишут зоологи на сайте PLoS ONE, им удалось лично наблюдать семь сражений между самцами чесночниц. Причём, по-видимому, таких схваток на 300-метровом участке реки было вдвое больше, поскольку в итоге 14 самцов вынуждены были уступить территорию чужакам.

Бои обычно происходили под водой: самцы старались поддеть врага под брюхо своими усами. До смерти дело не доходило, во всяком случае учёные такого не видели. Однако у многих самцов на брюхе были глубокие раны, указывавшие на то, что последствия схваток могут быть более чем серьёзными. Длина выростов на губе у самцов не слишком варьируется, то есть всё решают сила и размер.

Впрочем, боевые усачи потом оказываются заботливейшими родителями. Самка, после того как навестит самца и отложит икру на подводную часть камня, удаляется обратно в лес, самец же остаётся следить за тем, чтобы будущее потомство было в безопасности. Причём, что любопытно, многие самцы охраняют икру, оплодотворённую другим кавалером: генетический анализ показал, что гены самца и зародышей часто не сходятся. По-видимому, самец захватывает чужую территорию с уже оплодотворённой икрой, но почему-то не уничтожает потомство соперника.

Зоологи не знают, в чём причина такого великодушного поведения. Возможно, избыток икры служит для самца заслоном, если вдруг к гнезду пожалует серьёзный хищник, а может, самки отдают предпочтение тем самцам, у которых много икры, — ведь это говорит о том, что самец уже кого-то потеснил, и, следовательно, не нужно пренебрегать его боевыми генами.

Так или иначе, самцы остаются с икрой до вылупления детёнышей, после чего удаляются в лес вслед за самками, оставляя головастиков созревать в водах реки или ручья.

 


Источник: КОМПЬЮЛЕНТА


Озеро Восток — седьмое по объёму и четвёртое по глубине на Земле (250×50 км при глубине 1,2 км), но вот слишком оживлённым его назвать трудно: почти 4-километровый ледяной панцирь, накрывающий водоём, делает его ближе к подлёдному океану Европы, нежели к какому-нибудь там Эри или Гурону. Света нет, фотосинтеза, скорее всего, тоже, температура ожидаемо невысока, поступление питательных веществ извне равно нулю... Впрочем, повод надеяться на жизнь всё-таки был.

Как полагают исследователи, нижние слои озера, заполненные осадочными отложениями и подогреваемые гидротермальными источниками, могут быть анаэробными, а верхние слои, напротив, насыщены кислородом. Возможные виды метаболизма «востоковцев». (Здесь и ниже иллюстрации Shtarkman et al.) Как полагают исследователи, нижние слои озера, заполненные осадочными отложениями и подогреваемые гидротермальными источниками, могут быть анаэробными, а верхние слои, напротив, насыщены кислородом. Возможные виды метаболизма «востоковцев». (Здесь и ниже иллюстрации Shtarkman et al.) И тем не менее метагеномный анализ из четырёх образцов льда, образованного водой из этого озера, показал наличие 3 507 уникальных последовательностей генов на 500 мл пресной воды. Группа учёных под руководством Юрия Штаркмана, сейчас работающего в Национальной лаборатории Оук-Ридж (США), уверена: теперь нельзя сказать, что это какие-то пришельцы, попавшие в озеро с буровой жидкостью. Из всего этого богатства удалось идентифицировать лишь 1 623 последовательности, остальные являются новыми видами, родственные связи которых часто очень сложно проследить, что говорит о длительном развитии в замкнутой экосистеме.

Правда, надёжно удалось установить то, что 94% последовательностей принадлежали к роду Bacteria и ещё 6% к более продвинутым эукариотам. При этом лишь две последовательности генов относились к археям — самым примитивным одноклеточным, напоминая при этом метанотрофов, известных по океанскому дну открытых водоёмов. Напомним, что ранее считалось, что археи, а это образцовые экстремофилы, могут быть очень широко представлены в «живом мире» озера Восток. Что ж, приспособляемость бактерий и эукариотов вновь была недооценена.

В целом биота оказалась очень сходной с обычной, представленной в самых разных озёрах, солоноватых водах, среде морского дна, почве, ледниках и донных отложений обычных озёр. Причём были найдены как последовательности генов анаэробов, так и аэробы, равно как и холодолюбивые психрофилы, термофилы, галофилы, алкалифилы, ацидофилы, устойчивые к высыханию виды, а также различные автотрофы и гетеротрофы, включая — внимание! — некоторое количество многоклеточных организмов.

Таких последовательностей было около 150, большинство составляли грибы. Однако были найдены и последовательности генов членистоногих — довольно сложных животных, которых мало кто ожидал увидеть в таком месте, как подлёдное озеро, да на глубине в 3,7 км. По всей видимости, среди них есть очень близкие родственники дафний и ногоховосток из семейства Entomobryidae. Более того, среди многоклеточных были и организмы, идентифицировать родственные связи которых не удалось.

Также были найдены гены двусторонне-симметричных, коловраток, тихоходок, моллюсков и стрекающих. Но самого интересного, как всегда, сразу не увидишь: среди бактерий отыскались следы паразитов и симбионтов, проживающих в пищеварительной системе креветок, раков и рыб. Само собой, не обошлось и без почти родных для нашего собственного вида E. Coli и Salmonella. Вряд ли они просто заплыли за буйки: есть основания предполагать, что где-то в озере живут и их хозяева.

Как всё это понимать, если, как мы хорошо знаем, концентрация кислорода в Востоке в 50 раз выше обычной озёрной, а давление превышает 300 атмосфер? Вроде бы из этого следует, что жить там не должны даже одноклеточные, причём максимально неприхотливые... Ранее Сергей Булат, заведующий группой Петербургского института ядерной физики (Россия) сообщал, что науке неизвестны группы «кислородолюбивых» бактерий, так как бактерии появились до формирования кислородной среды на планете.

В принципе, нечто подобное учёные подозревали ещё до анализа: все эти факторы могут убить обитателей вашего домашнего аквариума, но у озера Восток на переход от поверхностного водоёма, окружённого нормальными лесами (35 млн лет назад), к периодически оттаивающему (15 млн лет назад), а затем и сегодняшнему сверхглубокому был очень плавным. В этом случае живые организмы, потреблявшие кислород, могли до некоторой степени смягчить проблему его избытка, не допуская совсем уж запредельных концентраций. Наличие в воде генов бактерий-термофилов говорит нам, что в озере есть гидротермальные источники, подогревающие его и, возможно, даже служащие основой для фотосинтеза (одна бактерия, найденная в озере, обычно растёт на морских водорослях). А там где есть всё это, логично ждать и животную жизнь. 

Но — и это факт — никто не ждал такого разнообразия до начала бурения. По сути, перед нами тысяча новых видов, и это при том, что пока учёные лишь скребутся по поверхности, ведь забранный лёд содержал воду из верхних слоёв озера, что намёрзла на его ледяную шапку.

Как отмечают авторы исследования, мы стоим перед переосмыслением того, какую среду следует считать обитаемой, а какую — нет. Если многоклеточные организмы могут жить без Солнца и доступа к атмосфере и речным стокам, несущим полезные минералы, да ещё миллионы лет подряд, то с высокой вероятностью они могли бы проделать то же самое в подлёдных океанах Европы, Каллисто и других спутников планет-гигантов Солнечной системы.

Впрочем, почему только Солнечной?

 


 

Истчоник: КОМПЬЮЛЕНТА


 

 

Азиатский кеклик, или азиатская каменная куропатка (лат. Alectoris chukar)

Азиатский кеклик, или азиатская каменная куропатка (лат. Alectoris chukar)Азиатский кеклик, или азиатская каменная куропатка (лат. Alectoris chukar)

Голос  Азиатского кеклика (азиатской каменной куропатки)

Ореховка, или кедровка (лат. Nucifraga caryocatactes)

Кедровка, или ореховка (лат. Nucifraga caryocatactes)Кедровка, или ореховка (лат. Nucifraga caryocatactes), фото википедия

Голос  Ореховки (кедровки)

Кедровка, или ореховка (лат. Nucifraga caryocatactes)

Кедровка, или ореховка (лат. Nucifraga caryocatactes)Кедровка, или ореховка (лат. Nucifraga caryocatactes), фото википедия

Голос  Кедровки (ореховки)

Понедельник, 08 Июль 2013 16:33

Водоросли (Algae)


Водоросли (Algae)Подцарство
: Водоросли

Оглавление

1.

Общие характеристики водорослей 

2.

Происхождение представителей подцарства Водоросли (Algae)

3.

Систематика водорослей

4.

Цитология водорослей

5.

Экологические групы водорослей

6.

Роль водорослей в природе и жизни человека

 

1. Общие характеристики водорослей

Водоросли (Algae) – группа организмов различного происхождения, объединённых следующими признаками: наличие хлорофилла и фотоавтотрофного питания; у многоклеточных — отсутствие чёткой дифференцировки тела (называемого слоевищем, или талломом) на органы; отсутствие ярко выраженной проводящей системы; обитание в водной среде или во влажных условиях (в почве, сырых местах и т. п.). Они сами по себе не имеют органов, тканей, лишены покровной оболочки и корневой системы прикрепляясь ко дну разветвлёнными выростами – ризоидами (рис. 1).

Представители подцарства:  Водоросли (Algae)Рис. 1. Представители подцарства: Водоросли (Algae)

По способу питания водоросли являются автотрофами и содержат зелёный пигмент хлорофилл. Некоторые представители способны к гетеротрофии (питанию готовой органикой), как осмотрофной (поверхностью клетки), например жгутиконосцы, так и путём заглатывания через клеточный рот (эвгленовые, динофитовые). Размеры водорослей колеблются от долей микрона (кокколитофориды и некоторые диатомеи) до 30—50 м (бурые водоросли — ламинария, макроцистис, саргассум). Они бывают как одноклеточным, так и многоклеточным, а так же колониальными организмами (рис. 2). Среди многоклеточных водорослей наряду с крупными есть микроскопические (например, спорофит ламинариевых). Среди одноклеточных есть колониальные формы, когда отдельные клетки тесно связаны между собой (соединены через плазмодесмы или погружены в общую слизь).

К водорослям относят различное число (в зависимости от классификации) отделов эукариот, многие из которых не связаны общим происхождением. Также к ним часто относят синезелёные водоросли или цианобактерии, являющиеся прокариотами. Традиционно их относят к растениям. Водоросли можно повстречать повсюду: в морях и океанах, в пресных водоёмах, на влажной почве, и даже  и на коре деревьев.

 Клетки некоторых водорослей содержат много ядер, другие не содержат межклеточных перегородок. Клеточные оболочки состоят, как правило, из целлюлозы. Клетки (похожие на растительные) могут соединяться торцами, образуя цепочки или нити, иногда ветвистые.

StroenMnogVodrРис. 2. Строение многоклеточных водорослей. Слева клетка нитчатой спирогиры, справа – фукус пузырчатыйМногие их водорослей способны к движению. Одни ползают, как амебы, растягивая и сжимая части своего тела, другие для передвижения используют 1 или 2 жгутика (рис. 3), третьи с помощью цитоплазмы создают движение воды.

 Большинство водорослей имеют зелёную окраску, но среди них можно найти экземпляры бурых, жёлтых, красных, и других цветов. Пигмент называемый хроматофором и отвечающий за окрас, расположен в клетке в специальной органелле имеющую ленточную или звёздчатой формы.

Представители водорослей не образуют цветков и семян, а подовляющее их большинство размножаются спорами. Образование спор и гамет происходит в обычных клетках или в специальных органах – гаметангиях (женские в оогониях или архегониях, а мужские – в антеридиях); некоторые гаметы и споры обладают жгутиками. Половые процессы представлены разнообразные: это изогамия (мужская и женская гаметы одинаковы), оогамия (женская гамета неподвижна и значительно крупнее, чем мужская), анизогамия (женская и мужская гаметы подвижны, но различаются по размерам). Развитие зиготы происходит сразу или после некоторого периода покоя. У простейших водорослей и споры, и гаметы даёт одна и та же особь, тогда как у более высокоразвитых функции полового и бесполого размножения выполняют разные особи – спорофиты и гаметофиты. Последние способны прорастать одновременно и в одинаковых условиях, в разных местах либо в разные сезоны. У высших водорослей происходит чередование поколений; при этом либо спорофит прорастает на гаметофите, либо наоборот. Кроме этого распространено бесполое размножение – вегетотивное (почками или частями слоевища), либо как у одноклеточных водорослей делением надвое.

Строение одноклеточных водорослей.  Слева эвглена зелёная, справа – хламидомонадаРис. 3. Строение одноклеточных водорослей. Слева эвглена зелёная, справа – хламидомонадаКак говорилось выше, водоросли являются преимущественно водными существами, обитающие как в пресной, так и в морской воде. Мелкие водоросли плавающие в толщине вод входят в состав планктона; другие прикрепляются ко дну, иногда образуя целые заросли. В следствие того, что водорослям необходим свт, большинство из них обитает на глубине до 40 м куда как правило проникают солнечные лучи, но при хорошей прозрачности воды их можно встретить и на глубинах до 200 м. В хорошо прогреваемых солнцем стоячих водоёмах, наблюдается цветение воды. Водоросли живут на деревьях, скалах и в почве. Симбиотируюя с грибами, некоторые из зелёных водорослей, образуют лишайники.

Более 80 % от общей биомассы Земли, создающейся в год образовано водорослями. Они находятся на самом начале практически всех водных экологических цепей, и выделяют в атмосферу более половины всего количества кислорода, преобразуемого за год растениями.[1]

Водоросли являются также одними из самых долгоживущих обитателями, нак например найденная у Алеутских берегов водоросль Clathromorphum compactum была возрастом около 800 лет.[2]

2. Происхождение представителей подцарства Водоросли (Algae)

        В следствие отсутствия у большинства водорослей твердых частей изучение их эволюции затруднено и многое из их происхождения до конца еще не ясно. Ископаемые формы основных групп водорослей известны с палеозоя. Косвенное доказательство их существования – наличие морских животных, которые должны были питаться органикой. Крупных колебаний численности и видового разнообразия у водорослей, по-видимому, не было. Предполагается существование в докембрии минимум трех групп фото-трофных прокариот, использовавших в качестве донора электронов воду:

      • Цианобактерии, содержащие, как и хлоропласты, хлорофилл А и выделяющие при фотосинтезе кислород. 
  • Зеленые прокариоты, обладающие хлорофиллом Б. Предполагается, что они дали начало пластидам зеленых водорослей и эвгленовых.
  • Желтые прокариоты, обладавшие хлорофиллом С, дали начало пластидам дино-флагеллат, золотистых, диатомовых, бурых водорослей.

Подводный мир архея и раннего протерозояРис. 4. Подводный мир архея и раннего протерозояВозникновение эукариотических водорослей представляют как результат ряда эндосимбиозов между прокариотами. Пластиды зеленых и красных водорослей появились в результате симбиоза фаготрофных эукариот и фототрофных прокариот. Поэтому их пластиды имеют внутреннюю оболочку (прокариотическую клеточную мембрану) и внешнюю (мембрану вакуоли).

Зеленые и красные водоросли появились около 3 млрд. лет назад (рис. 4). Первоночально появились одноклеточные, а затем - колониальные водоросли. Около миллиарда лет назад появились многоклеточные водоросли. Среди зеленых водорослей сохранились формы, ряд которых дает представление об усложнении организации при возникновении многоклеточности у растений: хламидомонада (1-клеточная), гониум (4-клеточная), стефаносфера (8-клеточная), пандорина (16-клеточная), эудорина (32-клеточная), вольвокс (40 тыс. клеток соматических и генеративных).

Основные черты эволюции водорослей:

  • Дифференциация тела на специализированные части.
  • Появление тканей.
  • Появление у бурых водорослей проводящих тканей, но настоящей ксилемы и флоэмы у них нет.
  • Усложнение полового процесса: появление гаметангиев — органов, в которых формируются гаметы.
  • Возникновение основных типов жизненного цикла: гаплоидного, гаплодиплоидного и диплоидного.[3]

3. Систематика водорослей

 В настоящее время известно более 100 тысяч видов водорослей. Сине-зелёные водоросли относятся к прокариотам. Скорее всего, они не являются предками настоящих водорослей, однако, возможно, вошли в растительную клетку в качестве симбионтов, превратившись в хлоропласты. Остальные водоросли разделяются на десять отделов. Разделение водорослей на группы в основном совпадает с характером их окраски, что, в свою очередь, связано с набором пигментов, а также основано на общих особенностях строения. При таком подходе выделяется 10 групп водорослей: синезеленые (Cyanophita), пирофитовые (Pyrrophyta), золотистые (Chrysophyta), диатомовые (Bacillariophyta), желто-зеленые (Xanthophyta), бурые (Phaeophyta), рис. 5, красные (Rhodophyta), эвгленовые (Euglenophyta), зеленые (Chlorophyta) и харовые (Charophyta).

4. Цитология

Как упомяналось выше, клетки водорослей — вполне типичные для эукариот (рис. 2, 3). Очень похожи на клетки наземных растений (мхов, плаунов, папоротникообразных, голосеменных и цветковых). Основные отличия — на биохимическом уровне (различные фотосинтезирующие и маскирующие пигменты, запасающие вещества, основы клеточной стенки и т. д.) и в цитокинезе (процессе деления клетки).

Фотосинтезирующие (и «маскирующие» их) пигменты находятся в особых пластидах — хлоропластах. Хлоропласт имеет две (красные, зелёные, харовые водоросли), три (эвглены, динофлагелляты) или четыре (охрофитовые водоросли) мембраны. Также он имеет собственный сильно редуцированный генетический аппарат, что позволяет предположить его симбиогенез (происхождение от захваченной прокариоты). Внутренняя мембрана выпячивается внутрь, образуя складки — тилакоиды, собранные в стопки — ламеллы: монотилакоидные у красных и синезелёных, двух- и больше у зелёных и харовых, трёхтилакоидные у остальных. На тилакоидах, собственно, и расположены пигменты. Хлоропласты у водорослей имеют различную форму (мелкие дисковидные, спиралевидные, чашевидные, звёздчатые и т. д.).

Своеобразный «остров» из бурых водорослей в Саргассовом море Рис. 5. Своеобразный «остров» из бурых водорослей в Саргассовом море У многих в хлоропласте имеются плотные образования — пиреноиды.

Продукты фотосинтеза, в данный момент излишние, сохраняются в форме различных запасных веществ: крахмала, гликогена, других полисахаридов, липидов. Запасание липидов больше свойственно морским формам (особенно планктонным диатомовым, которые за счёт масла держатся на плаву со своим тяжёлым панцирем), а запасание полисахаридов (включая крахмал и гликоген) больше свойственно пресноводным.

Клетки водорослей (за исключением амёбоидного типа) покрыты клеточной стенкой и/или клеточной оболочкой. Стенка находится снаружи мембраны клетки, обычно содержит структурный компонент (например, целлюлозу) и аморфный матрикс (например, пектиновые или агаровые вещества); также в ней могут быть дополнительные слои (например, спорополлениновый слой у хлореллы). Клеточная оболочка представляет собой или внешний кремнийорганический панцирь (у диатомей и некоторых других охрофитовых), или уплотнённый верхний слой цитоплазмы (плазмалемму), в котором могут быть дополнительные структуры, например, пузырьки, пустые или с целлюлозными пластинками (своеобразный панцирь, тека, у динофлагеллятов). Если клеточная оболочка пластичная, клетка может быть способна к так называемому метаболическому движению — скольжению за счёт небольшого изменения формы тела.

4. Экологические группы водорослей

Красные водорослиРис. 6. Красные водорослиМелкие свободноплавающие водоросли входят в состав планктона и, развиваясь в больших количествах, вызывают «цветение» (окрашивание) воды. Бентосные водоросли прикрепляются ко дну водоёма или к другим водорослям. Есть водоросли, внедряющиеся в раковины и известняк (сверлящие); встречаются (среди красных) и паразитические. Крупные морские водоросли, главным образом бурые, образуют нередко целые подводные леса. Большинство водорослей обитает от поверхности воды до глубины 20—40 м, единичные виды (из красных и бурых) при хорошей прозрачности воды опускаются до 200 м. В 1984 г кораллиновая красная водоросль была найдена на глубине 268 м, что является рекордом для фотосинтезирующих организмов. Водоросли нередко в большом количестве живут на поверхности (рис. 6) и в верхних слоях почвы, одни из них усваивают атмосферный азот, другие приспособились к жизни на коре деревьев, заборах, стенах домов, скалах. Микроскопические водоросли вызывают красное или жёлтое «окрашивание» снега высоко в горах и в полярных районах. Некоторые водоросли вступают в симбиотические отношения с грибами (лишайники) и животными.

5. Роль водорослей в природе и жизни человека

Роль в биогеоценозах

Водоросли — главные производители органических веществ в водной среде. Около 80 % всех органических веществ, ежегодно создающихся на земле, приходится на долю водорослей и других водных растений. Водоросли прямо или косвенно служат источником пищи для всех водных животных. Известны горные породы (диатомиты, горючие сланцы, часть известняков), возникшие в результате жизнедеятельности водорослей в прошлые геологические эпохи. Водоросли участвуют в образовании лечебных грязей.

Пищевое применение

Заросли ламинарии или морской капустыРис. 7. Заросли ламинарии или морской капустыНекоторые, в основном морские, употребляются в пищу (морская капуста (рис. 7), порфира, ульва). В приморских районах водоросли идут на корм скоту и удобрение. В ряде стран водоросли культивируют для получения большого количества биомассы, идущей на корм скоту и используемой в пищевой промышленности.

Съедобные водоросли — богаты минеральными веществами, особенно йодом, продукт — используется в восточноазиатских кухнях. Одно из самых популярных блюд с водорослями — суши.

Водоочистка

Многие водоросли — важный компонент процесса биологической очистки сточных вод. Если любые из них поместить в реку или в любую другую воду, то в скором времени она станет чистейшей.

Биотестирование

Водоросли являются одним из наиболее широко применяемых биообъектов при биотестировании химических веществ и образцов природных и загрязненных вод.

В фармацевтической промышленности

Из водорослей получают: студне- и слизеобразующие вещества — агар-агар (анфельция, гелидиум), агароиды (филлофора, грацилярия), карраген (хондрус, гигартина, фурцелярия), альгинаты (ламинариевые и фукусовые), кормовую муку, содержащую микроэлементы и иод.

Химическая промышленность

ХлореллаРис. 8. ХлореллаЧеловек использует морские водоросли в химической промышленности. Из них получают калийные соли, целлюлозу, спирт, уксусную кислоту.

Биотопливо

Из-за высокой скорости размножения водоросли нашли применение для получения биомассы на топливо.

В исследовательских работах

Водоросли широко применяют в экспериментальных исследованиях для решения проблем фотосинтеза и выяснения роли ядра и других компонентов клетки.

Экодом

Предпринимаются попытки использовать некоторые быстро размножающиеся и неприхотливые водоросли (например, хлореллу (рис. 8), которая быстро и в большом количестве синтезирует белки, жиры, углеводы, витамины и достаточно полно поглощает вещества, выделяемые человеком и животными) для создания круговорота веществ в обитаемых отсеках космического корабля. [4]

 


 

А.С.Антоненко


 

  

Источники: 1. Открытая биология
2. Мир дикой природы
3. Современная теория эволюции
4.  Википедия

Страна

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

В маленьком прудике. Новейшие подтверждения теории Дарвина

19-11-2020 Просмотров:2002 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

В маленьком прудике. Новейшие подтверждения теории Дарвина

Химики в лабораторных условиях получили из небиологических веществ структуры, способные самостоятельно питаться и размножаться. А физики доказали: первые клетки, возникшие таким образом, скорее всего, появились в периодически пересыхающих водоемах. Таким...

В Андах живут неизвестные виды «маленьких драконов»

07-04-2015 Просмотров:8001 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

В Андах живут неизвестные виды «маленьких драконов»

Команда ученых-зоологов в составе Омара Торрес-Карваяла (Omar Torres-Carvajal) из Эквадора, Пабло Венегаса (Pablo J. Venegas) из Перу и Кевина де Куероза (Kevin de Queiroz) из США обнаружила в Андах на...

Ученые обнаружили самого древнего предка осьминогов и кальмаров

27-05-2010 Просмотров:17107 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ученые обнаружили самого древнего предка осьминогов и кальмаров

Ученые обнаружили окаменелости самого древнего из известных предков современных осьминогов, кальмаров и других головоногих моллюсков, жившего более 500 миллионов лет назад, что позволяет судить о скорости эволюции и появлении новых...

Египетская пустыня скрыла озеро возрастом 250 тысяч лет

26-11-2010 Просмотров:11927 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Египетская пустыня скрыла озеро возрастом 250 тысяч лет

На территории Египта палеоклиматологи открыли древнее озеро. Оно питалось разливами Нила, но высохло примерно 80 тысяч лет назад, когда климат стал жарким и сухим. Египетская пустыня скрыла озеро возрастом 250 тысяч...

Древний американский хищник запутал ученых

11-12-2015 Просмотров:6928 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Древний американский хищник запутал ученых

Американские палеонтологи описали один из самых полных скелетов ранних хищных млекопитающих - гиенодонтов. Однако детали строения этих костей плохо согласуются с предположениями ученых, основанными на известных до сих ископаемых остатках.  Задолго...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.