Мир дикой природы на wwlife.ru
Вы находитесь здесь:Заповедники>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Chlamydomonas reinhardtii


Генетические истоки разделения полов помогли открыть многоклеточные зеленые водоросли Volvox carteri, мужские и женские особи которых разделились от одноклеточных предков Chlamydomonas reinhardtii.

ВольвоксВольвоксГруппа биологов из Центра растениеводства имени Данфорта (США) выявила у одноклеточных ген MID, управляющий дифференциацией половых клеток на два класса (+ и -). Потом ученые нашли аналог этого гена (VcMID) у полноценных мужских гамет Volvox carteri. Когда они искусственно простимулировали экспрессию VcMID у Volvox carteri женского пола, крупные клетки, которые должны были стать полноценными яйцеклетками, продолжили делиться, превратившись в сперматозоиды.

При обратной операции — блокировке экспрессии VcMID в мужских гаметах — ученые получили псевдоженские яйцеклетки, однако их потомство оказалось не вполне жизнеспособным.

Родство генов MID разных видов водорослей и их общая функция (регуляция различий между полами и типами спаривания) свидетельствуют, что найдена общая генетическая основа репродуктивной системы одноклеточных и многоклеточных организмов.


Источник: Научная Россия


Опубликовано в Новости Генетики

Одно из самых знаменательных событий в истории жизни на Земле — переход от одноклеточных организмов к многоклеточным. По мнению биологов, происходило это не один и не два, а целых двадцать раз, но в последние 200 млн лет такого, увы, не случалось. А учёным очень хотелось бы понять, как это было: всё-таки все наши специализированные органы и ткани есть прямое следствие того, что когда-то жизнь пошла по многоклеточному пути.

Зелёная одноклеточная водоросль Chlamydomonas reinhardtii (фото Scientifica). Зелёная одноклеточная водоросль Chlamydomonas reinhardtii (фото Scientifica). Но исследователи не сдаются, пытаясь воссоздать этот переход с современными организмами, которые хотя бы отчасти можно уподобить древнейшим одноклеточным. Несколько лет назад это удалось провернуть с дрожжами: оказалось, что эти грибы могут сформировать многоклеточные конгломераты всего за два месяца. Ну а сейчас то же самое сделано с зелёными водорослями.

Опыты с водорослями ставили Уильям Рэтклифф (William C. Ratcliff) (тот самый, что превращал одноклеточные дрожжи в многоклеточные) и его коллеги из Технологического института Джорджии и Миннесотского университета (оба — США). Десять культур одноклеточных водорослей Chlamydomonas reinhardtii растили в течение пятидесяти поколений. Время от времени водоросли мягко осаждали в центрифуге и отбирали кластеры клеток, которые быстрее всех падали на дно; эти кластеры давали начало следующему поколению.

 Как пишут исследователи в Nature Communications, в одной из десяти колоний к пятидесятому поколению появились уже вполне определённые многоклеточные скопления — причём, что самое удивительное, у клеток в них был синхронизирован жизненный цикл. Клетки водорослей оставались вместе на протяжении нескольких часов, после чего разбегались, чтобы начать делиться и сформировать новую многоклеточную колонию. 

Точно такой же опыт ставился с дрожжами, а повторить его с водорослями учёных заставила критика: им говорили, что современные дрожжи, хотя и являются одноклеточными, в прошлом были многоклеточными, а потому объединиться в нечто многоклеточное для них не составляет труда. Chlamydomonas же всегда были одноклеточными — однако тот же самый трюк удался и с ними.

Впрочем, в многоклеточности водорослей было одно важное отличие от дрожжевого случая: если дрожжи после деления оставались связанными (клетка с клеткой), то водоросли полностью отделялись друг от друга, но находились в одной общей слизистой оболочке. То есть многоклеточность не только могла возникать независимо у самых разных групп организмов, механизм её появления мог варьироваться от случая к случаю.

И это, возможно, говорит о том, что переход к многоклеточному состоянию для древнейших жизненных форм был не таким уж трудным и долгим, как об этом принято думать.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Микробиологии
Среда, 21 Ноябрь 2012 22:40

Зачем водоросли едят растения

Растения, поедающие растения, — такое возможно на какой-нибудь фантастической планете, в приключенческом романе, в историях про мутантов и экологические катастрофы. Однако статья об этом вышла отнюдь не в развлекательном журнале, а в Nature Communications. Пожирателем растений оказалась некая зелёная водоросль, то есть, строго говоря, тут не растение поедает растение, а водоросль. Однако эта таксономическая оговорка нисколько не умаляет необычность открытия.

«Растительноядная» зелёная водоросль Chlamydomonas reinhardtii (фото авторов работы)«Растительноядная» зелёная водоросль Chlamydomonas reinhardtii (фото авторов работы)До сих пор считалось, что способностью разлагать целлюлозу обладают бактерии, грибы и некоторые черви: все они используют растительный материал как ресурс углерода, необходимого для роста. Растения же, наоборот, получают углерод из неорганического источника — углекислого газа. Точно так же поступают и фотосинтезирующие водоросли: им, как и растениям, для роста нужны только свет, вода и углекислый газ. Но что произойдёт, если углекислого газа станет мало?

Исследователи из Билефельдского университета (Германия) выращивали одноклеточную микроскопическую водоросль Chlamydomonas reinhardtii в условиях недостатка CO2. Чтобы получить необходимый углерод, водоросль использовала другой ресурс — целлюлозу. Chlamydomonas reinhardtii выделяла специальный фермент, расщепляющий целлюлозу до более простых сахаров, которые затем поглощались. До сих пор никто и не подозревал, что у водорослей есть такая способность. Действительно, зачем одним фотосинтетикам поедать других? Но сейчас, разумеется, этот феномен будет исследоваться самым пристальным образом: вдруг Chlamydomonas reinhardtii не одна такая — и другие водоросли тоже время от времени не прочь перекусить целлюлозой?

Подобные исследования имеют ещё и важное практическое значение. Как известно, производство биотоплива, которое могло бы стать альтернативой нефтяным углеводородам, завязано на переработку растительной целлюлозы. До сих пор целлюлозоразлагающие ферменты получали из грибов, которые, между прочим, сами требовали органики, чтобы расти и размножаться. Водоросли могли бы стать дешёвым конкурентом грибам: расти они могут за счёт фотосинтеза, а способность синтезировать нужные ферменты можно подстегнуть с помощью генноинженерных методов.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Ботаники

Страна

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

После исчезновения динозавров млекопитающие быстро увеличились в размерах от крысы…

08-11-2019 Просмотров:2790 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

После исчезновения динозавров млекопитающие быстро увеличились в размерах от крысы до волка

Черепа древних млекопитающих продемонстрировали, что вскоре после гибели динозавров размеры тела животных стали быстро расти и увеличились в сотню раз. Некоторые из черепов древних млекопитающих, найденных в Корал-Блаффс в Колорадо / ©HHMI Tangled...

Вымирание мегафауны приводит к обеднению почв

15-08-2013 Просмотров:9463 Новости Экологии Антоненко Андрей - avatar Антоненко Андрей

Вымирание мегафауны приводит к обеднению почв

Крупные животные играют решающую роль в поддержании плодородия почв, выяснили британские ученые. После вымирания представителей мегафауны качество почв в этом регионе резко ухудшается, предупреждают они. Представители мегафауны Согласно исследованиям Криса Даути из...

Генетические паразиты помогли млекопитающим "изобрести" беременность

30-01-2015 Просмотров:8198 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Генетические паразиты помогли млекопитающим "изобрести" беременность

Молекулярные биологи выяснили, почему наши далекие предки внезапно перешли от откладывания яиц к вынашиванию плода внутри утробы — оказалось, что в этом могут быть виноваты транспозоны, своеобразные внутренние генетические паразиты, осуществившие масштабную «перестройку» генома,...

Археоптерикс как пример обратной эволюции

14-11-2013 Просмотров:9345 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Археоптерикс как пример обратной эволюции

Хотя долго обсуждалось, мог ли археоптерикс летать или же представлял собой одну из ступенек на пути к полёту, никому не приходило в голову, что эта протоптица в действительности потеряла способность...

С папами-динозаврами далеко не все ясно

22-05-2013 Просмотров:10501 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

С папами-динозаврами далеко не все ясно

Пять лет назад было выдвинуто предположение о том, что именно самцы динозавров высиживали яйца. Однако новый анализ тех же окаменелостей поставил ту гипотезу под сомнение.  Гнездо овираптора из пустыни Гоби (фото...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.