Между кукушками и теми птицами, в чьи гнёзда они подкладывают свои яйца, идёт непрекращающаяся эволюционная война. Кукушки стараются, чтобы их яйца не отличались от яиц приёмных родителей, а те стремятся как можно лучше распознавать чужие яйца в своём доме. Однако некоторые птицы, вместо того чтобы вглядываться в кладку и сравнивать яйца, научились менять собственное поведение так, чтобы оставлять кукушек с носом.
В самом начале брачного периода они вьют большие гнёзда, которые хорошо защищены от проникновения: чем крупнее гнездо, тем больше прутьев и веточек в нём использовано и тем плотнее они сложены. Деревья в начале брачного периода ещё не покрыты листвой, и кукушки легко находят сорочьи жилища. Однако в крупные гнёзда им проникнуть труднее, а потому они предпочитают наведываться в мелкие, неказистые.
Но потом, когда деревья обзаводятся листвой, преимущество получают те сороки, которые делают небольшие гнёзда, так как их сложнее заметить. Кукушка в итоге пролетит мимо такого гнезда и потратит больше времени, стараясь проникнуть в крупное жилище. Тут нужно пояснить, почему трудность проникновения в гнездо столь важна: когда кукушка собирается подложить яйца сорокам, ей нужно как-то отвлечь своих жертв. Эту работу берёт на себя самец кукушки, летая вокруг и привлекая к себе внимание. И когда сорока наконец-то покидает гнездо, у кукушки есть всего несколько десятков секунд, чтобы проникнуть в него и отложить яйцо.
Вряд ли тут можно говорить об обмане. Сороки скорее просто играют на предпочтениях кукушек, на их нелюбви к трудностям. (С другой стороны, а кто их любит?) Как было сказано, лишь около трети сорок могут делать свои гнёзда или неудобными, или незаметными для кукушек, однако этого вполне достаточно, чтобы поддерживать паритет с гнездовыми паразитами.
Источник: КОМПЬЮЛЕНТА
Возраст каменных орудий, найденных в бразильском скальном убежище, оценён в 22 тыс. лет. Это вновь говорит о том, что древние люди достигли Америки задолго до знаменитых охотников североамериканской
Самое спорное скальное убежище из всех, которые претендуют на опровержение гипотезы о первенстве культуры Кловис, —
На этот раз артефакты обнаружены на стоянке Тока-да-Тира-Пейя, расположенной в том же национальном парке. Казалось бы, со снарядом, дважды упавшим в одну воронку, не поспоришь, но нет, критики указывают на то, что в этом месте находится крутая скала, и камни с острыми краями могут быть результатом падения с большой высоты, а не делом рук человека. Так полагает, например, археолог
Датировка находок тоже вызывает сомнения. Обычно возраст определяется по количеству времени, которое объекты пролежали в земле. Но колебания влажности почвы и прочие факторы могут исказить оценку, напоминает г-н Хейнс.
Однако археолог
Отсутствие в Тока-да-Тира-Пейя обгоревшей древесины и других объектов, пригодных для радиоуглеродного датирования, — это, конечно, проблема, потому что это стандартный метод оценки возраста стоянок младше 40 тыс. лет, отмечает г-н Дилхей. Но если бы человек и впрямь достиг Южной Америки 20 тыс. лет назад, следовало бы ожидать именно таких следов — малочисленного материала, разбросанного по нескольким убежищам в пределах одной географической области.
Лайе и Боэда проводили раскопки в Тока-да-Тира-Пейя с 2008 по 2011 год. Удалось найти 113 каменных артефактов, трактуемых ими как орудия труда и отходы производства. Они занимают пять слоёв почвы. С помощью метода, измеряющего естественный радиационный ущерб зёрен кварца, учёные предположили, что верхний слой в последний раз видел солнце 4 тыс. лет назад, а третий сверху — 22 тыс.
15 артефактов из двух нижних слоёв должны быть ещё старше, но их датирование пока не проведено.
Результаты исследования опубликованы в
Источник: КОМПЬЮЛЕНТА
Когда
По словам Кэтрин Чарнески, взаимодействие белка с рибосомным каналом имеет большое значение для проверки качества синтезируемого белка и для его правильного
С другой стороны, замедления рибосомы при синтезе могут давать время уже синтезированным фрагментам белка на приобретение нужной пространственной конфигурации. Лишние свободные аминокислоты могут помешать этому процессу, поэтому их лучше попридержать в рибосомном канале. Так задержки в синтезе могут служить правильному сворачиванию белка и тем самым помогают настроить полипептидную молекулу на предназначенную ей функцию.
Источник: КОМПЬЮЛЕНТА
Когда пчела находит цветы, в которых много нектара, она возвращается в улей и сообщает товарищам, куда лететь. Примерно так же, по словам учёных из
Чтобы иммунная реакция началась, Т-клетки должны опознать чужеродную молекулу или фрагмент патогена. Исследователи, работавшие под руководством Мэтью Круммеля, обнаружили, что Т-клетки в лимфатических узлах, столкнувшись с чужаком, собираются в группы и остаются вместе в течение часов, а то и дней. Это время исследователи назвали критическим периодом дифференцировки. Очевидно, разные клетки сталкиваются с разными чертами патогена: например, кто-то может встретить один бактериальный белок, а кто-то — другой, и даже одна и та же молекула способна по-разному соприкасаться с чувствительными рецепторами Т-клеток. В итоге иммунитету просто необходимо собрать из кусочков мозаики целую картину, чтобы понять, с чем придётся бороться.
Эксперименты показали, что такое общение Т-клеток необходимо для долговременной иммунной памяти. Без неё всякая вакцина теряет смысл — ведь, к примеру, прививка от кори нужна именно для того, чтобы даже спустя годы иммунная система смогла распознать возбудителя заболевания. В опытах с мышами исследователи давали животным вакцину против
Результаты своих исследований учёные опубликовали в журнале
Очевидно, эффективность любой вакцины можно повысить, если научиться стимулировать такое общение Т-клеток. С другой стороны, именно гиперобщительность иммунных клеток может стать причиной аутоиммунных болезней. Авторы работы полагают, что, например, диабет может возникать из-за того, что Т-клетки, среагировав на инсулин, после обмена информацией друг с другом начинают атаковать клетки поджелудочной железы. В этом случае, конечно, было бы выгоднее несколько снизить склонность иммунных клеток к общению.
Источник: КОМПЬЮЛЕНТА
Среди множества открытых экзопланет и кандидатов в них в самых-самых ходят тела относительно небольших размеров и со средней плотностью, превышающей (!) показатель чистого железа. Природа их, исходя из существующих теорий образования планет, не то что неясна, но и попросту загадочна. К примеру, плотность экзопланеты CoRoT-7 b оценивается в 10,4 ± 1,8 г/см³ — будто это чистое серебро (что, напомним, значительно тяжелее железа или меди).
У этой концепции есть несколько проблем. В частности, симуляции процесса испарения газов с планет-гигантов показывают, что для полной потери лёгких веществ нужно колоссальное время, сопоставимое со сроками существования систем. Иными словами, многие «горячие Юпитеры» и прочие тела в том же роде просто не должны успеть потерять волатильные вещества внешних слоёв.
Чтобы проверить гипотезу, исследователи создали компьютерную модель, анализирующую сценарий потери лёгких газов. Выяснилось, что длительная потеря массы никак не объясняет существования сверхплотных планет. Дело в том, что, хотя ядро того же Юпитера или Сатурна чрезвычайно плотное, таковым оно остаётся только тогда, когда на него «давят» 500 гигапаскалей массы основной части планеты, её колоссальной атмосферы и нижних слоёв. Если же на протяжении миллиардов лет это давление постепенно падает (как итог испарения газов), ядро перестаёт удерживаться колоссальным давлением и «расслабляется», увеличившись в объеме и снизив плотность.
А вот если срыв газов случится за очень короткое по геологическим меркам время, то от планеты-гиганта останется нечто вроде «суперземли», только чудовищно плотной. При этом в дальнейшем снижение плотности такого «огрызка» бывшего газового гиганта почти не происходит.
Как же быть с тем, что все модели, анализирующие испарение, показывают весьма умеренные темпы потери газовой оболочки? Здесь, разумеется, возможны варианты, ибо пока наука слишком мало знает о недрах планет-гигантов. Одним из сценариев сверхбыстрой потери газовый оболочки может быть, например, катастрофическое столкновение гиганта с другой экзопланетой сходных габаритов. В этом случае потеря атмосферы может быть чрезвычайно быстрой, а то, что такие события не исключены, подтверждает присутствие в нашем небе Луны, являющейся реликтом сходной коллизии между Землёй и неким планетарным телом из ранней Солнечной системы.
Итоги исследования были представлены на прошлой неделе на собрании
Источник: КОМПЬЮЛЕНТА
Проследив древо позвоночных до самых его корней, вы найдёте немало интересных членов вроде этого
Учёные потратили десятилетия на поиск недостающего звена между этими двумя классами полухордовых и, кажется, что-то нашли. Знакомьтесь: Spartobranchus tenuis (на рисунках и фото внизу) из знаменитой канадской геологической формации Бёрджес-Шейл. Ему 505 млн лет.
Spartobranchus tenuis был способен на самостоятельное передвижение по морскому дну, подобно современным кишечнодышащим, но в то же время возводил вокруг своего мягкого тельца волокнистую трубку, словно перистожаберные.
С одной стороны,Если это и впрямь общий предок этих двух червей, то очень может быть, что он также является общим предком всех позвоночных.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
В 1970-х психологи провели эксперимент, который демонстрировал, как человек может выбирать между сиюминутной выгодой и более значительными, но и более отдалёнными целями. Эксперимент ставили с детьми, которым давали
Эксперимент, поставленный группой Элис Ауэрсперг, выглядел так: какаду предлагали орех пекан и ставили птицу перед выбором — съесть орех сейчас или подождать и получить более вкусные кешью. Попугай брал угощение из руки человека, зная, что в другой руке, сжатой в кулак, есть нечто более приятное. Вообще говоря, как и любое другое животное, попугай должен был бы сразу съесть то, что ему дают. Но птицы поступали не «по-животному»: они выжидали необходимое время, а потом возвращали пекан обратно в руку, чтобы получить кешью. Эксперимент ставили с четырнадцатью попугаями, и все они решали обменять менее вкусный орех на более вкусный. Задержка во времени составляла 80 секунд, то есть какаду ждали обмена почти полторы минуты!
Способность хладнокровно идти к крупному успеху, пренебрегая мелкими выгодами, лежит в основе всякой экономической деятельности. В качестве простейшего примера можно привести биржевого игрока, который ждёт большего изменения курса ценных бумаг, прежде чем продать их или купить. Попугаям, как оказалось, такие экономические соображения тоже не чужды. Причём, как пишут исследователи в журнале
У шимпанзе тоже есть такая способность, но, как и человек, обезьяна может держать угощение в руке. Попугаям же приходится брать его в клюв, и соблазн съесть его сразу оказывается неизмеримо выше, чем у приматов. Так что в каком-то смысле какаду, возможно, лучше владеют собой, чем обезьяны.
Стоит также заметить, что это не первый случай, когда Венский университет радует нас новостями про какаду: не так давно Элис Ауэрсперг вместе с британскими коллегами
Источник: КОМПЬЮЛЕНТА
Девонский период (рис. 2.5.1) был временем величайших катаклизмов на нашей планете. Европа, Северная Америка и Гренландия столкнулись между собой, образовав огромный северный сверхматерик Лавразию. При этом с океанского дна были вытолкнуты кверху огромные массивы осадочных пород, сформировавшие громадные горные системы на востоке Северной Америки и на западе Европы. Эрозия поднимающихся горных хребтов привела к образованию большого количества гальки и песка. Из них сформировались обширные отложения красного песчаника. Реки выносили в моря горы осадков. Образовывались широкие болотистые дельты, что создавало идеальные условия для животных, дерзнувших сделать первые, столь важные шаги из воды на сушу.
В начале девонского периода на Земле появилось великое множество самых разнообразных рыб (рис. 2.5.2). Среди них были рыбы в костном панцире, в чешуе: с челюстями, и без челюстей; с хрящевым скелетом, и с костным хребтом (рис. 2.5.3). Плавники у одних рыб состояли из жестких лучей, у других были мясистые и мускулистые.
Девонские бесчелюстные рыбы (агнаты) не имели настоящих челюстей и зубов. Их скелеты были не костные, а хрящевые, однако большинство из них покрывают костный панцирь. Называют этих существ остракодермами (рис. 2.3.12). Создается впечатление, что первоначально кости возникли в качестве защитного покрова и лишь затем трансформировались в опорный скелет. У многих остракодерм были сплошные костные головные щиты, но в девонский период развились и такие их виды, у которых панцирь состоял из ряда полос, перемежаемых более мелкими чешуйками. Это обеспечивало рыбам большую гибкость и подвижность в воде. Чешуйки образовывались примерно так же, как зубы современных позвоночных: полость, наполненную мягкой пульпой, окружало твердое вещество — дентин. У некоторых остракодерм были чешуйчатые плавники, а у иных даже непарный дорсальный плавник (на спине), анальный плавник (за хвостом) и парные грудные плавники (прямо за головой) — они играли роль стабилизаторов при плавании.
Донные отложения буквально кишели остракодермами с приплюснутыми телами. Они зарывались в ил при помощи своих головных щитов и высасывали оттуда детрит. Остракодермы, похожие на угрей, свободно плавали в воде, фильтруя ее или всасывая в себя мелкие организмы. У всех этих примитивных рыб не было челюстей, но многие имели вокруг ротовых отверстий костные пластины, приводимые в движение мышцами. Большинство остракодерм были невелики, однако нтераспиды, закованные в толстый панцирь, достигали в длину 1,5 м.
Лишь немногие бесчелюстные рыбы дожили до наших дней. Таковы миноги (рис. 2.5.4) и миксины, длинные угреобразные рыбы. У них не сохранилось никаких следов костного панциря или хотя бы костных пластин. И те и другие — хищники. Миноги в основном паразитируют на других рыбах, а миксины поедают трупы морских животных, опускающиеся на океанское дно.
В конце ордовикского периода у некоторых рыб развились челюсти, и они превратились в активных хищников. Ученые полагают, что некоторые из жестких дуг, поддерживавших жабры, постепенно превратились в челюсти, а из пластин, окружавших ротовое отверстие, образовались зубы. В одну из новых групп — так называемых плакодерм (пластинчатокожих рыб) — входили крупнейшие морские рыбы того периода, в том числе свирепые хищники дунклеостеи (рис. 2.5.5), длиной до 3,3 м. В верхней челюсти у них вместо зубов имелись ряды небольших пластинок. Постоянно соприкасаясь с нижней челюстью, эти пластинки так сильно заострили ее край, что рыбы смогли обеими челюстями кусать и раздавливать добычу. Массивные "бронированные" головы плакодерм гибко сочленялись с туловищем, и они, раскрывая пасть, могли закидывать голову назад. Плакодермы заполонили озера, реки и океаны, охотясь за добычей, которая прежде была не по зубам ни одному хищнику.
Однако в это же время эволюция породила еще более высокоорганизованных хищников — акул. Древние акулы с широкими плавниками и обтекаемыми телами стремительно рассекали воды девонских морей. Их острые зубы постоянно замещались новыми рядами, выраставшими позади старых. Родственники акул, скаты, бесшумно скользили над морским дном, выслеживая ничего не подозревающих рыб и моллюсков.
И тем не менее одновременно с акулами в морях начала распространяться еще более перспективная группа рыб — костные рыбы (остеихтии). К этой группе принадлежит большинство современных рыб. У этих рыб, пока они растут, хрящевые скелеты заменяются костными. Плавников у них две пары — грудные и тазовые, что помогает им легче двигаться: к примеру, они могут изгибаться, поворачивать или тормозить.
Кроме того, у костных рыб есть еще одно, крайне важное, преимущество: так называемый плавательный пузырь. Это своего рода мешочек, наполненный газом, позволяющий рыбе менять плотность своего тела в зависимости от уровня давления воды на разных глубинах. Регулируя содержание газа в пузыре, костные рыбы могут плавать на любой глубине.
С момента возникновения первые костные рыбы начали эволюционировать по двум основным направлениям и разделились на лучеперых (актинонтеригии) и кистеперых (саркоптсригии) рыб (рис. 2.5.6). От вторых сегодня остались лишь двоякодышащие рыбы и редкие целаканты. Большинство же современных костных рыб относится к лучеперым рыбам: их плавники "надеваются" на ряды жестких стержней, или лучей, состоящих из костного или хрящевого вещества. Такие плавники не имеют собственных мышц и приводятся в движение мышцами, расположенными в боках туловища. У кистеперых рыб плавники мясистые, опирающиеся па костную основу. Их парные плавники приводятся в движение мускулами, воздействующими непосредственно на скелетную ось.
В конце девонского периода многие группы рыб вымерли, как и многочисленные семейства кораллов, плечепогих и аммонитов. Их места заняли новые виды животных, появившиеся уже в следующем, каменноугольном периоде.
В девонский период дотоле безжизненная суша постепенно покрывалась ковром зеленой растительности, наползавшей на нее со стороны моря. В начале девона суша являла собой совокупность голых бесплодных материков, окаймленных теплыми мелкими морями и болотами, а ближе к концу обширные области её уже поросли густыми девственными лесами.
Само собой разумеется, что столь богатые пищевые ресурсы не могли оставить равнодушными армию животных, и они устремились на покорение новой "земли обетованной". В глинистых сланцах близ Райни обнаружено множество останков артроподов (членистоногих беспозвоночных).
Крохотные клещи, длиной меньше 0,5 мм, жадно сосали сок растений. А на них, в свою очередь, охотились миниатюрные, почти 3-миллиметровые, паукообразные животные. Примитивные бескрылые насекомые, похожие на чешуйниц, поедали останки мертвых растений. В мелкой воде сновали креветки, охотясь за микроорганизмами, которых здесь было в изобилии из-за питательных веществ, содержавшихся в гниющих растительных останках, смываемых в водоемы.
Вскоре за всей этой мелочью последовали более грозные хищники - предшественники скорпионов (рис. 2.5.7). Вероятно, предками скорпионов были животные вроде эвриптерид, разбойничавших в морях и озерах еще со времен ордовика. Широкие щитообразные головы и сегментированные тела эвриптерид зачастую сужались к хвосту и заканчивались длинным и узким шипом. Палеонтологи считают, что жили они на морском дне, поэтому у многих из них были и ноги для ходьбы, и веслообразные конечности для плавания. Передние конечности некоторых эвриптерид заканчивались мощными клешнями, которые они держали перед собой подобно скорпионам. Для хищников чрезвычайно важно хорошее зрение, и эвриптериды обладали большими сложными глазами. К началу девона появились эвриптериды внушительных размеров - до 2 м в длину. Очевидно, они принадлежали к числу наиболее крупных морских хищников той эпохи. И уж во всяком случае, эвриптериды — крупнейшие из всех известных нам членистоногих. По одной из теорий, предпологается, что самые первые эвриптериды на спине несли спиралевидные раковины, которые играли роль увлажнителя для их жабр. Такое строение тела позволяло древним животным делать короткие набеги на сушу исследуя пляжи.Обширные болота, возникшие на Земле к концу девонского периода, доставляли своим обитателям немало хлопот. Ведь теплая вода содержит меньше кислорода, чем холодная, поэтому там, где в мелкой воде скапливается слишком много водных организмов, им очень скоро перестает хватать кислорода. Большинство примитивных костных рыб заглатывали воздух на поверхности воды. Тонкие кровеносные сосуды, обрамлявшие их горло, поглощали кислород непосредственнее из воздуха. Со временем у первых костных рыб развились легкие, которые могли наполняться воздухом, и появились ноздри, через которые они этот воздух вдыхали. В дальнейшем у большинства групп костных рыб легкие преобразовались в плавательный пузырь, однако для многих обитателей болот они оставались бесценными именно в качестве кислородного резервуара.
В наши дни двоякодышащие рыбы — живые ископаемые (рис. 2.5.8). К ним относятся кистеперыс рыбы, встречающиеся ныне в Африке, Австралии и Южной Америке, то есть на тех материках, которые в девонский период объединялись в громадный южный сверхматерик Гондвану. Эти рыбы живут в мелкой стоячей воде, периодически заглатывая воздух на ее поверхности.
У кистеперых рыб имелась одна пара плавников сразу за головой и еще одна пара перед хвостом. Если вы понаблюдаете, как передвигаются тритон или саламандра, то наверняка заметите, что при ходьбе они изгибаются всем телом из стороны в сторону, в точности как рыбы. Это вовсе не совпадение. Похоже плавали и кистеперые рыбы, используя свои плавники в качестве весел для создания дополнительной "тяги". Точно так же плавают и ныне живущие целаканты. Чтобы придать надежную опору плавникам, у кистеперых рыб со временем выработались специальные костные структуры. Они устроены по тому же принципу, что и кости конечностей современных наземных позвоночных.
Итак, все было готово к появлению земноводных позвоночных животных, одну часть жизни проводящих в воде, а другую — на суше.
Считается, что земноводные произошли от одной из групп хищных кистеперых рыб, называемых рипидистиями. Чтобы перейти от жизни в воде к жизни на суше, земноводные должны были научиться приподнимать свои тела над землей, дабы они могли ходить. Для этого было необходимо, чтобы тазовый пояс, связывающий конечности с позвоночником, прочно с ним скреплялся. Кроме того, череп должен был отделиться от плеч, иначе он сильно сотрясался бы при ходьбе или тем более беге. При водном образе жизни хребет животного служил опорой мышцам, задействованным при плавании, однако при этом все его тело надежно опиралось на воду. На суше этой опоры не было, и вся структура тела должна была серьезно измениться, чтобы оно не оседало на землю между ног.
Костям, которые образовывали каркас мясистых плавников кистеперых рыб, отныне предстояла куда более сложная работа. Новые конечности должны были поворачиваться книзу, то есть им надлежало быть гибко сочлененными в плече. Локтевые и кистевые суставы стали более развитыми, дабы конечности могли наклоняться, отталкиваться и сгибаться — словом, совершать все движения, необходимые при ходьбе. Костная структура кисти сделалась более "разлапистой" и увеличила ее опорную поверхность, что позволило равномернее распределять вес животного на суше (рис. 2.5.9).
Первые земноводные, по всей видимости, вели преимущественно водный образ жизни, питаясь рыбой и различными беспозвоночными. Благодаря способности дышать воздухом они, очевидно, прекрасно чувствовали себя в болотах. Однако бурное развитие насекомых открывало для их питания новые заманчивые перспективы, к тому же крупных хищников на суше еще не было. Современным земноводным по-прежнему приходится возвращаться в водную среду, чтобы отложить мягкие икринки, из которых затем вылупятся рыбоподобные головастики — живое свидетельство их "рыбьего" происхождения. [2]
385 миллионов лет назад на доисторическую арену вышли необычные рыбы — пандерихты (рис. 2.5.10), сходные по некоторым признакам с амфибиями. Это метровые рыбы из группы рипидистий, которых ранее вместе с латимерией называли кистеперыми. Длинные, но с коротким хвостом, пандерихты обитали на неглубоких морских отмелях и в лагунах на восточной окраине континента Олдред — ныне это территория Прибалтики. Как многие древние рыбы, они умели дышать воздухом и ползать на крепких мускулистых плавниках. Во время отливов они вполне могли охотиться за оставшимися на берегу астеролеписами — тоже вымершими панцирными рыбами, которых из-за необычного строения поначалу принимали то за промежуточное звено между рыбами и черепахами, то за членистоногих. Дело в том, что все их туловище заковано в панцирь, а грудные плавники похожи на ноги краба, то есть не имеют внутреннего скелета. Эти жесткие длинные плавники не годятся для плавания, но благодаря острому кончику хороши для передвижения по дну или берегу.
Спустя 5 миллионов лет во внутренних водоемах другой части континента появился тиктаалик — еще более крупный хищник с усовершенствованным скелетом ластов. Об открытии останков этой рыбы на арктическом острове Элсмира, принадлежащем Канаде, стало известно в 2006 году.
Крупные хищники, пандерихт и тиктаалик, сильно отличались от современных рыб. У них было удлиненное туловище без спинного плавника, покрытое толстой ромбической чешуей, укороченный хвост и вытянутая морда с особо крепкими зубами. Глаза у этих хищников выступали на морде, как у крокодилов, и позволяли наблюдать обстановку выше линии воды. А главное — их грудные и брюшные плавники уже способны были служить опорами на суше, поскольку представляли собой мускулистые ласты. Они могли пригодиться и в мелких, заросших водорослями водоемах, где эти существа проводили основную часть времени. Вряд ли в таких условиях им приходилось свободно плавать, скорее, отталкиваться от дна и раздвигать растительность. Скелет грудных плавников у тиктаалика уже немножко больше, чем у пандерихта, похож на скелет лап древних амфибий — ихтиостег, акантостег и тулерпетонов, которые появились в водоемах Олдреда еще через 15 миллионов лет. Возможно, именно тиктаалики и были прямыми предками земноводных — ничто в строении этих древних рыб этому не противоречит.
Тиктаалик обитал в медленно текущих реках на севере древнего материка Олдред (рис. 2.5.11). Он был очень похож на пандерихта, но имел улучшенные сухопутные качества. Жаберный насос был демонтирован благодаря утрате жаберной крышки. Зато ребра были расширены, очевидно, для повышения эффективности легочного дыхания. Крепкие ласты имели улучшенную конструкцию. Если бы они кончались не кожистой оторочкой, а настоящими пальцами, мы бы назвали тиктаалика уже не рыбой, а настоящей четвероногой амфибией. А пока ноги сделаны как бы наполовину, в связи с чем ученые в шутку прозвали тиктаалика "рыбоногом". Большую часть времени тиктаалик, как и пандерихт, проводил на мелководье, выставив на поверхность только глаза, как это делают современные крокодилы. Оттуда хищник высматривал добычу на берегу. Старые, двухметровые тиктаалики были уже слишком тяжелы, чтобы далеко отползать от реки. По-видимому, более далекие вылазки на берег совершались в молодости, тем более что в пищу маленькому тиктаалику годилась такая мелочь как многоножки, скорпионы и пауки, которые уже бегали по суше.
Из первых амфибий лучше всего изучены акантостега и ихтиостега (рис. 2.5.12), найденные в Гренландии, и тулерпетон из Тульской области. Многое у них осталось от рыб — у акантостеги были развиты внутренние жабры и хвостовой плавник, а брюхо в том числе и продвинутого тулерпетона покрыто рыбьей чешуей (кстати, ее остатки спрятаны в коже на брюхе даже у современных крокодилов). Но что делает их полноправными четвероногими, так это настоящие пальцы на лапах, только число их больше обычного. У акантостеги — восемь, у ихтиостеги — семь, у тулерпетона — шесть. Задние лапы тулерпетона уже более развиты, чем передние, и имеют «кирпичную кладку» из мелких косточек в области голеностопа, что достаточно недвусмысленно указывает на их сухопутное применение. Однако многие ученые теперь трактуют само появление на лапах пальцев не как приспособление для наземного передвижения, а как средство эффективнее цепляться за дно или подводную растительность. Ведь и современные рыбы под названием саргассовые клоуны тоже имеют некое подобие пальцев на плавниках, как раз чтобы держаться ими за водоросли. Но нет сомнения, что пальцы у древних амфибий были доведены до совершенства уже в рамках сухопутного передвижения. Не зря же их число сократилось до пяти уже через несколько миллионов лет после появления первых земноводных. На суше нужны более крепкие и толстые пальцы, а каждый такой палец — это лишний вес.
Размножались первые амфибии откладывая в водоемах икру.
В общем, сегодня мы приблизительно понимаем, почему рыбы стали искать жизни на суше. В воде — нехватка кислорода и острая конкуренция, а вне воды — воздух и свобода. Огромный материк Олдред с его обилием мелких водоемов и заболоченных лесов создавал выгодные условия для поиска пищи пешим способом (рис. 2.5.13). И в этой пограничной среде обитания появились новые виды, подобные пандерихту и тиктаалику. Хотя они и продолжали проводить большую часть времени в воде, более ответственными с точки зрения выживания постепенно становились недолгие выходы на сушу, например, во время засухи. При этом строение древних рыб не требовало даже серьезных изменений. Важнейшие конструктивные узлы у них уже имелись — легкие и четыре крепких ласта. Весь же процесс превращения рыб в четвероногих растянулся примерно на 20 миллионов лет и охватил огромные территории материка. До нас дошли лишь отголоски этого могучего эволюционного взрыва, породившего новый класс позвоночных — амфибий. [3]
А.С.Антоненко
Источники: | 1. | iScience.ru |
2. | Теория эволюции как она есть. Девон |
|
3. | Зоосфера |
В последнее время стало
Группа учёных из Великобритании и США полагает, что поведение сейсмических волн объясняется конвекцией, то есть тем же явлением, благодаря которому батарея, стоящая у окна, обогревает всю комнату. Воздух вблизи неё теплеет и становится менее плотным, из-за чего поднимается к потолку и меняется местами с более холодными слоями. Оказавшись рядом с батареей, холодный воздух тоже нагревается, начинает подниматься и т. д. То же самое происходит внутри ядра.
«Медленное остывание Земли заставляет жидкое внешнее ядро затвердевать снизу вверх, откладывая материал с более низкой температурой на границе внутреннего ядра, — поясняет
Некоторые исследователи предполагали, что в центре внутреннего ядра жарче, чем по краям, и что изменение температуры от центра к краю тоже способно вызвать конвекцию, так как относительно прохладный материал на краю стремится затонуть.
Но г-н Дэвис и его коллеги утверждают, что конвекция возникает из-за более плотного, а не прохладного материала. Иными словами, дело не в разнице температур, а в разнице химических составов.
Предыдущие штудии показали, что внутреннее ядро может осуществлять перенос тепла с помощью другого уровня проводимости, когда тепло переносится, но материал — нет. Однако это означало бы, что для конвекции просто не оставалось бы тепла. Поэтому многие учёные сомневаются в том, что поведение сейсмических волн можно объяснить конвекцией.
Суть новой работы как раз и заключается в том, что она показывает принципиальную возможность конвекции во внутреннем ядре.
Результаты исследования опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
13-05-2010 Просмотров:10008 Новости Астрономии Антоненко Андрей
Условия для специфической жизни на поверхности спутника Сатурна куда более комфортные, нежели полагали учёные раньше. Об этом говорят основанные на информации миссии Cassini-Huygens расчёты группы учёных под руководством Даниэля...
28-09-2018 Просмотров:2954 Новости Палеонтологии Антоненко Андрей
Палеонтологи проследили эволюцию позвоночника млекопитающих, сообщается в Science. Первым, еще у рептилий, изменился шейный отдел, затем у цинодонтов, предков млекопитающих, появился грудной отдел, а самым последним — уже у млекопитающих — дифференцировался поясничный отдел. Хорошо известно, чем млекопитающие...
17-07-2012 Просмотров:10763 Новости Зоологии Антоненко Андрей
Распределением органов по левой и правой сторонам организма занимается тубулиновый цитоскелет, причём программа асимметрии запускается едва ли не сразу после оплодотворения. При индивидуальном развитии зародыша каждый орган занимает своё место: сердце,...
02-10-2012 Просмотров:12269 Новости Экологии Антоненко Андрей
Большинство климатических моделей предсказывает, что Мировой океан и растения поглотят примерно половину того углекислого газа, который мы выбросим в атмосферу. Им надо помочь, а то ничего не выйдет. (Фото Stefan Bauckmeier.)Однако...
28-10-2021 Просмотров:1892 Новости Эволюции Антоненко Андрей
При изучении янтаря возрастом 129 миллионов лет ученые Тюменского государственного университета (ТюмГУ) сделали открытие, которое, по их словам, поможет уточнить хронологию эволюции жизни на Земле. Открытие удалось сделать благодаря прекрасной...
Рогозубый мох использует примитивных насекомых ногохвосток в качестве опылителей, привлекая их при помощи специфического запаха, что роднит эти примитивнейшие организмы с цветочными растениями, стоящими на вершине эволюции, заявляют американские биологи…
Биологи составили единую базу данных видов растений и животных, описанных из всех океанов и морей Земли, и пришли к выводу, что две трети разнообразия морских организмов всё еще не охвачены…
В 2006 году Линн Исбелл (Lynne Isbell) из Калифорнийского университета в Дэвисе (США) опубликовала книгу под названием «Snake Detection Theory», в которой выдвинула довольно оригинальную гипотезу о том, что многие…
Отпечатки древней амфибии являются самыми маленькими из когда-либо найденных ископаемых следов, принадлежащих наземным позвоночным. источник: Matt Stimson, Spencer G. Lucas & Gloria MelansonПалеонтологи обнаружили в канадской провинции Новая Шотландия следовую дорожку…
Вариетет (от лат. varietas — разнообразие, переменчивость), термин, применяющийся в зоологической номенклатуре по отношению к любым подразделениям внутри вида, связанным с изменчивостью (мутации, возрастные изменения окраски, географическая изменчивость). Неопределённость термина…
В морских лилиях, обитавших в каменноугольном периоде на территории Среднего Запада США, сохранились органические молекулы, считают американские ученые. Извлеченные ими образцы органики являются древнейшими из тех, что когда-либо попадали в…
Надтип: Вторичноротые (Deuterostomia) Оглавление 1. Общие сведения о вторичноротых животных (Deuterostomia) 2. Происхождение вторичноротых животных 1. Общие сведения о вторичноротых (Deuterostomia) животных Рис. 1. Представители вторичноротых - хордовые, полухордовые, иглокожие, щетинкочелюстные и ксенотурбеллиды.Вторичноротые (лат. Deuterostomia) — надтип (подраздел) животных относящихся к…
Спутник Юпитера Ио — наиболее вулканически активное тело в Солнечной системе: там сотни вулканов, и некоторые из них выбрасывают фонтаны лавы на высоту до 400 км. Гигантский выброс магмы из вулкана…
Грандотряд: Эуархонты (лат. Euarchonta) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Тупаеобразные (Scandentia) Оглавление 1. Общие сведения о Эуархонтах 2. Происхождение и эволюция Эуархонтов 3. Классификация Эуархонтов 1. Общие сведения о Эуархонтах Представители грандотряда Эуархонты Эуархонты (лат.…