Botrytis cinerea, возбудитель серой гнили — на редкость универсальный плесневый грибок: он поражает боле 200 видов растений, среди которых почти все фрукты и овощи, которые мы едим. Его не останавливают даже низкие температуры: за неделю он может прорасти и в холодильнике, если продукты были им заражены.
Калифорнийского университета в Риверсайде (США) узнали, что даёт Botrytis cinerea такую универсальность в отношении хозяев. У растений, как известно, есть собственная защита, аналог иммунитета, и патогену, будь то бактерия, гриб или оомицет, нужно эту защиту как-то преодолеть. Обычно молекулярной «отмычкой» для паразита служат какие-то белки, подавляющие защиту растений
Исследователи изОднако серая гниль пошла по другому пути. Как пишут в журнале Science Арне Вейберг (Arne Weiberg) и её коллеги, Botrytis cinerea использует известнейший механизм РНК-интерференции, вводя в растительные клетки малые регуляторные РНК, которые подавляют синтез защитных белков растений.
Исследователи наблюдали этот процесс при заражении серой гнилью растений арабидопсиса (резуховидки Таля): РНК гриба подавляла работу машины РНК-интерференции, которая обычно и препятствует развитию инфекции.
Мутанты арабидопсиса, нечувствительные к этой РНК, оставались здоровыми, как и мутант самого гриба, который не мог больше синтезировать собственную интерферирующую РНК и заражать растения. Всё то же самое происходило и при использовании вместо арабидопсиса растений томата.
По словам авторов, это первая работа, описывающая основанный на малых интерферирующих РНК антииммунный механизм, который используется растительными патогенами. Кроме того, нужно добавить, что в этом случае РНК-интерференция происходит между грибами и растениями, относящимися к отдельным царствам эукариот. (Противовирусную РНК-интерференцию, часто встречающуюся у эукариот, тут в учёт не берут — очевидно, из-за особого положения вирусов в живой природе.)
Впрочем, возможно, серая гниль не уникальна, и другие растительные паразиты тоже могут использовать этот механизм усмирения растительного иммунитета. Практический вывод отсюда более чем ясен: чтобы окоротить серую гниль, нужно найти способ подавить синтез её антииммунных РНК.
Истчонки: КОМПЬЮЛЕНТА
Растения должны точно знать время, когда цвести: чуть раньше положенного или чуть позже — и можно потерять все цветы, остаться без семян, уступить конкурентам в эволюционной гонке. Чтобы вовремя зацвести, нужно учесть множество внутренних и внешних факторов, увязать гормональный статус с продолжительностью светового дня, температурой и пр. Стоит ли удивляться, что цветение у растений контролируется целой сетью генов?
Института биологии развития Общества Макса Планка (Германия), которые сосредоточились на двух температурных генах — FLM (Flowering Locus M) и SVP (Short Vegetative Phase). А модельным объектом послужил старый добрый Arabidopsis thaliana, сиречь резуховидка Таля.
Исследователи довольно долго изучали эту самую сеть, но молекулярные механизмы, отвечающие, в частности, за «температурные датчики», оставались во многом неясными. Ясность тут удалось внести группе учёных изКак пишут Маркус Шмид и его коллеги в Nature, мРНК, считываемая с гена FLM, претерпевает альтернативный сплайсинг, то есть при созревании новосинтезированной мРНК из неё в зависимости от ситуации вырезаются те или иные куски, а оставшиеся монтируются друг с другом, так что в результате с одного гена можно получить разные матрицы для синтеза белка. У FLM есть два основных варианта мРНК — FLM-β и FLM-δ, и их соотношение как раз зависит от температуры: при низкой преобладает одна мРНК FLM, при высокой — другая. Молекулярная подгонка осуществляется довольно быстро: при возрастании температуры с 16 до 27 °C растению достаточно суток, чтобы сменить соотношение видов мРНК. Но регуляцию цветения разные варианты FLM выполняет в союзе с белком SVP. Когда холодно, белок FLM-β связывается с SVP, и этот белок-белковый комплекс взаимодействует с регуляторными областями в ДНК, которые отвечают за цветение. Комплекс FLM-β с SVP подавляет активность этих зон, и растение на холоде не цветёт. Если же температура повышается, то вслед за ней растёт и уровень FLM-δ, который вытесняет «холодовый» вариант из комплекса с SVP. «Тепловой» комплекс FLM-δ и SVP с регуляторами цветения в ДНК связывается плохо, и эти регуляторы активируются и запускают формирование цветков.
То есть термодатчиком тут служит один и тот же ген, который при разных температурах даёт два разных, конкурирующих друг с другом белка, а конкретным молекулярным инструментом выступает альтернативный сплайсинг.
Очевидно, существует и какой-то механизм или особенность гена FLM, от которых зависит переключение сплайсинга с одного варианта на другой. Не секрет, что один и тот же вид растения может цвести в тех или иных широтах в разное время. И, скорее всего, это связано с вариациями в гене FLM, который переключается на разные варианты при разных пороговых температурах.
Источник: КОМПЬЮЛЕНТА
Ученые открыли общий механизм межклеточной коммуникации. У животных он задействован в работе мозга, а у цветковых растений — в размножении.
Международная команда исследователей выяснила, что пыльца растений, содержащая мужские половые клетки, взаимодействует с пестиком по тому же самому биохимическому пути, что и нервные клетки в мозге животных. Это не только добавляет знаний о размножении растений, но и убедительно доказывает сходство всего живого.
При опылении цветковых (покрытосеменных) растений пыльцевое зерно попадает на рыльце пестика и при благоприятных условиях прорастает. Из него тянется пыльцевая трубка, которая доходит до завязи пестика и служит каналом для проведения мужских половых клеток – спермиев. Достигая семяпочки (яйцеклетки) в завязи, один спермий оплодотворяет ее, а другой, сливаясь с полярными тельцами, образует эндосперм – запасающую ткань семени. Такой процесс называют двойным оплодотворением. На рост пыльцевой трубки влияют такие факторы, как концентрация ионов водорода (рН) и ионов кальция. Но суть их влияния до сих пор не была известна.
Группа Хосе Фейджо (José Feijó), профессора Лиссабонского университета (Universidade de Lisboa), изучала данный процесс у табака и резуховидки Таля (Arabidópsis thaliána). Ученые обнаружили, что рост пыльцевой трубки у этих растений обеспечивают те же самые кальциевые каналы, что и в нейронах. Это глутаматные рецепторы – у растений их назвали глутамат-подобными рецепторами GLR (Glutamate receptors-like). Известно, что они играют ключевую роль в проведении нервного импульса, в работе синапсов и, в конечном счете, в процессах обучения и памяти. Их патологию считают причиной многих заболеваний: рассеянного склероза, болезни Альцгеймера, болезни Хантингтона и других. Совершенно неожиданным оказалось участие GLR в размножении растений. Биологи нашли и гены, ими управляющие, у резуховидки таких генов насчитали 20.
Чтобы выяснить роль рецепторов-каналов, биологи применили несколько разных методов: использовали стимулирующие и тормозящие вещества, измеряли микроэлектродами электрический ток в ткани растения и, наконец, выводили мутантов. Они выяснили, что работу рецепторов-каналов стимулирует аминокислота D-серин (D-Ser). Это редкая аминокислота, и до сих пор считали, что ее роль ограничивается только работой в нервной системе.
Оказалось, что D-серин действует на GLR каналы в верхушке пыльцевой трубки, вызывает усиление кальциевой проводимости и деполяризацию мембраны. Это совершенно новый сигнальный механизм для растений. Если удалить аминокислоту или иным способом заблокировать GLR каналы, пыльцевая трубка перестает расти или деформируется. Растение при этом становится стерильным, не образует семена.
Сама же аминокислота D-серин образуется в женском половом органе – в завязи пестика. Таким образом, пестик управляет ростом пыльцевой трубки и направляет мужские половые клетки прямо к цели.
Открытие интересно с нескольких сторон. Во-первых, ученые нашли молекулярную природу кальциевых каналов у растений, что оставалось загадкой в течение многих лет. Во-вторых, узнали новое о размножении растений. И, в-третьих, получили доказательство общности фундаментальных процессов у растений и животных. «Мы нашли, что в межклеточной коммуникации у животных и растений участвуют одни и те же структуры, — говорит Хосе Фейджо. — Это показывает, что эволюция повторяет найденные ей успешные механизмы снова и снова».
О том, что объединяет нас с пестиками и тычинками, ученые написали в журнале Science.
Источник: Infox.ru
27-05-2011 Просмотров:13218 Новости Эволюции Антоненко Андрей
Змеи оказались ближе к варанам, а не двуходкам — безногим рептилиям с большой головой, как считалось раньше. К этому выводу пришли палеонтологи, изучавшие ископаемую ящерицу эпохи эоцена Cryptolacerta hassiaca. Скелет ящерицы...
28-02-2013 Просмотров:10885 Новости Микробиологии Антоненко Андрей
Бактерии так долго жили бок о бок с нападавшими на них вирусами-бактериофагами, что в появлении у бактерий «иммунной системы» нет ничего удивительного. Впрочем, назвать этими словами их защиту от фагов...
30-10-2012 Просмотров:11308 Новости Палеонтологии Антоненко Андрей
Черепахи спасались от засухи в небольшом водоеме и были погребены потоком грязи. Захоронение черепахНемецкие палеонтологи вместе со своими китайскими коллегами обнаружили на территории Синьцзян-Уйгурского автономного района Китая массовое захоронение черепах, чей...
20-03-2015 Просмотров:8012 Новости Микологии Антоненко Андрей
Фунгологи проследили за жизнью одного вида светящихся грибов в лесах Бразилии и пришли к выводу, что они сияют по ночам не просто так, а ради привлечения внимания насекомых, помогающих им распространять споры, говорится в статье, опубликованной в журнале Current Biology. Цветы...
18-02-2021 Просмотров:2045 Новости Палеонтологии Антоненко Андрей
Результаты нового исследования немецких ученых предполагают, что исчезновение мамонтов и другой мегафауны Северной Америки в конце плейстоцена было связано с климатическими изменениями, а не с приходом на континент первых людей...
Перуанские палеонтологи обнаружили в пустыне Окукахе скелет палеогенового предка китов, жившего в этих краях 40 млн лет назад. Окаменелости отлично сохранились и претендуют на звание самого древнего морского млекопитающего на…
Ученые впервые нашли многоклеточное животное так глубоко под землей. Круглый червь с дьявольским именем жил в подземных водах на глубине больше одного километра. Нематоду Halicephalobus mephisto Больше двадцати лет назад…
Связка недавних генетических исследований показала, что современный человек занимался сексом с неандертальцами тысячи лет назад, когда две группы бродили по планете плечом к плечу. Однако кости, оставленные этими видами, не…
В Арктике, возможно, обнаружена древнейшая порода Земли. Редкие образцы были обнаружены на архипелаге Баффинова Земля (Канада). Фото Мcgill.ca За миллиарды лет практически весь первоначальный материал, из которого была создана наша планета,…
Палеонтологи обнаружили в Арктике крупную птицу, присутствие которой свидетельствует об аномальной жаре, установившейся в регионе во второй половине мелового периода. Tingmiatornis arcticaОб этом говорится в статье американских специалистов из Рочестерского университета,…
Группа китайских инженеров под руководством С.Ц. Куна (X.Q. Kong) из Ляонингского технологического университета исследовала, что позволяет комарам ходить по воде аки посуху. Свои результаты они опубликовали в журнале AIP Advances. ВодомеркаХорошо известно, что…
Небольшой хищный динозавр, довольно похожий на знаменитых велоцирапторов из фильма "Парк юрского периода", попался палеонтологам в канадской провинции Альберта. Похоже, он является одним из самых высокоширотных представителей семейства Dromaeosauridae и…
Инженерам давно известно, что лучше всего собирать систему из модулей. Если один из компонентов перестанет работать, достаточно его заменить, будь то видеокарта компьютера, генератор автомобиля или камера космического телескопа. Напротив, если…
Японские ученые провели исследование поведения летучих мышей и выяснили, каким образом им удается избегать столкновения друг с другом во время полетов в стае в условиях полной темноты внутри пещеры. Об…