Океанические сине-зелёные водоросли Synechococcus производят 20% кислорода на планете. Такой высочайшей производительностью они обязаны уникальному умению приспосабливаться к нужной длине световой волны. То есть водоросль настраивает свою фотосинтетическую систему в зависимости от того, какая длина волны сейчас более доступна. Соответственно, у водорослей меняются пигменты, отвечающие за ловлю фотонов, и сама клетка следом меняет цвет, подобно хамелеону.
Соответствующим образом меняется и цвет водорослей. В прибрежных водах, где они поглощают зелёный свет, пигмент придаёт клеткам красный оттенок. Вдали от берега, в более глубоких водах усиливается доля синего и водоросли становятся оранжевыми. Эта молекулярно-генетическая уловка и позволяет Synechococcus жить и успешно вести фотосинтез в разном режиме освещённости, снабжая океан и всю планету кислородом.
Источник: КОМПЬЮЛЕНТА
Чтобы поддерживать размножение в условиях фосфорного голодания, бактериофаги морских бактерий приходят в хозяйские клетки с набором генов, который помогает хозяевам более эффективно «выхватывать» из среды фосфор.
Исследователи из Массачусетского технологического института (США) обнаружили, что некоторые вирусы-бактериофаги приходят к своим жертвам с чем-то вроде генетического троянского коня: они приносят заражаемым бактериям гены, которые должны облегчать им жизнь в условиях стресса. Учёные работали с океаническими бактериями Prochlorococcus и Synechococcus, которые производят шестую часть кислорода на планете. Бактерии рода Prochlorococcus в диаметре не превышают одного микрона, а их плотность достигает 100 миллионов клеток на литр воды. Synechococcus чуть крупнее и не столь многочисленны. Соответственно, вирусы, поражающие эти бактерии, относятся к самым распространённым среди себе подобных.
Жизнь в океане полна превратностей, в том числе для микроорганизмов. Часто случается, что бактерии заносит в воды, бедные фосфором. А он критически необходим для жизнедеятельности: без фосфорных соединений невозможно синтезировать нуклеиновые кислоты, то есть размножаться. На такие случаи у бактерий есть специальная генетическая система, чувствующая, когда фосфора начинает не хватать, и активирующая другие гены, которые кодируют связывающие фосфор белки. Эти дополнительные белки позволяют бактериям наловить больше фосфора и пережить кризис.
Но, как оказалось, у вирусов тоже есть такие гены для ловли фосфора. Размножение вируса требует изрядных фосфорных запасов для штамповки вирусной ДНК. Исследователи заметили, что, когда бактериофаг заражает бактерию в условиях недостатка фосфора, в вирусном геноме включаются гены белков, отвечающих за «ловлю» фосфорных соединений.
Оказалось, что вирусные белки управляются теми же генами, что и бактериальные. То есть когда бактерия чувствует фосфорный стресс, она включит как свою, так и вирусную систему по добыче дополнительного фосфора. Основная его масса пойдёт на нужды вируса. Разумеется, самой бактерии может что-то перепасть от усилившегося фосфорного потока, но впрок ей это не пойдёт: через 10 часов цикл размножения вируса закончится, и бактериальную клетку разорвёт под напором выходящих наружу вирусных частиц.
В статье, опубликованной в журнале Current Biology, авторы пишут, что далеко не все бактериофаги, паразитирующие на Prochlorococcus и Synechococcus, обладают этими генами, а только те, что живут в атлантических популяциях бактерий. К примеру, тихоокеанские Prochlorococcus и Synechococcus не сталкиваются с недостатком фосфора, а потому соответствующей системы у них нет. А вот атлантические вирусы когда-то давно сумели скопировать гены хозяев, создавших себе молекулярный механизм на случай фосфорного голодания; в результате вирусы могут размножаться, не обращая внимания на изменения в среде: удвоенный поток фосфора позволяет им синтезировать столько ДНК, сколько нужно.
Столь тонкое приспособление вируса под нужды хозяина исследователи видят впервые. Впрочем, по их словам, бóльшая часть сведений о взаимоотношениях бактерий и фагов пришла к нам из биомедицинских исследований. А жизнь в человеческом организме и биологической лаборатории всё-таки сильно отличается от того, что происходит в Мировом океане. Поэтому не исключено, что это не единственный трюк, с помощью которого «дикорастущие» вирусы облегчают себе жизнь.
Источник: КОМПЬЮЛЕНТА
Океанические бактерии Synechococcus плавают с помощью волнообразных биений клеточной мембраны, которые вызывает белковая спираль, тянущаяся через всю клетку.
Бактерии плавают с помощью жгутиков. Белковую нить жгутика приводит в движение хитроумный молекулярный мотор, закрепленный в мембране клетки: мотор работает, жгутик крутится, подобно пропеллеру, бактерия движется. Но есть весьма распространённый род бактерий, называемых Synechococcus, у которых жгутика нет, а однако ж они перемещаются с довольно значительной для бактерий скоростью в 25 мкм/с.
Synechococcus живут в океане и служат важным компонентом пищевой пирамиды. Генóм этих бактерий был прочитан ещё в 2003 году, но ответа на вопрос, как они двигаются, это не дало. В статье, опубликованной на сайте
У Synechococcus тоже наблюдаются волны, пробегающие по клетке, которые зависят от наличия у бактерии белка SwmA, располагающегося во внешней мембране. Но скользить так по поверхности намного легче, чем плавать. Хватает ли бактерии «мембранного волнения», чтобы плыть в толще воды? Ответом на вопрос стала математическая модель, построенная учёными. Согласно их выкладкам, чтобы плавать таким образом, амплитуда бегущей волны должна достигать 0,05 мкм, а сама волна — распространяться со скоростью 73 мкм/с. Частота вращения двигателя-спирали в этом случае будет равна где-то 186 Гц.
Synechococcus, как пишут исследователи, справляется с задачей благодаря особенностям строения внешней клеточной мембраны. На ней, как уже было сказано, сидит белок SwmA, и его молекулы располагаются под углом 60˚ друг к другу. Когда спираль поворачивается, соединённые с ней молекулы SwmA тоже движутся, но из-за особенностей их взаиморасположения образующаяся волна оказывается больше, что дополнительно ускоряет бактерию. Хотя, разумеется, такой способ передвижения — с помощью белкового «буравчика» — всё равно не столь эффективен, как старый добрый жгутик, скорость вращения которого, для сравнения, составляет 1 700 Гц.
Источник: КОМПЬЮЛЕНТА
Внимание!!!!
Авторские права на все фильмы принадлежат их правообладателям. Все фильмы размещены с согласием их авторов. Разрешен их домашний просмотр и запрещено коммерческое использование. Для их коммерческого использования необходимо связаться с их правообладателями.
13-11-2013 Просмотров:9233 Новости Эволюции Антоненко Андрей
В 2006 году генетики наложили последовательности ДНК нынешних разновидностей больших кошек друг на друга и предположили, что неизвестный предок нынешних тигров, львов, леопардов и ягуаров жил в Средней Азии 10–11 млн...
25-09-2012 Просмотров:9036 Новости Зоологии Антоненко Андрей
Если муравьям приходится иметь дело с большим объёмом информации, решение принимает колония в целом, поскольку отдельно взятая особь в этом случае непременно ошибётся. Фото Takao Sasaki / James S. Waters /...
11-10-2010 Просмотров:10755 Новости Зоологии Антоненко Андрей
Центр биологического разнообразия США (CBD) опубликовал отчёт, согласно которому семнадцать видов арктических животных находятся под угрозой исчезновения из-за таяния льдов, вызванного глобальным потеплением. Первыми жертвами таяния льдов станут белые медведи. (Фото...
21-01-2013 Просмотров:14972 Новости Зоологии Антоненко Андрей
Многие животные используют фотосинтез, чтобы получать питательные вещества. Фотосинтезом на Земле занимаются растения, водоросли и бактерии, но сейчас речь идёт вовсе не о поедании их животными, а о симбиозе одних...
05-11-2014 Просмотров:10399 Наши фильмы Антоненко Андрей
Материал для данного фильма был отснят в 2011г во время Амурской экспедиции. На юго-востоке нашей страны протекает одна из самых крупных рек России, вдоль которой проходит граница двух крупнейших стран планеты....
Оглавление 1. Введение 2. Появление и эволюция растений 3. Разнообразие растений 4. Строение растений 5. Размножение растений 6. Питание растений 1. Введение Рис. 1.1. Царство растений.Расте́ния (лат. Plantae или лат. Vegetabilia рис. 1.1) — одна из основных групп многоклеточных организмов, включающая в себя в…
Плотоядные динозавры были более многочисленными, чем считалось. Так утверждают исследователи, которые одним махом утроили число известных видов данного типа. Микрораптора считают потомком таких маленьких плотоядных динозавриков. (Реконструкция David Krentz.)Всего неделю назад…
Ученые выяснили, что неумение обезьян разговаривать связано исключительно с особенностями их мозга. Если бы у обезьян имелись соответствующие умственные способности, то они легко могли бы издавать членораздельные звуки. Рентгеновский снимок макакиК…
Муравьи рода Odontomachus используют свои большие челюсти, чтобы подпрыгивать в воздух и спасаться таким образом от врагов. Об этом говорят результаты наблюдений зоологов из университета Иллинойса (США), под руководством получающего…
Американские палеонтологи торжественно представили нового родственника знаменитых ти-рексов. Двуногий хищный динозавр Lythronax argestes жил 80 млн лет назад и приходился "дядюшкой" настоящим тираннозаврам. Портрет литронакса Название, выбранное учеными для нового животного, в…
Живший в меловом периоде небольшой летающий динозавр Microraptor gui хорошо умел ловить рыбу. Похоже, он вообще атаковал все, что шевелится, в своем размерном классе, ведь раньше в желудках микрорапторов уже…
Растения амброзии каким-то образом узнают, кто растёт рядом, и если это ближайший родственник, то амброзия позволяет грибам микоризы распространиться так, чтобы и родственная особь могла воспользоваться их услугами. Амброзия полыннолистная, доставляющая…
Недра Китайской народной республики продолжают удивлять научный мир остатками древних существ. Одно из них, только что описанное палеонтологом Уханьского института геологии и минеральных ресурсов Лун Ченом, своим видом могло бы…
Семейство (лат. familia, мн. ч. familiae) — один из основных рангов иерархической классификации в биологической систематике. В иерархии систематических категорий семейство стоит ниже отряда (порядка) и выше трибы и рода. Примеры:…