..Из чего следует, что Земля на момент удара имела плотную атмосферу. И любой расчёт такого события показывает, что эту атмосферу она должна была потерять.
Так вот, ещё не зная об этих данных по датировке столкновения Земли с загадочной Тейей, планетолог Сара Стюарт (Sarah Stewart) из Гарвардского университета (США) вместе с коллегами разработала модель, в которой такое событие ведёт к потере нашей планетой атмосферы. Свои модельные результаты учёные представили на конференции, посвящённой происхождению Луны. Мероприятие проходило в Лондоне (Великобритания) в конце сентября.
В своих изысканиях учёные с особым пристрастием проследили судьбу гелия и неона — газов, распространённых по всей Солнечной системе и сегодня почти отсутствующих на Земле. И если дефицит гелия можно объяснить его лёгкостью и «уходом» в космическое пространство, то с неоном о лёгкости говорить не приходится.
Срединно-Атлантического хребта, профессор Стюарт и Ко выяснили, что в нижележащих слоях планеты следы присутствия гелия и неона всё-таки есть, причём довольно обильные. То есть несколько миллиардов лет назад оба газа на Земле были. Но где всё это сегодня? Почему планету покинул сравнительно тяжёлый неон? «Для столь драматической перемены недостаточно просто снять крышку с банки; нет, оказавшись в катастрофическом событии по типу гигантского столкновения, вам придётся одномоментно вышвырнуть сразу всю атмосферу», — полагает г-жа Стюарт.
Проанализировав образцы из нынешней Исландии, взятые со днаВот только расчёты показывают, что даже очень сильное столкновение, такое как межпланетное соударение Земля — Тейя, само по себе не в состоянии обеспечить то соотношение неона в нижних и верхних слоях планеты, которое наблюдается на практике. Вывод: Земля теряла свою атмосферу не один раз, а несколько. В результате серии столкновений поверхность превратилась в океан расплавленной лавы, вскоре застывавшей, а потом снова становившейся жидкой. Коллизия Земля — Тейя, скорее всего, была последней и наиболее значимой из таких событий, вдобавок к добиванию первоначально газовой оболочки нашей планеты ещё и создавшей из её же обломков крупный спутник.
Всё это замечательно, скажете вы, но чем это мы тут дышим? Действительно, если атмосфера однажды была потеряна, её нынешнее существование требует объяснений. Исследовательница полагает, что за нашу новую атмосферу «второго поколения» во многом ответственны планетезимали, которые продолжали обрушиваться на Землю уже после её клинча с Тейей. Впрочем, эта теория не учитывает недавних исследований, представленных на той же конференции и показывающих, что столкновение, породившее Луну, случилось не 4,5 млрд лет назад, вскоре после начала формирования планет, а на 100–200 млн лет позже. В свете этих цифр падение на Землю планетезималей выглядит труднообъяснимым, ибо через пару сотен миллионов лет после появления планеты планетезималей в Солнечной системе уже не должно быть.
В любом случае, что бы ни принесло на Землю газы и воду, которых она в значительной степени лишилась в результате серии гигантских столкновений, мы просто обязаны похвалить молодую планету за талант к восстановлению. Потерять вещества по массе больше Луны, пережить встречу с планетой, превышающей Марс, и после этого не только восстановить плотную атмосферу, но даже родить нас с вами... Это нечто. И это то, что свидетельствует об огромном запасе устойчивости, который есть у землеподобных планет как потенциальной колыбели разумной жизни.
Отчёт об исследовании будет опубликован в журнале Philosophical Transactions of the Royal Society.
Источник: КОМПЬЮЛЕНТА
Вообразите озеро настолько солёное, что вода в нём не замерзает даже при -20 °C. А теперь представьте себе, что там живут и прекрасно себя чувствуют живые существа.
Дейвис» действительно есть такое озеро, прозванное Глубоким (Deep Lake). Оно образовалось около 3 500 лет назад, когда суша поднялась и часть океана оказалась изолирована. Вода в озере глубиной 36 м настолько солёная, что там нет почти никакой жизни.
Примерно в пяти километрах от антарктической станции «А та, что есть, — весьма примечательна. Группа американских и австралийских учёных взяла образцы с глубины 5, 12, 24 и 26 м. Проведён анализ полных генетических последовательностей (геномов) тамошних микроорганизмов, сделаны выводы о том, что позволяет им выживать в подобных условиях.
Галофильные (в переводе с греческого «солелюбивые») экстремофилы озера Глубокое относятся к группе галоархеев. Благодаря намного более высокой скорости генетического обмена по сравнению с тем, что обычно встречается в природном мире, многие туземные виды извлекают выгоду друг из друга.
Удивительно и то, что в дополнение к подобному «промискуитету» доминантные представители микробного сообщества сохраняют свою видовую принадлежность и сосуществуют с другими и осваивают разные ниши, не ущемляя чужих интересов.
Одни организмы питаются белками, растворёнными в воде, другие потребляют сахара (например, глицерин — побочный продукт водорослей, живущих в верхних слоях озера). Наиболее распространённый экстремофил (tADL) был как раз из второй группы: на его долю приходится 44% клеток.
По оценкам, галоархеи из этого озера размножаются очень медленно: всего шесть поколений в год.
Ферменты, которые можно получить из хладоустойчивых микроорганизмов, обладают огромной промышленной ценностью. Их высокая активность при низких температурах позволяет сократить затраты на энергию в процессах, которые иначе нуждаются в нагреве (например, очистка) или могут быть осуществлены только при низкой температуре (скажем, производство продуктов питания или удаление из холодных мест загрязняющих веществ, прежде всего нефтепродуктов).
Нет сомнений, вновь обнаруженными формами жизни заинтересуются и астробиологи: может быть, подобные существа обитают в солёных канальцах внутри льда, к примеру, Европы, спутника Юпитера. Ферменты, полученные из земных галоархеев, пригодятся для создания биодатчиков, с помощью которых будут искать биологические реакции на других планетах.
Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.
Истчонки: КОМПЬЮЛЕНТА
В водах Амазонии живут два вида электрических рыб, которых часто путают между собой, до того они похожи. Рыб зовут Brachyhypopomus walteri и Brachyhypopomus bennetti; это родственники, использующие электрические сигналы для общения и ориентации на местности. Внешне они, повторим, очень похожи, эволюционно принадлежат к одному роду, но при этом между ними есть одно важное различие: Brachyhypopomus walteri использует переменный ток, а Brachyhypopomus bennetti — постоянный.
ZooKeys зоологи из Корнеллского университета (США), у Brachyhypopomus bennetti электрический орган заметно больше, чем у Brachyhypopomus walteri. Кроме того, у «постоянного» Brachyhypopomus bennetti хвост короткий и толстый, а у «переменного» Brachyhypopomus walteri — длинный и тонкий.
Разнятся и электрические органы рыб: как пишут вБольшинство электрических рыб используют переменный ток: считается, он помогает ещё и маскироваться от хищников. Меняющиеся импульсы делают электрических рыб невидимыми для тех, кто мог бы найти их по постоянному полю. Постоянный ток встречается у рыб гораздо реже: помимо Brachyhypopomus bennetti, им пользуется электрический угорь. Но все прочие Brachyhypopomus, кроме Brachyhypopomus bennetti, работают с переменным током.
В 1999 году была выдвинута гипотеза о том, что в данном случае имеет место так называемая бейтсовская мимикрия, когда безобидный вид копирует некоторые черты опасного, как, например, мухи-журчалки имитируют внешность ос. Мощность разряда электрического угря достаточно велика, чтобы оглушить и жертву, и потенциального врага (при этом угорь способен «прощупывать» окрестности с помощью слабых разрядов), так что мимикрия под угря была бы вполне целесообразной.
Однако Джон Салливан и его коллеги полагают, что тут может быть другая причина. Там, где живут «постоянноточные» B. bennetti, от хищников спрятаться довольно сложно, и почти все рыбы, которых удалось поймать зоологам, имели на своих хвостах, так сказать, следы контакта с врагом. Хотя повреждённый хвост постепенно регенерирует, такие повреждения могли бы сильно осложнить жизнь B. bennetti, пользуйся они переменным током и будь у них длинный хвост.
У рыб с переменным током за вторую фазу отвечает хвост, и если его повредить, то электролокация и общение друг с другом станут невозможны.
Получается, что B. bennetti попросту выбрали более надёжный генератор, который производит постоянный ток, но который зато нельзя повредить, схватив рыбу за хвост.
Впрочем, авторы работы не исключают, что тут могут работать оба объяснения: и то, что генератор переменного тока проще защитить от хищника, и то, что B. bennetti таким образом мимикрирует под опасного электрического угря.
Источник: КОМПЬЮЛЕНТА
Туристы стекаются в Национальный парк Петрифайд-Форест в Аризоне, чтобы полюбоваться на большие сверкающие останки окаменелых деревьев. А геологи едут туда в поисках чего-то менее заметного, но обладающего более весомым научным значением: керна, который будет получен после бурения породы возрастом более 200 млн лет на полукилометровую глубину.
Бурильщики проведут несколько незабываемых недель, вгрызаясь в слои породы, которые таят окаменелости крошечных ранних динозавров и гигантских крокодилоподобных фитозавров, а также листья и пыльцу целой экосистемы. Цель проекта стоимостью $970 тыс. состоит в том, чтобы получить полное представление о большей части среднего и позднего триасового периода — турбулентного интервала, который видел и массовое вымирание, и появление динозавров. На основе распада радиоактивного урана в слоях вулканического пепла геологи собираются дать точную датировку событий, происходивших примерно 205–235 млн лет назад как раз перед тем, как начал распадаться суперконтинент Пангея.
«Составить согласованную хронологию важнейшей части триаса — это уникальная возможность! — восклицает геолог Джон Гейссман из Техасского университета в Далласе (США), один из руководителей проекта. — Конечно, у нас есть и другие места на континенте для изучения триаса, но Петрифайд-Форест чертовски хорош, когда дело доходит до деталей».
Проект зрел долгие годы. Его можно считать наследником успешного получения триасового керна в рифтовой системе Ньюарк в Нью-Джерси в 1990–1993 гг. Целью той инициативы было изучение изменений в количестве осадков, отложенных при прохождении Земли через циклические сдвиги орбитальной траектории вокруг Солнца. «Если мы сможем показать, что ньюаркская хронология верна, то эмпирически откалибруем поведение Солнечной системы, — подчёркивает геолог Пол Олсен из Земной обсерватории Ламонта — Доэрти (США). — Для меня это, пожалуй, самый интересный аспект».
Национальный научный фонд США и Международная программа континентального научного бурения не напрасно разбрасываются финансами. На кону — ответы на очень важные вопросы. Сравнение данных из Ньюарка с информацией о триасе, полученной в Средиземноморье, навело некоторых исследователей на мысль о необходимости радикального пересмотра истории периода. Предложено расширить норийский ярус, дабы он охватывал почти половину всего триаса, и существенно изменить даты основных эволюционных событий, в том числе появления определённых динозавров.
С идеей «длинного нория» многие отчаянно не согласны. Керн из окаменевшего леса вроде бы должен предоставить достаточное количество данных и положить конец спорам. Но в породах всегда немало хронологических пробелов вследствие выветривания и внезапных геологических событий. Из-за эрозии поверхности, например, в керне, скорее всего, будет отсутствовать самый конец триаса (около 200 млн лет назад), когда по планете прокатилось массовое вымирание, уничтожившее множество родственников динозавров. По-видимому, возраст самых молодых пород керна составит около 205 млн лет (формация Чинл). Затем керн пройдёт (с перерывами) через формацию Менкопи и остановится на слоях, образовавшихся около 235 млн лет. После этого геологическая летопись пропустит десятки миллионов лет — сразу же начнутся породы пермского периода, который предшествовал триасу.
В общем, учёные готовы к тому, что значительная часть истории будет отсутствовать. В то же время они надеются получить почти полный отчёт о большей части триаса и поистине кладезь информации.
Геологи изучают Петрифайд-Форест с 1850-х годов, и в последнее время им в первую очередь интересуются специалисты по триасу. С 2004-го, например, раскопано несколько скелетов вымерших крокодилоподобных животных под названием Revueltosaurus, прежде известных только по зубам. Ранние динозавры (скажем, целофиз размером с собаку) тоже бродили там, и радиометрическое датирование показало, как они были связаны со своими современниками из других частей обеих Америк.
Породы, содержащие окаменелости, встречаются в парке почти повсюду, рассказывает местный палеонтолог Билл Паркер. Главная задача текущего момента заключается в объединении отдельных открытий в согласованную, хорошо датированную историю. Многие породы на поверхности выветриваются так сильно, что искажают отношения между ископаемыми и делают радиометрическое датирование почти невозможным. «Это вам не Гранд-Каньон, где можно спуститься вниз и увидеть все породы в правильном порядке, — поясняет г-н Паркер. — Керн устранит эту проблему». Кстати, бурение в национальных парках США допускается по усмотрению местного руководства, и Петрифайд-Форест выделяется среди других тем, что считает себя научным заповедником: г-н Паркер работает там на полную ставку.
Когда стартует бурение, неизвестно. Надеялись начать 8 октября, но, кажется, не судьба. Парк, как и все остальные бюджетные организации США, 1 октября закрылся из-за кризиса, о которым вы, конечно, читали в новостях, и не откроется, пока конгресс не договорится о плане дальнейшего финансирования госучреждений. Если политики будут чесаться слишком долго, проект придётся перенести на весну следующего года.
В случае успеха бурение триасовых кернов продолжится. Учёные уже положили глаз на несколько других локаций.
Истчоник: КОМПЬЮЛЕНТА
Учёные давно пытаются разгадать загадку голых землекопов: эти не слишком приятные на вид грызуны живут на удивление долго, до 30 лет, почти не болеют и обладают поразительной защитой от рака. Высказывались предположения, что у землекопов есть специальный механизм, который не позволяет их клеткам сливаться в опухоль, и что от рака грызунов защищает слишком активная программа апоптоза (последнее, правда, проверяли не на самих землекопах, а на родственных им слепышах).
В новой статье, вышедшей в журнале PNAS, учёные из Рочестерского университета (США), которые как раз и являются авторами двух упомянутых работ, сообщают ещё об одном механизме, который, по их мнению, может лежать в основе долгожительства и онкоустойчивости землекопов.
рибосомальных РНК у землекопов расщеплена на две части. Известно, что рибосома представляет собой сложный РНК-белковый комплекс, в котором рРНК служит как бы платформой, на которой происходит сборка рибосомных белков. Конечная форма рибосомы и её функционирование зависят от взаимодействия между белками и рРНК.
Изучая рибосомы этих грызунов, Вера Горбунова, Андрей Селуанов и их коллеги обнаружили, что одна изРибосомы состоят из двух субчастиц, объединяющихся на мРНК, чтобы начать синтез полипептидной цепи. Большая субчастица у эукариот включает в себя несколько рРНК, называемых 28S, 5S и 5,8S рРНК, где коэффициент перед S (коэффициент седиментации) соответствует величине молекулы. Оказалось, что самая большая рРНК — 28S — у землекопов представлена не одной целой молекулой, а двумя кусками, большим и поменьше. В молекуле 28S рРНК у землекопов есть две точки разрыва, и фрагмент, лежащий между ними, просто исчезает из рибосомы. И это, по-видимому, уникальная для этих животных черта.
Исследователи взялись проверить, как эта особенность рРНК сказывается на работе землекопьих рибосом. Несмотря на потерю в рРНК, рибосомы землекопов остаются функциональными и при этом демонстрируют большую точность в синтезе белка. Во время синтеза у рибосомы действует механизм, который позволяет ей определить, правильная ли аминокислота поступила в сборочный центр, соответствует ли она триплету в мРНК и можно ли эту аминокислоту включать в полипептидную цепь. Как и у всякого исправительного механизма, у рибосомной корректировки есть своя погрешность, и иногда в белковую молекулу включаются неправильные аминокислоты. Когда же учёные сравнили точность работы рибосомы в фибробластах землекопов и в фибробластах мыши, оказалось, что в клетках землекопов рибосомы действуют в 40 раз точнее при той же скорости синтеза.
Белок с погрешностью может сразу же отправиться в утиль, но может и задержаться в клетке и включиться в какой-нибудь процесс. В зависимости от того, что это за белок и какую ошибку он в себе несёт, последствия могут быть самыми разными. Поэтому вполне возможно, что и своей долгой жизнью, и устойчивостью к раку голые землекопы обязаны «дефектной» рибосомной РНК, которая позволяет им точнее синтезировать белки.
Впрочем, сами исследователи пока не знают, как именно модификация рРНК делает рибосомы более точными; в дополнительной проверке нуждается и предположение, что именно от этого зависят легендарная продолжительность жизни и онкоустойчивость голых землекопов.
Источник: КОМПЬЮЛЕНТА
Геологи установили, что кислород присутствовал в атмосфере Землю большую часть ее истории. Следовательно, первые фотосинтезирующие организмы возникли гораздо раньше, чем принято считать.
Об этом говорится в статье датских исследователей из Копенгагенского университета, опубликованной в свежем выпуске журнала Nature.
Считается, что почти половину своей 4,5-миллиардной истории Земля провела без кислородной атмосферы. Впервые в ощутимых количествах кислород появился на нашей планете во время так называемой кислородной революции около 2,3 миллиардов лет назад - его стали выделять фотосинтезирующие бактерии. Об увеличении концентрации кислорода говорят окисленные породы, в тот период впервые появляющиеся в геологической летописи.
Однако авторы статьи выяснили, что кислород стал поступать в атмосферу на 700 миллионов лет раньше. Об этом свидетельствует анализ образцов палеопочвы возрастом 3 миллиарда лет, собранных в Южной Африке. Ученые обнаружили, что в палеопочве наблюдается пониженное содержание изотопа хрома-53. Это говорит об активных процессах окисления, при которых хром с валентностью III переходил в хром с валентностью IV.
Дело в том, что хром-53 накапливается преимущественно в окисленной форме, а затем соединения хрома IV вымываются, что понижает общее содержание изотопа. Исходя из особенностей этого процесса, геологи вычислили, что 3 миллиарда лет назад концентрация кислорода в атмосфере составляла 3 на 10 в минус 4-ой степени от нынешнего уровня. Почти наверняка он имел биогенное происхождение, поскольку за счет чисто абиотических процессов так много O2 образоваться не может.
«Наше исследование доказывает, что аэробные формы жизни и фотосинтез, при котором выделяется кислород, появились очень рано», -- пояснил Шон Кроув, один из авторов работы.
Источник: infox.ru
Когда говорят об эволюции на уровне белковых молекул, обычно имеют в виду изменения в аминокислотной последовательности, которые влекут за собой перестройки в трёхмерной структуре белка. А перемены в последней ведут к изменениям в функционировании белковой молекулы, которая таким образом приспосабливается к новым условиям работы, к новым требованиям клетки и всего организма, выживающего в столь непостоянной окружающей среде.
Однако бывает так, что эволюционные изменения в работе белковой молекулы проходят независимо от изменений в её трёхмерном портрете. Как раз такой случай описывают в Nature Structural and Molecular Biology Питер Райт и его коллеги из Института Скриппса (США). Исследователи занимались дигидрофолат-редуктазой, которая участвует в метаболизме нуклеотидов и имеется почти у всех живых организмов.
Как и любой фермент, дигидрофолат-редуктаза во время работы претерпевает некие структурные изменения, и несколько лет назад учёные уже сообщали о том, как эффективность этого фермента зависит от его динамики и гибкости.
На сей раз исследователи сравнивали динамику фермента и его строение у разных организмов, особое внимание уделяя белку бактерий и белку человека. Оказалось, что, несмотря на огромную эволюционную дистанцию между нами и кишечной палочкой, дигидрофолат-редуктазы у нас и бактерий довольно схожи и по аминокислотной последовательности, и по 3D-структуре. При этом белки кишечной палочки и человека демонстрируют разную конформационную динамику, или, проще говоря, манеру движения.
Фермент захватывает какие-то вещества, что-то с ними делает в активном центре и выпускает обратно в среду некий продукт. Это сопровождается движениями частей молекулы. У бактерий участки полипептидной цепи дигидрофолат-редуктазы совершают для этого относительно широкие движения; у человеческого фермента эти перемещения более, если можно так выразиться, сдержанные, и при этом они точнее. И, главное, рабочие конформационные изменения у нашего фермента осуществляются за счёт иного механизма.
Разница в пластичности, в рабочей динамике фермента произошла за счёт возможностей, заключённых приблизительно в одном и том же пространственном «портрете» и, что особенно важно, из-за разных условий работы, с которыми фермент сталкивается в бактериальной и человеческой клетке. Наш фермент настроен на работу именно в клетке человека и в бактериальных условиях не действует: слишком высокие концентрации конечного продукта, присутствующие в кишечной палочке, просто подавляют его активность.
То, что белок не может переключиться с одной манеры движения на другую, говорит о том, что разная динамика молекул всё же как-то запечатлена в мутациях, в аминокислотной последовательности, и теперь исследователи попытаются эти мутации расшифровать.
Пока же полученные данные говорят о том, что эволюция белковых молекул не обязательно выбирает мишенью трёхмерную структуру и влияет на работу белка только через изменения в 3D-портрете. Видимо, динамическая пластичность сама по себе может подвергаться давлению естественного отбора, когда изменения в аминокислотной последовательности почти не отражаются на пространственной структуре, но сказываются на движениях белковой молекулы.
Источник: КОМПЬЮЛЕНТА
Правила хорошего тона не зря предписывают тщательно пережевывать пищу – пренебрежение этим советом может привести к самым печальным последствиям, вплоть до летальных. Лишний раз подтверждает эту истину находка пермской амфибии, насмерть подавившейся слишком крупной жертвой.
Некоторое время назад в раннепермских отложениях США была найдена примечательная пара скелетов. Крупное земноводное Sclerocephalus haeuseri (порядка 70 см длиной) окаменело, так и не выпустив из пасти Cherlyderpeton latirostris – амфибию размером поменьше. По заключению экспертов, смерть склероцефалуса наступила в результате удушения – тушка черлидерпетона перекрыла его горло и застряла там.
Палеонтологи описывают Sclerocephalus haeuseri как нечто среднее между саламандрой и аллигатором. Обтекаемое тело, тяжелые челюсти и череп, глаза на верхней стороне головы и сильный хвост указывают на то, что это был один из заметных водных хищников своего времени, экологическая ниша которого до некоторой степени совпадала с современными крокодилами.
Склероцефалусам была свойственна известная неразборчивость в пище – они одинаково хорошо относились к рыбам, некрупным амфибиям и даже собственному молодняку. Согласно альтернативной версии, пермский хищник поплатился как раз за каннибализм, подавившись именно молодой особью своего вида.
В летописи окаменелостей случаи гибели животных от удушения довольно редки. Live Science приводит еще два примера – в одном из них палеогеновый окунь Mioplosus labracoides насмерть подавился собственным товарищем, а в другом – еще один миоплозус не смог справиться с рыбой иного вида.
В настоящее время все эти примечательные образцы выставлены на онлайн-аукцион Heritage Auctions, торги которого состоятся в октябре. По словам директора аукциона Джима Уолкера, всякий раз, когда вместо изолированного скелета камни доносят до нас подобные захватывающие сцены, стоимость образцов многократно увеличивается. "Это повышает цену в восемь-десять раз вне всякого сомнения", – заявил он, отметив, что ожидаемая стоимость уникального лота находится в границах 150-250 тысяч долларов.
Среди других лотов этого аукциона – пара санкт-петербургских трилобитов Asaphus на одном матриксе, череп древней пираньи, уже упомянутые выше насмерть подавившиеся окуни и многое другое.
Истчоник: PaleoNews
Исследователи постоянно пытаются заставить бактерии производить какие-нибудь вещества, от белков до топливных углеводородов, и самая типичная технологическая проблема при этом — малый выход требуемых молекул. Обычно такие молекулярно-биотехнологические манипуляции сводятся к тому, что в геном бактерии вставляют ген, кодирующий нужный белок; таких генов может быть несколько, и эти белки могут иметь самые разные свойства. Однако синтез мРНК на ДНК и последующий синтез белковой молекулы на мРНК подчиняются множеству факторов, влияющих, разумеется, на активность всей этой машинерии. И необходимость их учёта является постоянной головной болью тех, кто занимается подобными молекулярно-генетическими работами.
кодонами — триплетами нуклеотидов, соответствующих тем или иным аминокислотам. Как известно, все аминокислоты, использующиеся при синтезе белка, кодируются в генетическом коде «словами» из трёх нуклеотидных букв; однако таких «слов» в коде гораздо больше, чем аминокислот, то есть, получается, одной и той же аминокислоте соответствует больше одного кодона. Эти кодоны используются в генах с разной частотой, одни чаще, другие реже; последние поэтому и называются редкими.
Один из таких факторов связан с редкимиНекоторое время назад исследователи заметили, что у бактерий такие редкие кодоны тяготеют к началу кодирующей области в гене, и на мРНК рибосома, стало быть, сталкивается с ними в первую очередь. Более того, чем больше редких кодонов оказывалось в начале, тем больше белка синтезировалось на такой матрице. Никто не знал, почему так происходит, но предположения выдвигались самые разные. По одной гипотезе, редкие кодоны служат тормозами рибосомам: на таких кодонах рибосоме приходится ждать, когда к ней придёт аминоацилированная транспортная РНК с соответствующей кодону аминокислотой. Потом, на обычных кодонах, рибосома постепенно разгоняется. Если же в начале редких кодонов нет, то рибосомы сразу ускоряются, и случается так, что сзади идущая нагоняет переднюю, сталкивается с ней, и эта авария прекращает биосинтез. А если в начале мРНК стоят редкие кодоны, то они, как регулировщики скорости, делают так, что все рибосомы добираются до конца мРНК, тем самым увеличивая продукцию белка.
По другим предположениям выходило, что редкие кодоны как-то меняют пространственную укладку мРНК, но эти изменения опять же влияют на скорость движения рибосом.
Проверить эти гипотезы экспериментально попробовали трое исследователей изИнститута Вайса при Гарвардском университете (США). Сначала они выяснили, как сильно редкие кодоны увеличивают продукцию белка. Для этого редкие и обычные кодоны вставлялись в зелёный флюоресцентный белок, который вводился в бактерию. По тому, как бактерия светилась, можно было понять, как работают начальные кодоны.
Как пишут авторы работы в Science, появление лишь одного редкого кодона могло усилить синтез белка в 60 раз.
Во-вторых, исследователи сравнили скорость эффективность синтеза белка на мРНК с редкими кодонами и на мРНК без редких кодонов, но обладающих пространственной структурой, замедляющей рибосомы. В итоге оказалось, что и то и другое действительно увеличивает эффективность синтеза, но редкие кодоны работают сами по себе и их эффект от структуры мРНК не зависит.
Фундаментальные и практические выводы из полученных результатов очевидны: удалось не только экспериментально подтвердить гипотезу, касающуюся одной из самых общих проблем в молекулярной биологии, но и показать, с помощью каких уловок можно заставить бактерии производить больше биотехнологического продукта.
Источник: КОМПЬЮЛЕНТА
29-05-2011 Просмотров:11350 Новости Зоологии Антоненко Андрей
В отличие от нас с вами, глаз северного оленя пропускает свет в ультрафиолетовом диапазоне. И это не грозит ему повреждением сетчатки. Биологи еще не поняли, почему, но уже поняли —...
03-04-2015 Просмотров:7820 Новости Палеонтологии Антоненко Андрей
Интересное палеоэкологическое открытие сделали американские палеонтологи. Проанализировав недостатки окаменелостей эдиакарской биоты Австралии, они смогли реконструировать условия жизни в те далекие времена. Dickinsonia. Реконструкция: Nobu Tamura Эдиакарские организмы считаются одними из первых крупноразмерных...
09-04-2018 Просмотров:3080 Новости Эволюции Антоненко Андрей
Благодаря современным методам исследования и новым открытиям палеонтология многое прояснила в эволюции летающих живых существ. Птерозавры, ихтиорнисы, энанциорнисы, микрорапторы сотни миллионов лет царили в воздушном пространстве, но в итоге уступили место птицам. РИА Новости...
12-02-2016 Просмотров:6800 Новости Геологии Антоненко Андрей
Российские и немецкие физики и геологи обнаружили ранее неизвестную прослойку в мантии Земли, в которой содержится гигантское количество жидкого кислорода, экспериментируя с лазерным прессом-"наковальней" в Немецком синхротронном центре DESY, о чем они рассказали в своей статье в журнале Nature Communications. Недра...
05-10-2012 Просмотров:12379 Новости Экологии Антоненко Андрей
Если из экосистемы убрать насекомых-вредителей, то растениям хватит всего нескольких лет, чтобы освоить новые экологические условия и пойти по иному эволюционному пути. Цветущая энотера (фото Scott Smith)Растения и насекомые так тесно...
Американские палеонтологи воссоздали облик дилофозавра. Оказалось, что он сильно отличается от небольшого хищного динозавра из фильма "Парк юрского периода", прежде всего тем, что он значительно крупнее. Статья опубликована в журнале Scientific American. Фигура…
Все знают игру в «горячо/холодно», когда один ищет некий предмет (как вариант — угадывает некое слово-понятие), а другой направляет его поиски, говоря «горячо» или «холодно», когда напарник приближается к цели…
Причины, по которым кембрийский период истории Земли сопровождался небывалым ростом разнообразия животных, наконец названы. По мнению американских ученых, «кембрийский взрыв» состоялся благодаря сочетанию двух ведущих факторов – появлению хищников и…
Вопреки распространённому мнению, существует, по крайней мере, ещё несколько видов клеток живых организмов, которые крупнее страусиного яйца. Возможно, страусиные яйца могут оказаться самыми тяжёлыми клетками в природе, но тесты ещё…
В России обнаружен новый вид морского ящера с пятью пальцами на лапах, жившего более 65 млн лет назад (верхнемеловой период) на территории Оренбургской области. Ранее описанные виды подобных ящеров в…
На сайте Plant List опубликована крупнейшая база данных по наименованиям растений. Незаметный O. adseptentrionesvergentulum (фото с сайта Rareplants.Co.Uk) Проект сохранения исчезающих видов растений, в рамках которого разрабатывается эта база данных, был…
Немецкие ученые выяснили, что у летучих мышей не самцы поют самкам серенады, а наоборот. У ночных обитателей тропиков мешкокрылов именно дама должна спеть первой, чтобы привлечь внимание самца. Правда, люди…
Международной группе ученых во главе с немецкими исследователями удалось определить возраст самых древних останков человека разумного (Homo sapiens), обнаруженных ранее в Марокко. Согласно результатам исследования, опубликованным в научном журнале Nature,…
Керны со дна озера Эльгыгытгын, которое, скорее всего, образовалось в результате падения метеорита 3,6 млн лет назад, помогли российским исследователям выяснить, каким был арктический климат на протяжении нескольких миллионов лет.…