Мир дикой природы на wwlife.ru
Вы находитесь здесь:Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Рибосома


Ученые с кафедры молекулярной биологии МГУ, под руководством младшего научного сотрудника Антона Кузьменко, совместно с коллегами из Швеции, обнаружили, что синтез белка в митохондриях пекарских дрожжей может проходить без участия одного из трех компонентов, которые до сих пор считались совершенно необходимыми для безъядерных клеток. Об этом открытии, полные результаты которого опубликованы в журнале Scientific Reports, рассказывается в пресс-релизе Московского университета.

1101161bde790bБелки в живой клетке синтезируются в соответствии с кодом матричной РНК (рибонуклеиновой кислоты), которая, в свою очередь, является «слепком» с нужного участка ДНК. Происходит процесс синтеза белка в особой органелле клетки — рибосоме. Активируют процесс синтеза специальные белки — факторы трансляции. У прокариот, то есть у организмов, клетки которых не имеют ядер (это бактерии и археи) факторов трансляции обнаружено три: IF1, IF2 и IF3. Что же касается эукариот — организмов с ядрами в клетках, в том числе и мы с вами — число этих факторов превышает 20.

Митохондрии — органеллы, «энергетические станции» наших клеток — теоретически должны были бы синтезировать белки как прокариоты. Дело в том, что, согласно господствующей сейчас в науке теории, митохондрии как раз и были когда-то самостоятельными одноклеточными безъядерными организмами, наподобие бактерий, которых наши опять же одноклеточные, но уже эукариотические предки «проглотили», но, вместо того, чтобы переварить, поставили себе на службу. В результате, у митохондрий остались многие черты самостоятельных организмов: собственная ДНК, и даже свои рибосомы, в которых тоже происходит синтез белка.

Ранее у митохондрий было открыто три белка-фактора трасляции: mtIF1, mtIF2 и mtIF3. Казалось бы, все «шло по плану», полностью согласуясь с теорией. Однако эксперимент ученых из Московского университета, имевший своей целью доказать, что фактор mtIF3 (идентифицированный позже других) так же необходим для синтеза белка, как и первые два, дал неожиданный результат.

Молекулярные биологи «вырезали» из митохондриальной ДНК пекарских дрожжей ген, кодирующий белок mtIF3, а на его место вставили ген устойчивости к антибиотику, добавленному к питательной среде, чтобы все клетки, в которых ген остался, погибли. К удивлению ученых, митохондрии выживших клеток, не имевшие третьего фактора трансляции, продолжали успешно синтезировать белки.

«Биосинтез белка в этих условиях шел, в целом, примерно с той же эффективностью, что и в нормальных дрожжевых митохондриях, но был сильно “разбалансирован”. Другими словами, некоторых митохондриальных белков в отсутствие mtIF3 действительно становилось меньше, зато количество других вырастало в несколько раз!» — рассказал ведущий научный сотрудник Петр Каменский, один из основных авторов исследования.

Скорее всего, предполагают теперь ученые, mtIF3 имеет и другие функции в клетке —  координирует соотношение производимых в митохондриях белков. Поскольку ранее была установлена связь между нарушением такой координации и развитием болезни Паркинсона, это открытие, возможно, поможет лучше разобраться в механизмах этой болезни и разработать новые методы ее лечения.

Кроме того, открытие ученых из МГУ открывает дорогу к более точному моделированию системы митохондриальной трансляции in vitro ( «в пробирке»). Такие модели, разработанные для эукариотических и бактериальных клеток, уже некоторое время помогают ученым тестировать лекарства (включая новые антибиотики) и ставить другие важные эксперименты.


Источник: Научная Россия


Опубликовано в Новости Цитологии

Учёные давно пытаются разгадать загадку голых землекопов: эти не слишком приятные на вид грызуны живут на удивление долго, до 30 лет, почти не болеют и обладают поразительной защитой от рака. Высказывались предположения, что у землекопов есть специальный механизм, который не позволяет их клеткам сливаться в опухоль, и что от рака грызунов защищает слишком активная программа апоптоза (последнее, правда, проверяли не на самих землекопах, а на родственных им слепышах).

В новой статье, вышедшей в журнале PNAS, учёные из Рочестерского университета (США), которые как раз и являются авторами двух упомянутых работ, сообщают ещё об одном механизме, который, по их мнению, может лежать в основе долгожительства и онкоустойчивости землекопов.

Секрет продолжительности жизни землекопов, вероятно, кроется в их особо точных рибосомах. (Фото knittingskwerlgurl.) Секрет продолжительности жизни землекопов, вероятно, кроется в их особо точных рибосомах. (Фото knittingskwerlgurl.) Изучая рибосомы этих грызунов, Вера Горбунова, Андрей Селуанов и их коллеги обнаружили, что одна из рибосомальных РНК у землекопов расщеплена на две части. Известно, что рибосома представляет собой сложный РНК-белковый комплекс, в котором рРНК служит как бы платформой, на которой происходит сборка рибосомных белков. Конечная форма рибосомы и её функционирование зависят от взаимодействия между белками и рРНК. 

Рибосомы состоят из двух субчастиц, объединяющихся на мРНК, чтобы начать синтез полипептидной цепи. Большая субчастица у эукариот включает в себя несколько рРНК, называемых 28S, 5S и 5,8S рРНК, где коэффициент перед S (коэффициент седиментации) соответствует величине молекулы. Оказалось, что самая большая рРНК — 28S — у землекопов представлена не одной целой молекулой, а двумя кусками, большим и поменьше. В молекуле 28S рРНК у землекопов есть две точки разрыва, и фрагмент, лежащий между ними, просто исчезает из рибосомы. И это, по-видимому, уникальная для этих животных черта.

Исследователи взялись проверить, как эта особенность рРНК сказывается на работе землекопьих рибосом. Несмотря на потерю в рРНК, рибосомы землекопов остаются функциональными и при этом демонстрируют большую точность в синтезе белка. Во время синтеза у рибосомы действует механизм, который позволяет ей определить, правильная ли аминокислота поступила в сборочный центр, соответствует ли она триплету в мРНК и можно ли эту аминокислоту включать в полипептидную цепь. Как и у всякого исправительного механизма, у рибосомной корректировки есть своя погрешность, и иногда в белковую молекулу включаются неправильные аминокислоты. Когда же учёные сравнили точность работы рибосомы в фибробластах землекопов и в фибробластах мыши, оказалось, что в клетках землекопов рибосомы действуют в 40 раз точнее при той же скорости синтеза. 

Белок с погрешностью может сразу же отправиться в утиль, но может и задержаться в клетке и включиться в какой-нибудь процесс. В зависимости от того, что это за белок и какую ошибку он в себе несёт, последствия могут быть самыми разными. Поэтому вполне возможно, что и своей долгой жизнью, и устойчивостью к раку голые землекопы обязаны «дефектной» рибосомной РНК, которая позволяет им точнее синтезировать белки.

Впрочем, сами исследователи пока не знают, как именно модификация рРНК делает рибосомы более точными; в дополнительной проверке нуждается и предположение, что именно от этого зависят легендарная продолжительность жизни и онкоустойчивость голых землекопов.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Зоологии

Исследователи постоянно пытаются заставить бактерии производить какие-нибудь вещества, от белков до топливных углеводородов, и самая типичная технологическая проблема при этом — малый выход требуемых молекул. Обычно такие молекулярно-биотехнологические манипуляции сводятся к тому, что в геном бактерии вставляют ген, кодирующий нужный белок; таких генов может быть несколько, и эти белки могут иметь самые разные свойства. Однако синтез мРНК на ДНК и последующий синтез белковой молекулы на мРНК подчиняются множеству факторов, влияющих, разумеется, на активность всей этой машинерии. И необходимость их учёта является постоянной головной болью тех, кто занимается подобными молекулярно-генетическими работами. 

Рибосомы на двух нитях мРНК; от рибосом отходят фрагменты синтезируемой полипептидной цепи. (Фото Visuals Unlimited / Corbis.)Рибосомы на двух нитях мРНК; от рибосом отходят фрагменты синтезируемой полипептидной цепи. (Фото Visuals Unlimited / Corbis.)Один из таких факторов связан с редкими кодонами — триплетами нуклеотидов, соответствующих тем или иным аминокислотам. Как известно, все аминокислоты, использующиеся при синтезе белка, кодируются в генетическом коде «словами» из трёх нуклеотидных букв; однако таких «слов» в коде гораздо больше, чем аминокислот, то есть, получается, одной и той же аминокислоте соответствует больше одного кодона. Эти кодоны используются в генах с разной частотой, одни чаще, другие реже; последние поэтому и называются редкими. 

Некоторое время назад исследователи заметили, что у бактерий такие редкие кодоны тяготеют к началу кодирующей области в гене, и на мРНК рибосома, стало быть, сталкивается с ними в первую очередь. Более того, чем больше редких кодонов оказывалось в начале, тем больше белка синтезировалось на такой матрице. Никто не знал, почему так происходит, но предположения выдвигались самые разные. По одной гипотезе, редкие кодоны служат тормозами рибосомам: на таких кодонах рибосоме приходится ждать, когда к ней придёт аминоацилированная транспортная РНК с соответствующей кодону аминокислотой. Потом, на обычных кодонах, рибосома постепенно разгоняется. Если же в начале редких кодонов нет, то рибосомы сразу ускоряются, и случается так, что сзади идущая нагоняет переднюю, сталкивается с ней, и эта авария прекращает биосинтез. А если в начале мРНК стоят редкие кодоны, то они, как регулировщики скорости, делают так, что все рибосомы добираются до конца мРНК, тем самым увеличивая продукцию белка. 

По другим предположениям выходило, что редкие кодоны как-то меняют пространственную укладку мРНК, но эти изменения опять же влияют на скорость движения рибосом.

 Проверить эти гипотезы экспериментально попробовали трое исследователей изИнститута Вайса при Гарвардском университете (США). Сначала они выяснили, как сильно редкие кодоны увеличивают продукцию белка. Для этого редкие и обычные кодоны вставлялись в зелёный флюоресцентный белок, который вводился в бактерию. По тому, как бактерия светилась, можно было понять, как работают начальные кодоны.

Как пишут авторы работы в Science, появление лишь одного редкого кодона могло усилить синтез белка в 60 раз.

Во-вторых, исследователи сравнили скорость эффективность синтеза белка на мРНК с редкими кодонами и на мРНК без редких кодонов, но обладающих пространственной структурой, замедляющей рибосомы. В итоге оказалось, что и то и другое действительно увеличивает эффективность синтеза, но редкие кодоны работают сами по себе и их эффект от структуры мРНК не зависит. 

Фундаментальные и практические выводы из полученных результатов очевидны: удалось не только экспериментально подтвердить гипотезу, касающуюся одной из самых общих проблем в молекулярной биологии, но и показать, с помощью каких уловок можно заставить бактерии производить больше биотехнологического продукта.

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Генетики

Когда рибосома синтезирует белок, она делает это с разной скоростью: одни участки полипептидной цепи появляются из рибосомы быстрее, другие — медленнее. Считается, что причиной тому строение матричной РНК, по которой едет рибосома. В РНК могут попадаться так называемые элементы вторичной структуры, когда в РНК образуются двуцепочечные участки, которые рибосоме приходится расплетать и превращать в одноцепочечные.

Рибосомы, движущиеся по мРНК, с фрагментами полипептидных синтезируемых цепей (фото Visuals Unlimited / Corbis).Рибосомы, движущиеся по мРНК, с фрагментами полипептидных синтезируемых цепей (фото Visuals Unlimited / Corbis).Однако исследователи из Батского университета (Великобритания) предлагают иное объяснение тому, почему полипептидная цепь синтезируется с разной скоростью. Во время работы рибосомы растущая цепь белка покидает белоксинтезирующий агрегат через специальный канал. И этот туннель, и сама полипептидная цепь несут какой-то электрический заряд. Так вот, как пишут исследователи в PLoS Biology, трудности возникают тогда, когда в канале рибосомы появляется положительно заряженный участок растущего полипептида. Сам рибосомный канал заряжен отрицательно, а потому между ним и положительно заряженным пептидом будет возникать притяжение. Если зарядов со знаком «+» в каком-то участке синтезируемого белка окажется слишком много, он начнёт избыточно притягиваться к проводящему каналу, и скорость синтеза упадёт.

По словам Кэтрин Чарнески, взаимодействие белка с рибосомным каналом имеет большое значение для проверки качества синтезируемого белка и для его правильного сворачивания. У многих матричных РНК на конце есть специальный «хвост», который не должен транслироваться рибосомой. Если же рибосома ошибётся и вовремя не остановится, на этом «хвосте» будет синтезирован положительно заряженный участок, который замедлит ход рибосомы; это, вероятно, послужит сигналом того, что белок получился неправильный и его надо расщепить.

С другой стороны, замедления рибосомы при синтезе могут давать время уже синтезированным фрагментам белка на приобретение нужной пространственной конфигурации. Лишние свободные аминокислоты могут помешать этому процессу, поэтому их лучше попридержать в рибосомном канале. Так задержки в синтезе могут служить правильному сворачиванию белка и тем самым помогают настроить полипептидную молекулу на предназначенную ей функцию.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Микробиологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Колюшка девятииглая - Pungitius pungitius

11-11-2012 Просмотров:15998 Рыбы Енисея Антоненко Андрей - avatar Антоненко Андрей

Колюшка девятииглая - Pungitius pungitius

Колюшка девятииглая широко распространена в низовьях Енисея. Встречается от Курейки до дельтовых проток включительно. Заселяет бассейны всех притоков дельты, губы и залива. Известна в озерах тундры и лесотундры. Колюшка девятииглая -...

Триасовый крокодил носил костяной ошейник

18-03-2015 Просмотров:7859 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Триасовый крокодил носил костяной ошейник

Остатки удивительного архозавра обнаружили американские палеонтологи в триасовых отложениях штата Северная Каролина. Горло и шея бронированной травоядной рептилии было почти полностью закрыты аналогом рыцарского доспеха, известного под названием горжет. Из...

В недавнем прошлом Европа была затоплена гигантским цунами

18-11-2015 Просмотров:6820 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

В недавнем прошлом Европа была затоплена гигантским цунами

Геологи нашли в Дании следы гигантского цунами, которое обрушилось на Европу вскоре после окончания последнего ледникового периода, около 8200 лет назад. Если бы эта катастрофа случилась сейчас, то она уничтожила...

Биологи научились "программировать" растения на стойкость к засухе

05-02-2015 Просмотров:7834 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Биологи научились "программировать" растения на стойкость к засухе

Молекулярные биологи модифицировали один из генов растений таким образом, что они начали воспринимать молекулы одного из противогрибковых средств в качестве сигнала наступления засухи, что позволяет в прямом смысле управлять их чувствительностью к отсутствию воды, говорится...

У летучих мышей обнаружилось два типа эхолокации

12-03-2011 Просмотров:11615 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

У летучих мышей обнаружилось два типа эхолокации

Непрерывные сигналы делают некоторые виды этих млекопитающих более искусными охотниками на насекомых, чем их сородичи, испускающие прерывистый ультразвук. Подковоносы охотятся более умело благодаря непрерывному сканированию окрестностей. (Фото Frank Greenaway.)О том, что...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.