Ученые выяснили, что некоторые разновидности вирусов обладают таким же типом иммунной системы, как и бактериальные клетки. Это делает их почти неотличимыми он настоящих живых организмов.
К такому выводу пришли французские вирусологи, чья статья опубликована в свежем выпуске журнала Nature.
Среди ученых уже давно кипят споры о том, можно ли относить вирусы к живым существам. Эта дискуссия активизировалась после открытия гигантских вирусов, которые по размерам близки к бактериальным клеткам и обладают достаточно длинным геномом. Некоторые специалисты даже предполагают, что вирусы-гиганты произошли от клеточных организмов путем крайней редукции, когда они избрали паразитический образ жизни.
Авторы статьи сделали открытие, которое еще сильнее приближает вирусы к живым организмам. Объектом исследования стал мимивирус - гигантский вирус, атакующий амеб. Всего ученые проанализировали геном 45 штаммов мимивируса из 60 существующих, а затем заразили их вирофагом Zamilon. Вирофагами называются вирусы, которые поражают других вирусов.
Выяснилось, что у штаммов, относящихся к группе А, имеется своеобразная иммунная система, повышающая их устойчивость к вирофагу. Мимивирус добавляет к своей ДНК короткие участки генома вирофага длиной всего 15 нуклеотидов. Затем он синтезирует специальные белки, который уничтожают чужеродный генетический материал, содержащий эти участки.
Этот механизм, названный учеными MIMIVIRE, полностью аналогичен системе CRISPR-Cas, при помощи которой бактерии защищаются от проникновения вирусов. Интересно, что в 2013 году ученые показали, что холерные вибрионы могут «красть» у бактерий элементы CRISPR-Cas, чтобы подрывать их иммунитет. Но в случае мимивируса речь идет о наличии вполне самодостаточной иммунной системы.
Источник: infox.ru
Два новых исследования показали, что гены, ответственные за способность организма бороться с болезнями, современный человек взял у своих древних вымерших «родственников» — неандертальцев и денисовского человека. Результаты исследования ученых из Института Макса Планка (Германия) опубликованы в The American Journal of Human Genetics, параллельно близкие данные получены в рамках большого исследовательского проекта «1000 геномов». О выводах ученых рассказывает BBC News.
Родословная современных людей восходит к небольшой популяции, вышедшей из Африки около 60 тысяч лет назад. Распространившись по миру, они контактировали с другими древними людьми в Европе и Западной Азии. Генетические данные свидетельствуют о том, что эти разные «племена» скрещивались и часть генома неандертальцев и денисовцев все еще присутствует в современных людях, составляя, по разным оценкам, от 1 до 6% генома.
Сравнительный анализ геномов, проведенный учеными из Германии, показал большое влияние именно в части изменений иммунной системы. То есть гены, ответственные за борьбу с бактериями, грибками и паразитами, — это изначально гены неандертальцев или денисовского человека. Кроме того, ученые высказали предположение, что одновременно с этим такое скрещивание привело к появлению аллергий, однако этот вывод предстоит еще проверить дополнительно.
Сравнительный анализ геномов, проведенный учеными из Германии, показал большое влияние именно в части изменений иммунной системы. То есть гены, ответственные за борьбу с бактериями, грибками и паразитами, — это изначально гены неандертальцев или денисовского человека. Кроме того, ученые высказали предположение, что одновременно с этим такое скрещивание привело к появлению аллергий, однако этот вывод предстоит еще проверить дополнительно.
Одновременно с этим исследованием группа ученых из Франции и США проводила анализ генетических данных современных людей, полученных в рамках проекта «1000 геномов», и сравнивала их с данными геномов древних людей. В итоге, они пришли к аналогичным выводам — целый кластер генов, ответственных за работу иммунной системы, получен современным человеком от неандертальцев и денисовцев.
К слову, история здоровья древних людей сама по себе есть богатый источник сведений об истории человечества. Например, сегодня в журнале Science вышла статья о бактерии Helicobacter pylori, следы которой обнаружены в останках знаменитого Отци. Как известно, Отци — это человек эпохи меди, живший в Альпах в конце IV тысячелетия до н.э. Его мумифицированное тело, вмерзшее в ледник, было обнаружено в 1991 году. Так вот, цимес истории в том, что полная расшифровка генома бактерии, которую носит в себе Отци, показал, что это была версия, ныне распространенная в Азии.
Дело в том, что, как считается, изначально было два штамма — африканский и азиатский. Они, в свою очередь, образовали нынешний европейский. Поскольку бактерия передается внутри семьи из поколения в поколение, истории человека и бактерии тесно связаны. Исходя из этого, до сих пор базовой версией было, что ко времени неолитической революции, когда люди перешли к оседлому образу жизни, европейский штамм уже сформировался. Однако Отци — живший примерно 5300 лет назад — доказал, что это не так, и, следовательно, африканский и азиатский штаммы смикшировались позднее. А это, в свою очередь, показывает, что история заселения Европы еще сложнее, чем предполагалось.
Источник: Научная Россия
Морские черепахи известны тем, что для размножения возвращаются на родину. И это ещё мягко сказано! После 25 лет странствий по морю они приплывают буквально на тот же самый пляж, где появились на свет. Что заставляет черепах соблюдать такую верность «малой родине»?
Центра исследований океана имени Гельмгольца (Германия) вместе с коллегами из Великобритании, Австралии и Кабо-Верде собрали образцы кожи у черепах логгерхедов с четырёх островов архипелага Кабо-Верде. Генетический анализ подтвердил, что подавляющее большинство самок возвращается для откладывания яиц на родной остров. Разгадка крылась в черепашьем геноме — в той его зоне, что отвечает за главный комплекс гистосовместимости.
Чтобы понять это, Виктор Стайбенс изБелки этого комплекса входят в иммунную систему и нужны для того, чтобы предъявлять иммунным клеткам куски чужих молекул и тем самым запускать иммунный ответ.
Оказалось, что у черепах, появившихся на свет на отдалённых островах, эти иммунные зоны в геноме сильно отличаются. То есть выходит, что иммунитет черепах специально подогнан под конкретную (весьма конкретную!) территорию, со своими паразитами и болезнями.
Понято, что болезни на всём архипелаге могут быть примерно одни и те же, но паразиты с острова А обязательно будут иметь какие-то особенные черты, отличающие их от паразитов с острова Б. Соответственно, откладывая яйца на родном острове, самка может быть уверена, что её детёныши отразят атаку патогенов — ведь она снабдит их защитой, которая много лет создавалась именно против них.
При этом, что любопытно, самцы черепах не столь требовательны в брачном смысле, а потому ищут самок на довольно обширной территории, не ограничиваясь конкретным островом. Это, как пишут исследователи на страницах Proceedings of the Royal Society B, помогает избежать близкородственного скрещивания. Ведь если бы самцы спаривались только с самками со своего острова, это привело бы к быстрому накоплению вредных мутаций, учитывая небольшую численность популяции. Сконцентрированные мутации вскоре вызвали бы исчезновение черепах. Но с помощью самцов, которые, грубо говоря, «перевозят» гены между островами, такого сценария удаётся избежать.
Итак, повышенная любовь к «малой родине» у черепах — это способ усилить и сохранить эффективность иммунитета. Как известно, логгерхеды находятся под угрозой истребления, и учёные стараются узнать как можно больше об их биологии, дабы не допустить полного исчезновения вида.
Впрочем, подобная преданность «малой родине» играет совсем не в пользу черепах, если учесть те нехорошие экологические факторы, вроде антропогенного влияния, которым эти рептилии так подвержены...
Источник: КОМПЬЮЛЕНТА
Иммунологи и вирусологи довольно давно бьются над загадкой, как вирусам удаётся обойти иммунную защиту. Ведь, несмотря на интерферон, противовирусные клетки-детекторы и т. п., некоторые вирусы продолжают жить и процветать в организме, вызывая так называемую персистирующую инфекцию.
Некоторое время назад учёные обнаружили, что есть вирусы, способные проникать внутрь древовидных иммунных клеток, с которых и начинается противовирусная реакция: эти клетки производят интерферон и другие белки (цитокины и хемокины), стимулирующие иммунный ответ. Правда, кроме них, древовидные клетки синтезируют ещё и иммуносупрессоры (например, интерлейкин-10) для тонкой настройки иммунной реакции. Исследователи предположили, что вирусы, проникнув в древовидную клетку, могут стимулировать синтез иммуносупрессоров, тем самым подавляя бдительность иммунитета.
Чтобы лучше понять механизм вирусной иммуносупрессии, учёные из группы Майкла Олдстона в Институте Скриппса (США) инфицировали мышей вирусом лимфоцитарного хориоменингита, после чего наблюдали, что происходит при превращении инфекции в персистирующее состояние. К удивлению исследователей, один из штаммов провоцировал бурное выделение интерферона в первые же дни после закрепления в организме: вирус как раз проникал в плазмацитоидные древовидные клетки, которые служат основным источником интерферона. Другой штамм, который не был персистирующим, подвергался атаке Т-клеток и исчезал через 7–10 дней.
Получалось, что внедрение вируса в иммунную систему сопровождалось повышенным выбросом интерферона, который, однако, оказывался бесполезным. Тогда исследователи сделали следующее — блокировали интерфероновые рецепторы. Блокада успокаивала иммунитет: падал уровень как активаторов, так и супрессоров иммунного ответа. Однако через какое-то время иммунитет вдруг просыпался и начинал деятельно истреблять вирус. По словам авторов, так происходило потому, что иммуносупрессорные цитокины обычно замедляют работу Т-клеток, а коль скоро эти супрессорные белки оказались подавлены, то Т-клетки получили возможность проявить себя.
То есть события развиваются по следующей схеме: вирус, попав в иммунную клетку, заставляет её синтезировать избыток интерферона, из-за чего в организме начинается цитокиновый шторм, так как клетки бурно реагируют на интерферон. Но среди прочих иммунных белков повышается активность иммуносупрессоров, которые подавляют работу Т-клеток, специализирующихся на антивирусной защите. Однако, если ограничить чувствительность клеток по отношению к интерферону, можно настроить иммунитет нужным образом: после временного затишья иммунная система начнёт прицельно истреблять вирус.
Как пишут исследователи в журнале Science, блокада интерфероновых рецепторов приносила свои плоды даже после того, как вирус занял персистирующие позиции: иммунитет всё равно избавлялся от инфекции. Кроме того, так удавалось предотвратить повреждение иммунных тканей и появление недозрелых Т-клеток, что также случается при укоренившейся вирусной инфекции.
В общем, авторы работы пришли к парадоксальному (однако столь часто встречающемуся в биологии) выводу, что интерферон не только полезен, но и вреден.
Значимость этих результатов легко представить, если вспомнить, что вирусы гепатитов В и С и вирус СПИДа обычно существуют в организме как раз в персистирующей форме. Однако от конкретных рекомендаций учёные пока воздерживаются, говоря о необходимости дальнейшего изучения интерферонового сигнального пути. В конце концов, интерферон не только вреден, но и полезен, и его антивирусного действия эти результаты ничуть не отменяют.
Источник: КОМПЬЮЛЕНТА
В нашем кишечнике живёт множество полезных бактерий, и потому перед иммунной системой при появлении патогенного чужака встаёт непростой вопрос: как отличить полезную бактерию от вредной? Причём иммунитет должен быть очень аккуратным: если он увлечётся и проявит хотя бы малейшую неразборчивость, начнётся мощная воспалительная реакция, направленная на всю микрофлору в кишечнике.
Исследователей давно занимает вопрос взаимоотношений между иммунной системой и кишечными бактериями, вредными и полезными. Главное отличие полезной бактерии от вредной в том, что первая может свободно жить в полости кишечника, а вторая стремится проникнуть внутрь клетки. Когда патоген попадает в клетку, та, разумеется, чувствует, что что-то не так, и сообщает об этом иммунитету. Часто сигналом тревоги служат чужеродные молекулы, которые клетка выставляет на мембране: иммунитет видит их и атакует поражённую клетку.
Однако в случае кишечных инфекций срабатывает ещё один механизм, который в журнале
Однако в клетке есть сенсор, чувствующий неправильную, патогенную активность ГТФаз. Этим сенсором работает белок NOD1, который через цепочку молекулярных посредников даёт знать о вторжении белку
О роли сигнальных клеточных ГТФаз в иммунном ответе догадывались и раньше, а уж о действиях NF-kB известно с незапамятных (по научным меркам) времён. Однако собрать все элементы головоломки в единую картину до сих пор не удавалось. У группы Андреаса Боймлера это получилось благодаря тому, что учёные решили присмотреться к белку NOD1, который считался исследованным вдоль и поперёк. А ведь именно он, по сути, как раз и несёт сторожевую вахту, сравнивая обычную активность сигнальных ферментов клетки с вынужденной, патогенной. Возможно, некоторые формы предрасположенности к кишечным инфекциям могут быть связаны как раз с ослабленной активностью этого белка.
Источник: КОМПЬЮЛЕНТА
Бактерии так долго жили бок о бок с нападавшими на них вирусами-бактериофагами, что в появлении у бактерий «иммунной системы» нет ничего удивительного. Впрочем, назвать этими словами их защиту от фагов можно лишь по аналогии с нашим иммунитетом: никаких антител, а уж тем более специальных клеток, охотящихся за вирусами, у бактерий нет.
Одна из таких систем называется CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins). Она настроена на распознавание ДНК, проникшей в клетку, включая и фаговую ДНК. Бактерии с CRISPR/Cas нечувствительны к фагам. Некоторые штаммы холерного вибриона несут в себе такую иммунную противовирусную защиту, и хотя её происхождение остаётся тайной, в целом для возбудителя холеры она нехарактерна.
Однако, как выяснили исследователи из
Анализируя геномы фагов, выделенных из холерных вибрионов, учёные внезапно обнаружили у вирусов гены системы CRISPR/Cas. Оказалось, что фаги с этими генами могут легко инфицировать штаммы холерного возбудителя, защищённые CRISPR/Cas-иммунитетом, притом что обычные фаги перед такими бактериями пасуют. Как пишут исследователи в журнале
По словам Эндрю Камилли, руководителя работы, эти данные лишь обостряют дискуссию о том, считать ли вирусы живыми. До недавнего времени вирусы в глазах учёных были всего лишь сложными надмолекулярными комплексами, а жизнь начиналась с клетки. То, что доклеточные вирусы могут использовать клеточную иммунную систему бактерий, оказалось большим сюрпризом.
Ну а с практической точки зрения эти данные помогут создать более совершенное биологическое оружие против бактериальных инфекций: сейчас разрабатываются вирусные способы лечения таких инфекций, однако системы защиты бактериальных клеток от фагов порой препятствуют успешному применению этих методов.
Источник: КОМПЬЮЛЕНТА
Сотни тысяч лет назад некие генетические адаптации позволили людям выйти из Африки и расселиться по всей земле. Исследователи из
Разумеется, естественные киллеры есть не только у человека. Те же самые функции они выполняют у человекообразных обезьян. Но мы сильно отличаемся от обезьян набором рецепторов на поверхности NK-клеток. Так, у человека эти белки гораздо более вариабельны, чем у орангутанга, а у шимпанзе они более разнообразны, чем у человека. Авторы статьи в
С одной стороны, эти клетки позволяют сформироваться довольно большому мозгу у плода. Собственно говоря, большой мозг, по словам учёных, позволил человеку освоить новые места обитания. С другой стороны, во время становления человечество прошло через несколько циклов эпидемических болезней, которые выкашивали популяцию едва ли не целиком. В результате методом проб и ошибок, сопровождавшихся массовой гибелью, у NK-клеток остался набор рецепторов, которые позволяли нарастить мозг и при этом поддерживали популяцию на плаву в случае эпидемии. То есть в пользу мозга пришлось отчасти поступиться устойчивостью к некоторым болезням.
Эта устойчивость во многом вернулась к нашим предкам, когда они встретили
Источник: КОМПЬЮЛЕНТА
В результате скрещивания с неандертальцами и человеком Денисовской пещеры наши предки получили эффективные гены иммунных белков, которые позволили изрядно усовершенствовать иммунную систему.
Science, распутство и беспорядочные половые связи предков Homo sapiens создали нам надёжную и эффективную иммунную систему, которой мы и пользуемся по сей день.
Пути эволюции причудливы. Если верить результатам работы международной группы исследователей, опубликованным в журналеРечь идёт о взаимоотношениях предков современного человека с неандертальцами и денисовским человеком, ещё одним нашим прародственником. Предыдущие исследования уже указывали на вероятность такого межпопуляционного скрещивания: геном современного европейца содержит 4% неандертальской ДНК, а геном нынешних меланезийцев на 4–6% состоит из ДНК денисовского человека. По итогам работы огромной группы исследователей из США, Турции, Канады и Кении стало ясно, какие именно гены перешли современному человеку от его боковых эволюционных ветвей. Учёные сосредоточились на группе генов HLA, кодирующих группу человеческих лейкоцитарных антигенов. От этих мембранных белков зависит распознавание по типу «свой — чужой»; именно HLA дают иммунной системе сигнал о вторжении.
Учёные сравнили соответствующие последовательности ДНК, полученной от доноров костного мозга и из ископаемых останков неандертальцев и денисовского человека. Результаты анализа ещё раз доказали, что наши предки скрещивались как с теми, так и с другими. Иммунные гены, пришедшие от этих разновидностей человека, оказались настолько эффективными, что распространились повсеместно. Одна из «денисовских» версий гена HLA присутствует в 50–60% населения современных Китая и Папуа — Новой Гвинеи.
Встреча разных популяций древних людей могла произойти, скорее всего, тогда, когда «африканцы» отправились в Европу и Азию, где доминирующими были неандертальцы и денисовцы. Именно благодаря «беспорядочным связям» древних людей современный человек, по утверждению авторов работы, получил иммунитет, который позволяет ему смело встречать даже незнакомые патогены. С другой стороны, различные эксперты предостерегают от излишне смелых обобщений: формирование иммунной системы можно сравнить с путешествием по минному полю, и вряд ли какому-то одному эволюционному фактору можно приписать всю заслугу формирования нашего иммунитета.
Источник: КОМПЬЮЛЕНТА
После гона самцы серны оказываются с истощёнными энергетическими запасами, и в случае инфекции их иммунитет не может справиться с болезнью. Поэтому дольше живут те самцы, иммунная система которых более совершенна.
Обычно у млекопитающих самки живут дольше самцов. Это объясняют тем, что последние более агрессивны и чаще подвергают себя стрессу, защищая территорию или сражаясь за самку. Истощённые борьбой друг с другом самцы оказываются беззащитными перед болезнями. Но, как показали исследователи из
Учёные обратили внимание на различия в генах самцов и самок
Как пишут исследователи в журнале
Смертность среди взрослых самцов была бы ещё выше, если бы не одна генетическая уловка. Учёные обнаружили, что в тех районах, где случаются эпидемии чесотки, старые самцы обладают двумя разными копиями одного из генов
Такой отбор в пользу разнообразия иммунных генов происходил только среди самцов, у самок никакого перевеса в пользу гетерозиготности по генам МНС не было. То есть это прямое следствие брачной конкуренции самцов. Главное, чтобы эволюция тут не перестаралась и не снабдила самцов серн слишком активным иммунитетом, так как в этом случае
Источник: КОМПЬЮЛЕНТА
27-01-2021 Просмотров:2139 Новости Палеонтологии Антоненко Андрей
Палеонтологи открыли "пропавшее звено" между древними биолюминесцентными насекомыми и современными светлячками — исключительно хорошо сохранившегося жука, заключенного в янтаре сто миллионов лет назад. Результаты исследования опубликованы в журнале Proceedings of...
15-11-2012 Просмотров:14209 Рыбы Енисея Антоненко Андрей
В Енисее встречается на всем протяжении реки - от верховьев до устья. Исключительно пресноводная рыба. Обычен в правобережных притоках, отличающихся быстрым течением, наличием порогов и холодной водой (Усс, Туба, Сисим,...
22-09-2014 Просмотров:7553 Новости Палеонтологии Антоненко Андрей
Американские палеонтологи описали нового утконосого динозавра, обладавшего совершенно исключительным носом. Однако пока относительно Rhinorex condrupus, как назвали этого ящера, у ученых имеется больше вопросов, чем ответов. Rhinorex condrupus отбивается от гигантского...
02-12-2013 Просмотров:8627 Новости Зоологии Антоненко Андрей
Зоологи давно используют достижения молекулярной биологии в своих целях. Например, о родственно-эволюционных связях между группами животных куда проще судить, имея на руках последовательность генома. Но в этом смысле разным животным...
12-03-2015 Просмотров:7314 Новости Зоологии Антоненко Андрей
Ученые выявили в коже хамелеонов уникальную структуру из нанокристаллов, которая позволяет им быстро менять окраску и одновременно защищает от избытка солнечного света. ХамелеонОб этом говорится в статье швейцарских специалистов из Университета...
Фабьен Кноль из Национального музея естествознания (Испания) и его коллеги проанализировали череп ампелозавра, жившего 70 млн лет назад. Останки этого гигантского динозавра были найдены в 2007 году в Куэнке при…
На российской антарктической станции «Восток» завершается бурение льда, под которым вот уже 15 млн лет скрывается доисторическое озеро. Станция «Восток». 2009 год. 54-я экспедиция. (Фото Русиб.) По словам начальника станции Алексея…
Испанская пещера Batallones-1 известна массой прекрасно сохранившихся остатков хищников миоценового возраста. А вот костей травоядных животных в ней практически нет. Такая избирательность долгое время была загадкой для ученых, пока американские…
Биологи выяснили, почему у морского конька изогнулась шея. Изменение оказалось действительно полезным, хотя плавать с такой формой тела коньку намного труднее. Морской конек Морской конек – это рыба. Но далеко не…
Среди множества открытых экзопланет и кандидатов в них в самых-самых ходят тела относительно небольших размеров и со средней плотностью, превышающей (!) показатель чистого железа. Природа их, исходя из существующих теорий…
Ученые из Потсдамского исследовательского центра наук о Земле, входящего в объединение имени Гельмгольца в Германии, впервые показали на объемных моделях, что гравитационное поле Земли меняется во времени. Недавно они опубликовали все свои…
Исследователи из Университета Альберты (Канада) установили, что влияние северных торфяников на доисторическую летопись климатических изменений было переоценено... А это торфяники Северной Ирландии. (Фото Yvonne Mc.) ...Что, впрочем, не отменяет необходимости пристального…
Тайну взаимосвязи двух видов рогатого динозавра трицератопса раскрыли американские палеонтологи. Для того, чтобы один вид превратился в другой, понадобилась всего пара миллионов лет. Трицератопс в синих тонах. Реконструкция: Holly Woodward В…
Палеонтологи обнаружили в Испании крыло раннемеловой птицы, которое доказывает, что уже во времена динозавров пернатые могли маневрировать в полете не хуже, чем в наши дни. Крыло EnantiornithesОб этом говорится в статье…