Биофизики нашли ответ на вопрос, почему хвойные деревья круглый год остаются зелеными. Причина — в коротком цикле фотосинтеза, на который они переходят в зимнее время, считают авторы исследования, результаты которого опубликованы в журнале Nature Communications.
Ученые из шведского Университета Умео вместе с коллегами из Амстердамского свободного университета и канадского Университета Западного Онтарио расшифровали механизм фотосинтеза в иглах сосны и выяснили, что зимой он протекает по сокращенному циклу.
Зимой световая энергия поглощается молекулами зеленого хлорофилла, но не используется в последующих реакциях фотосинтетического механизма, поскольку низкие температуры останавливают большинство биохимических реакций.
При ярком солнце и низких температурах избыток световой энергии может повредить белки фотосинтетического механизма. Поэтому большинство деревьев сбрасывают листья на зиму. Но у сосны или ели фотосинтетический аппарат устроен особым образом, благодаря чему их хвоя остается зеленой в течение всего года.
"Мы наблюдали за несколькими соснами, растущими в Умео на севере Швеции в течение трех сезонов, — приводятся в пресс-релизе Университета Умео слова первого автора статьи аспиранта Пушана Бага (Pushan Bag), который круглый год собирал образцы хвои и проводил анализы. — Важно, что мы могли работать с иглами "прямо с улицы", чтобы они не успели адаптироваться к более высоким температурам в лаборатории, прежде чем мы проанализируем их, например, с помощью электронной микроскопии, которую мы использовали для визуализации структуры тилакоидной мембраны".
Авторы установили, что зимой структура тилакоидной мембраны хлоропластов, в которой происходят светозависимые реакции фотосинтеза, реорганизуется, что приводит к возникновению физического контакта между двумя фотосистемами — функциональными единицами, в которых энергия света поглощается и преобразуется в химическую энергию.
Оказалось, что в теплых условиях фотосистемы I и II находятся отдельно друг от друга, чтобы обеспечить эффективный фотосинтез, а зимой фотосистема II отдает энергию непосредственно фотосистеме I. Таким образом хвоя сосны справляется с избыточной световой энергией и защищает свой чувствительный фотосинтетический аппарат от повреждений в течение экстремальной северной зимы.
"Хвоя сосны дала нам возможность изучить этот механизм сокращения, или перетекания, представляющий из себя крайнюю степень адаптации", — говорит еще один автор исследования Альфред Хольцварт (Alfred Holzwarth) из Амстердамского свободного университета, который разработал для данного проекта специальный метод флуоресцентного анализа.
"Эта замечательная адаптация не только радует нас во время Рождества, но на самом деле чрезвычайно важна для развития человечества, — продолжает профессор Стефан Янссон (Stefan Jansson) из Университета Умео, руководивший исследованием. — Если бы хвойные деревья не смогли выжить в суровом зимнем климате, обширные территории в северном полушарии, возможно, не были бы колонизированы человеком, поскольку хвойные деревья давали дрова, жилье и другие предметы первой необходимости. И сегодня они составляют основу экономики большинства приполярных стран".
Авторы отмечают, что исследование проводилось на соснах, но они полагают, что аналогичный механизм свойственен и другим видам хвойных деревьев.
Из-за недостатка влаги при засухе у растений происходит закупорка водопроводящих сосудов пузырьками воздуха. Оказалось, что хвойные страдают от этого зимой больше, чем летом, — те же самые пузырьки воздуха забивают их ксилему при чередовании оттепелей и заморозков.
Университета Орегона (США). Экологи, изучив хвойные деревья на Тихоокеанском Северо-Западе, пришли к выводу, что зимняя смена морозов и оттепелей затрудняет движение воды по сосудам растений больше, чем обычная летняя сушь.
Зимой деревья испытывают гораздо больший стресс от недостатка влаги, чем летом, как утверждают учёные изТранспорт воды от корней к листьям осуществляется по сосудам ксилемы и характеризуется так называемой гидравлической проводимостью, или влагопроводностью. Чем лучше влагопроводность, тем легче растению качать воду из земли. Но если в растительном водопроводе окажется пузырёк воздуха, это может создать серьёзные проблемы в водоснабжении: пузырёк сработает как пробка, не пускающая влагу в мелкие ветви и листья.
Причиной воздушной закупорки сосудов может послужить летняя засуха. К счастью, в это время года растению есть чем защититься: дерево может закрыть устьица, через которые происходит испарение воды, уменьшить уровень фотосинтеза и темпы роста, постараться запасти воду. Но та же ситуация может сложиться зимой, когда морозы и оттепели сменяют друг друга, и справиться с такими условиями растениям уже не в пример труднее. Парадокс, но растения могут страдать от недостатка воды, буквально стоя в ней: из-за резких изменений водного режима в сосудах могут в массовом порядке образоваться воздушные пробки. Как пишут исследователи в своей статье в American Journal of Botany, ксилемные сосуды мелких веток деревьев, оказавшихся в воде после начала весенней оттепели, проводили при этом меньше влаги, чем в сухой летний период. Зимняя потеря влагопроводности была у них больше, чем даже в 40-градусную жару летом.
Исследователи пока не знают, как деревьям удаётся вытеснить воздушные пробки из сосудов. Удаётся это, так или иначе, не всем — суховершинность у старых деревьев и отмирание верхних ветвей есть прямое следствие зимней воздушной эмболии, в результате которой до верхушки дерева вода просто не доходит. Если мы и вправду живём во время великого потепления, то циклы оттепелей и заморозков во время зимы будут учащаться. И это угрожает хвойным породам ещё большим стрессом, чем сейчас.
Источник: КОМПЬЮЛЕНТА
22-02-2013 Просмотров:11540 Новости Ботаники Антоненко Андрей
Британские биологи выяснили, что некоторые цветочные растения умеют общаться с пчелами и другими опылителями при помощи электромагнитных полей, которые для пчел выступают своеобразными "неоновыми" вывесками, приглашающими их в нектар-бар, говорится...
24-01-2018 Просмотров:3543 Новости Палеонтологии Антоненко Андрей
Китайские палеонтологи совместно с коллегами из Австрии и Канады впервые в истории обнаружили сохранившиеся в янтаре останки древнего морского существа - остракода, возраст которого составляет 100 млн лет. Об этом...
16-09-2016 Просмотров:5887 Новости Экологии Антоненко Андрей
Комитет экспертов Всемирной метеорологической организации (ВМО) утвердил два мировых рекорда для электрических искровых разрядов в атмосфере: самая большая по длине молния - более 300 км - была зафиксирована в 2007...
07-02-2013 Просмотров:10611 Новости Зоологии Антоненко Андрей
Африканские цихлиды (Neolamprologus pulcher) из озера Танганьика живут своеобразными семейными группами: в каждой есть доминирующая пара и несколько помощников, которые сами не размножаются, но помогают защищать потомство пары. Хотя помощники...
14-10-2016 Просмотров:6308 Новости Палеонтологии Антоненко Андрей
Литературный гений Говарда Лавкрафта продолжает вдохновлять палеонтологов — новый ископаемый кит, описанный недавно из миоцена Дании, получил свое название в честь чудовища Дагона, входящего в вымышленный этим писателем пантеон. Dagonodum mojnumПравда,...
Дельфин, который из-за искривленного позвоночника стал изгоем среди своих сородичей, прибился к стае кашалотов. Несмотря на то, что дельфины являются врагами кашалотов, те не стали прогонять больное животное и приняли…
Животным понадобилось каких-то 85 млн лет (мгновение по геологическим меркам) на то, чтобы развиться и обжить бóльшую часть суши и океанов. Хотя ископаемые останки и молекулярная биология могут многое рассказать…
Британские палеонтологи проанализировали скорость исчезновения разных родов динозавров в конце мелового периода и пришли к выводу, что гигантские ящеры начали вымирать задолго до падения астероида на полуостров Юкатан 65,5 миллиона лет назад, говорится в статье, опубликованной…
На Мадагаскаре обнаружили новый вид динозавра! Ему дали имя Dahalokely, что переводится с малагасийского языка как «Маленький одинокий бандит». Ученые установили, что это были относительно небольшие хищные особи от 2,8 до…
Североамериканский дикобраз (который, заметим, относится к иной группе грызунов, нежели обычные дикобразы вроде хохлатого), носит на себе 30 тысяч игл. Всякий, кто имел несчастье столкнуться на узкой дорожке с этим…
Ученые из Католического университета в Чили восстановили историю тумана в пустыне Атакама, выяснив, что на протяжении последних 3500 лет он только усиливался. Сделать это удалось благодаря изучению растений рода тилландсия,…
Шимпанзе не перестают удивлять нас своими умственными способностями. Кажется, что эти обезьяны мало чем отличаются от людей — и компьютер освоили, и рисовать умеют, и языку глухонемых вполне себе обучаются.…
Подобно современным омарам, жившие сотни миллионов лет назад трилобиты могли собираться группами и отправляться в совместные путешествия по дну древних океанов. К такому выводу пришли польские палеонтологи, изучив десятки окаменелостей…
Благодаря фотосинтезу у растений особые отношения с солнечным светом: они могут поглощать углекислый газ, синтезируя углеводы в буквальном смысле «из воздуха». Не удивительно, что многие растительные гены работают на хлоропласты,…