Мир дикой природы на wwlife.ru
Вы находитесь здесь:Заповедники>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Нуклеосомы


Ученые из ИБХ РАН, МГУ и Университета Юты (США) показали с использованием метода FRET-микроскопии способность нуклеосом обратимо раскручиваться под воздействием FAСT без затрат энергии. Результаты работы опубликованы в журнале Nature Structural & Molecular Biology.

Белковый комплекс FACT способен раскручивать нуклеосому без затрат энергииБелковый комплекс FACT способен раскручивать нуклеосому без затрат энергииМолекула ДНК компактно свернута в ядрах клеток, и правильность укладки обеспечивают специальные белки, которые вместе с ДНК формируют структуру под названием хроматин. Единицу компактизации хроматина — нуклеосому — часто сравнивают с катушкой ниток, в которой ДНК (нитка) намотана на бочонок из белков-гистонов (катушку). Плотная упаковка хроматина в ядре нарушается при транскрипции, когда идет активное считывание наследственной информации с ДНК. Облегчить транскрипцию хроматина помогает консервативный белок FACT, который и стал объектом пристального внимания ученых. Им удалось выяснить важные детали его работы при помощи метода spFRET-микроскопии.

В соседние витки нуклеосомной ДНК вводятся флуоресцентные метки, одна из которых служит донором энергии, а другая — акцептором. Донора можно возбудить с помощью лазера определенной длины волны. Если донор находится близко к акцептору, то происходит переброс энергии на акцептор. Чем ближе расположены метки, тем ярче сигнал от акцептора. Таким образом, можно следить за расстоянием между соседними витками ДНК и оценивать, насколько нуклеосома компактно свернута. Метод был разработан российскими учеными.

С его использованием ученые впервые показали способность нуклеосом обратимо раскручиваться под воздействием FACT in vitro (в пробирке) без затрат энергии, что достаточно необычно, так как  АТФ-зависимые комплексы ремоделирования для перестройки хроматина тратят  много энергии. При образовании комплекса «нуклеосома-FACT» нити ДНК практически полностью распрямляются, но остаются связанными с белками-гистонами. Если убрать FACT из комплекса, то все возвращается на круги своя: нуклеосомная ДНК снова наматывается на основание из гистонов. Таким образом, FACT – это редкий пример АТФ-независимого (без естественных источников энергии) комплекса ремоделирования хроматина.

Изучение этого белкового комплекса важно не только с научной, но и медицинской точки зрения: FACT в большом количестве содержится в опухолевых тканях.


Источник: Научная Россия


Опубликовано в Новости Цитологии

 Учёные разгадали загадку, откуда взялось несколько видов центромер, за которые клетка растаскивает хромосомы по полюсам деления при размножении.

Разная светимость центромер на разных этапах клеточного цикла: слабая перед делением (G1), сильная во время расхождения хромосом (поздняя анафаза) (фото авторов работы).Во время деления перед клеткой стоит сложная задача: правильным образом распределить хромосомы между дочерними клетками. В зависимости от вида деления (митоз это или мейоз) в дочерние клетки расходятся гомологичные хромосомы или же сестринские хроматиды. Но в любом случае хромосому тащат за центромеру — особую структуру, которая, если нарисовать хромосому в классической Х-образной форме, будет находиться как раз в перемычке икса. Центромера отличается по структуре ДНК и связанных с ней белков от остальной хромосомы. Хотя в целом принцип упаковки ДНК здесь соблюдён: нить нуклеиновой кислоты наматывается на «шайбу» из белков гистонов, формируя элементарную единицу строения хромосомы — нуклеосому.

При делении к центромере крепятся особые молекулярные «канаты», которые начинают тянуть хромосому (или хроматиду) к полюсам деления. Понятно, что от строения центромеры зависит весьма много: неправильная центромера может стать причиной неправильного расхождения хромосом, а это чревато самыми разными болезнями, от синдрома Дауна до рака. Однако, хотя клеточное деление — один из самых интенсивно изучаемых феноменов, до сих пор учёные не имели единого мнения о структуре центромеры. Было известно, что в состав центромерной нуклеосомы входит особая модификация гистона H3. С другой стороны, по разным данным у центромер насчитали шесть разных структур. Вопрос о том, как они соотносятся друг с другом и с клеточным делением, долгое время был большой головной болью для клеточных биологов.

Учёным из Института медицинских исследований Стауэрса (США) удалось раскрыть эту загадку. По их словам, в ходе деления центромера просто меняет структуру, и, рассматривая клетку на разных этапах клеточного цикла, действительно можно насчитать несколько разных центромер. Выяснить это удалось с помощью остроумного методического решения. Исследователи работали с дрожжевыми клетками, у которых в состав центромеры входит гистон Cse4. Чтобы можно было наблюдать за его судьбой, к нему пришили зелёный флюоресцирующий белок. Но исследователи не просто наблюдали за светящимися точками в дрожжевых клетках: они сравнивали интенсивность светимости на разных этапах клеточного цикла.

У дрожжей 16 хромосом, и если в каждой из них есть по центромере, а в каждой центромере сидит по одной копии Cse4, то суммарная светимость клетки должна быть в 16 раз больше, чем светимость одной молекулы Cse4 со светящимся белком. Так и было до того момента, когда клетка начала непосредственно делиться. А когда хромосомы стали расходиться по полюсам, светимость клетки возросла ещё вдвое (то есть она светилась в 32 раза сильнее, чем одна молекула белка).

Иными словами, как пишут исследователи в журнале Cell, центромера обладает переменной структурой, причём эта переменность проявляется, казалось бы, в самый неподходящий момент. Это можно сравнить с тем, как если бы кран поднимал бетонную плиту вместе со строителями, а те вдруг решили поменять крепления между подъёмным тросом и плитой. В случае с центромерой один из белков нуклеосомного комплекса уходит, и на его место приходит ещё одна копия Cse4. После распределения хромосом одна молекула Cse4 покидает центромеру.

Похожие результаты, но с клетками человека были получены группой учёных из Национального онкологического института (США), которые опубликовали свои данные в том же журнале. То есть такие преобразования центромер не есть особенность дрожжей, а свойственны, скорее всего, самым разным организмам и типам клеток. Очевидно, у клетки есть причины для того, чтобы так усложнять себе жизнь. Пока же учёные радуются разрешению важной загадки, связанной с клеточным делением. Возможно, теперь станет ясным механизм некоторых аномалий развития: чтобы хромосомы разошлись неправильно, клетке нужно лишь забыть поменять перед делением один белок центромеры на другой.

 

 


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Цитологии

Страна

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Атмосферная пыль Земли удвоилась

17-01-2011 Просмотров:13029 Новости Экологии Антоненко Андрей - avatar Антоненко Андрей

Атмосферная пыль Земли удвоилась

Количество пыли природного происхождения в атмосфере Земли по сравнению с XIX веком удвоилось. Правда, для климата это, по мнению исследователей, только хорошо. Атмосферная пыль Земли удвоилась Ученые из Австралии, Великобритании...

Бурение озера Элсуорта в Антарктиде начнется через год

13-10-2011 Просмотров:9954 Новости Окенологии Антоненко Андрей - avatar Антоненко Андрей

Бурение озера Элсуорта в Антарктиде начнется через год

У российских полярников, которые занимаются бурением подледного озера Восток в Антарктиде вот уже около 20 лет, появились конкуренты. Британские специалисты планируют в следующем году достигнуть воды подледного озера Элсуорта за...

Генетики построили родословное древо насекомых

10-11-2014 Просмотров:8671 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Генетики построили родословное древо насекомых

Ученые представили новую версию родословного древа насекомых. Оказалось, что они появились одновременно с первыми наземными растениями. Окаменевшая стрекозаРезультаты исследования, проведенного китайскими, немецкими и американскими генетиками, опубликованы в свежем выпуске журнала Science. Насекомые - это...

Новый ящер поразил ученых своим уродством

14-02-2014 Просмотров:7991 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Новый ящер поразил ученых своим уродством

Недра Китайской народной республики продолжают удивлять научный мир остатками древних существ. Одно из них, только что описанное палеонтологом Уханьского института геологии и минеральных ресурсов Лун Ченом, своим видом могло бы...

В ЮАР обнаружен древнейший гриб возрастом 2,4 млрд лет

02-05-2017 Просмотров:5983 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В ЮАР обнаружен древнейший гриб возрастом 2,4 млрд лет

Ученые нашли в протерозойских отложениях на юге Африки окаменелость, похожую на мицелий гриба. Находка доказывает, что древнейшие грибы жили на дне моря. Об этом говорится в статье палеонтологов из Швеции и...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.