Мир дикой природы на wwlife.ru
Вы находитесь здесь:Заповедники>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Гиппокамп


Биологи нашли в гиппокампе, центре памяти в мозге, особую зону, которая является своеобразным датчиком температуры, следящим за тем, чтобы мозг не перегрелся и не возник эпилептический припадок, говорится в статье, опубликованной в журнале Neuron.

"Мыши, у которых регион CA2 был отключен, вели себя нормально, но при этом периодически испытывали симптомы, похожие на эпилепсию. Нормальные волны активности нейронов исчезли и были заменены на эпилептоподобные разряды электричества из-за того, что скорость работы других частей гиппокампа никто не контролировал", — объясняет Томас Макхью (Thomas McHugh) из института RIKEN в Саитаме (Япония).

Гиппокамп состоит из нескольких слоев пирамидальных нейронов. Нервные клетки в этих областях собирают и обрабатывают информацию, поступающую из других отделов мозга. Считается, что гиппокамп участвует во всех процессах, связанных с сохранением долговременных воспоминаний, однако все его функции пока не известны.

В прошлом году Махью и его команда обнаружили, что информация хранится в гиппокампе в относительно разрозненном виде. Для ее "чтения" нужны так называемые тета-волны — медленные импульсы мозговой активности, помогающие клеткам гиппокампа вспоминать, в каком порядке нужно воспроизводить воспоминания.

Если тета-волны подавить, то воспоминания будут случайным образом перемешаны. Источником этих волн был регион СА3, один из участков гиппокампа, участвующих в первичной обработке информации. Его открытие заставило ученых выяснить, нет ли в мозге других "генераторов волн".

Для их поиска ученые вывели две особые породы мышей, у которые разные части гиппокампа и других отделов мозга можно было отключать при помощи импульсов синего света или молекул нейротоксина TeTx.

Как показали эксперименты, ближайший сосед CA3, регион CA2, оказался "термодатчиком" и системой безопасности мозга, защищающей гиппокамп от перегрева и чрезмерно высокой активности.

Отключение этого участка мозга у мышей привело к любопытным и почти непредсказуемым последствиям. После блокировки СА2 грызуны в целом вели себя нормально, но в некоторых случаях, когда смотрели на определенные фрагменты клетки или совершали определенные действия, их гиппокамп, образно выражаясь, взрывался мощнейшими вспышками активности, похожими на импульсы, возникающие во время приступов эпилепсии.

Дальнейшие эксперименты с мышами показали, что регион СА2 вырабатывает особые волны, которые заставляют нервные клетки в других частях гиппокампа подавлять активность при превышении некого предела. Это защищает их и от формирования эпилептических очагов, и от перегрева. Длительное отсутствие подобной защиты приводит к ухудшению памяти и потере способности быстро учиться.

Нарушения в работе внутреннего термометра мозга, как считают ученые, могут играть роль в развитии различных нарушений памяти и некоторых форм эпилепсии. Они планируют выяснить, как именно возникают эти нарушения, в ходе более длительных и масштабных опытов на мышах.



Источник: РИА Новости


Опубликовано в Новости Нейробиологии

Нейрофизиологи впервые смогли в прямом смысле слова "заглянуть" в сновидения спящих крыс и выяснить, что мозг грызунов постоянно прокручивает приятные сны о поиске кусочков вкусной пищи и ее поедании, говорится в статье, опубликованной в журнале eLife.

270615955931520"Пока мы не знаем, зачем мозг крыс конструирует эти симуляции. Похоже, что этот процесс помогает животному оценить все возможные планы действий на следующий день, так скажем, продумать их. Конечно, мы не знаем этого наверняка, и в ближайшем будущем мы хотим проверить, существует ли связь между этими снами и тем, что животное будет делать в будущем", — заявил Кэсвелл Бэрри (Casell Barry) из университетского колледжа Лондона (Великобритания).

Бэрри и его коллеги выяснили, о чем грезят лабораторные крысы, наблюдая за активностью их мозга во время сна после длительной серии физических и умственных упражнений в специальной клетке-лабиринте.

"Во время прогулок мозг млекопитающих быстро формирует карту местности, которая хранится в центре их памяти, в так называемом гиппокампе. Когда мы спим или отдыхаем, гиппокамп проигрывает воспоминания о наших прогулках по этой карте, что помогает ее лучше запомнить. Наши коллеги предполагали, что подобные "повторы" могут составлять основу наших сновидений", — добавляет Хьюго Спирс (Hugo Spiers), коллега Бэрри.

Авторы статьи решили проверить, так ли это. Для этого они посадили несколько крыс в Т-образный лабиринт, в одном из рукавов которого находился кусочек сыра или другой пищи, а в другом было пусто. Проблема для крысы заключалась в том, что оба прохода были загорожены прозрачной пластиковой перегородкой, которая мешала животному достичь еды.

Через час после того, как крысы безуспешно пытались проникнуть через барьер, ученые сажали их в темную клетку, где те засыпали, и следили за активностью их гиппокампа и прочих регионов мозга. После этого, когда грызуны просыпались, биологи выпускали их обратно в лабиринт, убирали заслонки и позволяли им добраться до пищи.

Когда ученые проанализировали данные по активности мозга во время сна и второй попытки добычи пищи, они поняли, что крысы во сне мечтали о недоступном им кусочке сыра и разрабатывали "планы" по его добыче из левого рукава лабиринта, где он находился.

"Полученные нами результаты показывают, что во время сна гиппокамп к тому же реконструирует и события будущего, то, что должно случиться. Так как структура этой области мозга у человека и крыс очень похожа, это может объяснять то, почему пациенты с поврежденным гиппокампом испытывают проблемы с предсказанием будущего, воображением и мечтами о еще не наступивших событиях", — продолжает Спирс.

Наличие подобной активности в мозге крыс говорит о том, что человек является не единственным существом, которое умеет планировать свои действия на достаточно долгое время вперед, заключают ученые.


Источник:  РИА Новости


 

Опубликовано в Новости Нейробиологии

Эксперименты с участием крыс показали, что эти грызуны умеют соединять причину со следствием и даже обладают некими зачатками воображения, которое заставляет их ожидать вымышленных событий, заявили ученые на ежегодной встрече Сообщества когнитивной нейробиологии в Сан-Франциско.

300315955930981"Мне удалось показать, что в голове у крыс формируется не только классическая павловская связь между двумя событиями, но и полноценная причинно-следственная связь. Иными словами, крыса верит в то, что звуковой сигнал или лампочка вызывает появление пищи", — заявил Аарон Блейсделл (Aaron Blaisdell) из университета Калифорнии в Лос-Анджелесе (США).

Блейсделл и его коллеги пришли к выводу, что крысы обладают некой формой воображения и рассудочного мышления, наблюдая за поведением животных, в клетке которых было несколько источников визуальных или звуковых сигналов.

К примеру, в клетке могли одновременно присутствовать и лампочка, и звуковой динамик. Лампочка одновременно служила и сигналом подачи пищи, и сигналом включения звука. Как обнаружили ученые, крысы хорошо осознавали эту взаимосвязь и всегда смотрели на светильник в тех случаях, когда они слышали звуковой сигнал.

Это ассоциация пропадала, если ученые помещали в клетку особую педаль, при нажатии на которую раздавался звук. Крыса, как объясняют нейрофизиологи, осознавала, что звук был порожден ее действиями, и переставала верить в то, что он был причиной появления пищи.

Аналогичным образом, если в разных "комнатах" клетки было две лампочки и обе из них зажигались во время подачи еды, животное ожидало того, что второй светильник загорится после включения первого. Данное ожидание, как отмечают ученые, сохранялось даже тогда, когда они прикрывали одну из лампочек.

"Они считают или ожидают, что свет там есть, несмотря на то, что они его не видят. Это вымышленное событие, существующее только в их головах, служит основой для дальнейших действий и мыслей о том, породило ли включение света пищу или нет, в зависимости от других признаков ее появления", — объясняет Блейсделл.

Подобная манера мышления, которую психологи называют "контрафактным мышлением", раньше считалась эксклюзивной чертой человека, вместе с нашей способностью воображать и оперировать несуществующими в реальности понятиями и "фактами".

За работу "центра воображения" в мозге крыс, как выяснили Блейсделл и его коллеги, отвечают те же регионы в гиппокампе, центре памяти, что и у человека. Когда ученые отключили этот регион, крыса потеряла способность "верить" в включенность второй лампочки и больше не бежала проверять, есть ли пища в лотке, после включения первого светильника.

Данный факт, как считают ученые, позволяет использовать крыс для изучения того, что происходит с памятью и воображением человека в старческом возрасте и при наступлении болезни Альцгеймера и при развитии других нейродегенеративных заболеваний.

"Крысы и многие другие виды млекопитающих продолжают служить неисчерпаемым рогом изобилия, который дает нам все больше информации о том, как работает разум и рассудок. Когда мы смотрим на животное, мы словно вглядываемся в зеркало и видим часть себя. Я все чаще осознаю, что в нас можно увидеть столько же много от них, сколько есть нас в самих животных", — заключает Блейсделл.


Источник: РИА Новости


 

Опубликовано в Новости Зоологии

Когда мы слышим визг автомобильных тормозов, внутри всё у нас инстинктивно сжимается в ожидании звука столкновения. Понятно, что в нашей памяти хранится и звук тормозов, и звук столкновения, но этого мало: наш мозг как-то помнит, что одно предшествует другому, что эти два события связаны неким временным интервалом. Такое представление о последовательности, о времени — один из важнейших компонентов памяти; всю событийную, эпизодическую память можно описать тремя словами: что, где и когда. Но как этот параметр записывается в память? Как мозг ставит на событиях временные вехи? 

Срез через гиппокамп мыши: островковые клетки, тянущиеся из энторинальной коры в СА1-область гиппокампа, окрашены зелёным. (Фото Takashi Kitamura / MIT.) Срез через гиппокамп мыши: островковые клетки, тянущиеся из энторинальной коры в СА1-область гиппокампа, окрашены зелёным. (Фото Takashi Kitamura / MIT.) За координацию «что», «где» и «когда», в мозге отвечает гиппокамп — один из главных центров памяти вообще. При формировании эпизодической памяти гиппокамп связывается с энторинальной корой, которая служит для него сенсорным «хабом», направляя в него визуальную, слуховую и тому подобную информацию. О том, как предмет связывается с пространством, как «что» контактирует с «где», учёные успели узнать довольно много: тут задействованы так называемые нейроны места, которые включаются, когда индивидуум попадает в то или иное место и когда его вспоминает. Но вот насчёт временной связи в памяти в наших знаниях оставался большой пробел.

Ответить на этот вопрос попытались исследователи из Массачусетского технологического института (США). Судзуми Тонегаве (Susumu Tonegawa) и его коллегам удалось найти специальную нейронную цепочку, которая обеспечивает временную связь между двумя эпизодами. Эксперименты ставились на мышах: животных учили бояться звукового сигнала, который был предвестником удара электрическим током, следовавшим через 20 секунд после сигнала. Эта нейронная цепь связывает СА1-область гиппокампа с одним из слоёв энторинальной коры, и три года назад учёным удалось показать, что если эту цепь разорвать, то мыши так и не научатся бояться звука, то есть связь между звуком и электрошоком у них не возникнет. 

В новой статье, опубликованной в Science, группа г-на Тонегавы описывает новую нейронную цепь, которая тормозит работу предыдущей, связывающей энторинальную кору с гиппокампом. Тормозящая цепь начинается с особых нейронов, которые образуют островки в одном из слоёв энторинальной коры (клетки эти были названы островковыми, и до сих пор на них опять же никто не обращал внимания). Эти островковые клетки посылают сигнал в ту же СА1-область гиппокампа, что и первая цепь, но «островковый» сигнал оказывается тормозящим, и те нейроны в СА1, которые возбуждались от первой цепи, от второй, наоборот, успокаиваются. 

С помощью оптогенетических методов учёные показали, как эти две нервные цепочки взаимодействуют. В норме у мышей максимальный временной промежуток между событиями равнялся 20 секундам: если второе событие случалось позже, то взаимосвязи между первым и вторым не возникало. Однако исследователям удалось искусственно увеличить этот промежуток, стимулируя тот слой энторинальной коры, из которого в гиппокамп шла возбуждающая нейронная цепь, или подавляя активность того слоя, из которого выходила тормозящая цепь. И наоборот: временной промежуток между событиями можно было уменьшить, простимулировав подавляющую цепь и подавив активирующую. 

То есть эти две цепочки вместе определяют временное окно, в котором два события могут быть связаны друг с другом. Чем дольше активна СА1-область гиппокампа, тем выше вероятность, что последовательная связь образуется с одним, другим, третьим событием. Понятно, какие неприятности могут нас ждать, если перестимулированный гиппокамп начнёт видеть взаимосвязанную последовательность между всеми эпизодами, которые в него попадают (хотя у некоторых людей, надо заметить, всё именно так и происходит: у них всё, знаете ли, взаимосвязано). И вторая (тормозящая) цепь служит тут необходимым ограничителем. 

Заметим, однако, что этот феномен исследовался на примере довольно простых сенсорных восприятий вроде «Мы видим молнию, потом слышим гром». Но последовательность памяти складывается из разных кусков, больших и малых: мы же помним, например, что за зимой наступает весна и что после школы мы пошли в институт. Возможно, для осмысления последовательности таких блоков информации в мозге существуют какие-то дополнительные системы (хотя они могут строиться на базе этих же цепочек, которые мы описали выше). 

Напоследок добавим, что нобелевский лауреат Судзуми Тонегава, который работает ещё и в японском Институте физико-химических исследований RIKEN, не в первый раз возникает в наших новостях: не так давно мы сообщали о нейромолекулярной модели шизофрении, с помощью которой г-н Тонегава и его группа попробовали связать воедино многочисленные симптомы этой болезни.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Нейробиологии

О прионах принято говорить как о безусловном зле: эти белки, склонные принимать альтернативные пространственные формы, вызывают тяжелейшие и неизлечимые неврологические заболевания, которые неизбежно ведут к смерти. Хотя классические прионные болезни среди людей не так уж распространены, у человека есть нейродегенеративные заболевания вроде синдрома Альцгеймера, которые развиваются схожим образом.

Нейроны гиппокампа мыши (фото UoB University Graduate School).Нейроны гиппокампа мыши (фото UoB University Graduate School).Однако мало кто задумывался о том, зачем вообще нужны прионы. Ведь гены этих белков есть в здоровых клетках, и выполняют они, наверное, какие-то полезные функции. Нормальная, непатогенная версия прионного белка есть во всех клетках; известно, например, что в нервной системе здоровый прионный белок помогает поддерживать миелиновую оболочку на нейронах. Но сильнее всего исследователей заинтересовало то, что один из прионов, белок PrP, особенно обильно присутствует в самих нейронах, причём в то время, когда мозг ещё развивается. Нормальный PrP обычно прикреплён к клеточной мембране, и можно было бы предположить, что он как-то влияет на общение нейрона с другими клетками.

Оказалось, что прионный белок принимает самое непосредственное участие в управлении синаптической пластичностью, то есть в укреплении и в ослаблении синапсов между нейронами.

Исследователи из Политехнического университета Марке (Италия) сравнили, как реагируют нейроны гиппокампа мышей на раздражение, если ген приона работает нормально или же выключен. Эксперименты показали, что если нейрон активен вместе с остальными, то у него укрепляется связь с другими клетками, то есть нейронная цепь становится в целом прочнее. В этом нет ничего удивительного: опыты ставили на молодых животных, у которых нервные цепи, особенно в центре памяти (гиппокампе), находятся ещё в процессе становления. Любопытно было другое: такое укрепление синапсов имело место только при работающем гене приона. Без прионного белка связи между нейронами слабели.

Дальнейшие опыты показали, что PrP связан с протеинкиназой А: этот фермент принимает непосредственное участие в укреплении синапсов. Если же PrP отсутствовал, в дело вступал другой фермент, протеинлипаза С, который ослаблял контакты между нейронами. Таким образом, выяснилось, что прион необходим для процессов обучения и запоминания: без него просто не сформируются нейронные цепи для хранения информации. Полностью результаты экспериментов описаны в Journal of Neuroscience.

Исследователи полагают, что прион нужен не только в гиппокампе, но и в других отделах мозга, где он также помогает устанавливать новые синапсы, и что он может заниматься этим не только у молодых животных, но и взрослых. Скорее всего, наличие или отсутствие этого белка может сильно сказываться на поведении, но чтобы установить это доподлинно, понадобятся новые эксперименты.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Нейробиологии

Мы ориентируемся в пространстве с помощью особой группы нервных клеток, называемых grid-нейронами. Это что-то вроде GPS-систем мозга: когда человек или животное движется, grid-нейроны по очереди возбуждаются, отмечая участки пространства и передавая сигнал в гиппокамп. Особенность grid-нейронов в следующем: они периодически возбуждаются, разбивая пространство на шестиугольные участки, и нейрон, попадая в вершину такого шестиугольника, реагирует импульсом.

Разномасштабные нейронные карты местности и их соотнесённость со «слоями памяти» в гиппокампе (фото авторов работы)Разномасштабные нейронные карты местности и их соотнесённость со «слоями памяти» в гиппокампе (фото авторов работы)Исследователи из Норвежского научно-технического университета обнаружили удивительную черту этих клеток. Оказывается, grid-нейроны собраны в модули, числом не менее четырёх, и каждый из модулей отвечает за один и тот же кусок пространства, но в разном масштабе. Иными словами, карта территории в мозгу складывается в виде «бутерброда» из нескольких карт, от самой общей к наиболее детальной. Если вспомнить о шестиугольной схеме возбуждения нейронов, то получится несколько сеток с гексагональными ячейками, наложенных друг на друга.

Если мы делаем, например, три шага, то нейроны более крупной сетки отреагируют на перемещение, скажем, всего два раза — в начале и в конце пути, в то время как нейроны более частой отзовутся пять, десять, пятнадцать раз. Впрочем, выдумывать цифры тут нет нужды. Оказалось, что масштабы пространственно-нейронных сеток соотносятся друг с другом по определённому математическому закону: бόльшая стека превосходит меньшую на 42% от частоты меньшей. (Эту закономерность особенно оценят поклонники бессмертного «Автостопом по галактике» Адамса, с его легендарным ответом на вопрос о «жизни, смерти и вообще».)

До сих пор такую модульную организацию нервных клеток находили только в тех отделах мозга, которые отвечают за восприятие информации от органов чувств и за моторику. То, что точно так же могут работать клетки, имеющие дело с довольно абстрактной информацией, исследователей весьма удивило. Хотя эксперименты ставились на крысах, авторы работы, опубликованной в Nature, полагают, что таким же образом картографируется пространство и у других млекопитающих, включая человека. Причём модулей может быть гораздо больше четырёх: учёные полагают, что у крыс их около десяти, только пока что не все удалось увидеть экспериментально. Особенность пространственных модулей ещё и в том, что «на глаз», с помощью микроскопа, их различить невозможно: нейроны разных карт перемешаны между собой и иногда входят в несколько разных решёток. То есть можно говорить о функциональных модулях, которые работают отчасти благодаря одним и тем же клеткам.

Исследователи полагают, что такая модульная организация может быть присуща и другим функциям мозга — к примеру, памяти. Grid-нейроны, как было сказано, посылают свои импульсы в гиппокамп, один из главных центров памяти. Можно представить, что и в гиппокампе есть похожие разномасштабные функциональные решётки нейронов, только имеющие дело не с текущим положением индивидуума в пространстве, а с его воспоминаниями.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Нейробиологии
Суббота, 12 Февраль 2011 00:00

Для зимовки птицам нужны мозги

Чтобы пережить зиму, некоторым птицам нужно нечто большее, чем тёплые перья или тропический отдых, а именно — мощный мозг. Американские учёные выяснили, что у черношапочных гаичек, способных перенести суровое время года, центры памяти больше и плотнее, чем у тех пернатых, что живут в более щадящем климате.

Не мешайте, я зимую! (Фото MichelPhoto53.) Не мешайте, я зимую! (Фото MichelPhoto53.) Тимоти Рот из Университета Невады в Рено и его коллеги постарались выяснить влияние суровых зим на гиппокамп птиц — часть мозга, которая, по-видимому, имеет критическое значение для формирования воспоминаний. Специалисты сравнили объём гиппокампа и общее количество нейронов в нём у Poecile atricapillus, обитающих в Сиэтле (штат Вашингтон), Гранте (штат Миннесота) и Преск-Айле (штат Мэн).

Все три локации лежат примерно на одной той же широте, поэтому птицы имеют одинаковое количество дневного света на поиск пропитания и накопление запасов на зиму (черношапочные гаички не улетают на юг). Но климатические условия в трёх штатах сильно различаются: в Миннесоте и Мэне намного холоднее, и снега там выпадает больше, чем в Вашингтоне.

Учёные установили, что у птиц из Миннесоты и Мэна гиппокампы больше. Исследователи полагают, что для выживания гаичек, обитающих в более мягком климате, пространственная память не имеет столь важного значения. «Это говорит о том, что естественный отбор может повлиять на конкретные области мозга и привести к специализированным усовершенствованиям, — отмечает г-н Рот. — Приятно видеть подтверждение старой идеи о том, что мозг является продуктом отбора».

Ранее те же учёные показали, что нейрогенез (процесс создания новых нейронов в мозге) у птиц подчиняется той же закономерности: чем дальше на север, тем он активнее.

Результаты исследования опубликованы в журнале Proceedings of the Royal Society B.

 


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Зоологии

Главной зоной памяти у нас в мозгу считается гиппокамп; учёные давно знают о его роли в превращении кратковременной памяти в долговременную.

Гиппокамп в разрезе (фото Lush Photo)Гиппокамп в разрезе (фото Lush Photo)Исследователи из Колумбийского университета (США) решили посмотреть, не участвует ли он в принятии решений. Добровольцы, участники эксперимента, должны были выполнить следующее. Сначала им показывали пары картинок, на которых лицо, часть тела или какой-нибудь ландшафт соседствовали с цветным кругом. Пары картинок были постоянными, то есть определённый круг всегда оказывался вместе с определённым ландшафтом. Во второй части эксперимента показывали только цветные кружки, но при этом некоторые из них нужно было выбирать: за это давали денежное вознаграждение.

Наконец, на третьем этапе испытуемым снова демонстрировали пары картинок, но круги шли отдельно от ландшафтов и лиц. И в каждой паре опять нужно было выбрать одну иллюстрацию, чтобы получить приз, но на сей раз выбор оставили на волю случая: человек не знал, что надо предпочесть.

Тут можно представить такую цепочку ассоциаций. Человек на третьем этапе должен выбрать картинку, но не знает, какую, и тогда он вспоминает первый этап, где это изображение было связано с каким-то кружком, который на втором этапе приносил бонус. Может быть, и картинка, с ним связанная, тоже даст награду?.. Участники эксперимента ничего такого не осознавали, но поступали именно так. И, что самое главное, эту цепочку подтверждало фМРТ-сканирование мозга: чем активней у человека работал гиппокамп на второй стадии («кружок — вознаграждение»), тем сильнее был ассоциативный выбор на третьей стадии эксперимента.

Большую роль также играло соединение гиппокампа с полосатым телом, входящим в состав системы подкрепления. То есть, когда нужно было сделать выбор, мозг обращался к памяти, а гиппокамп подсказывал решение, исходя из приятных ощущений системы подкрепления.

Особенно важно в этих данных то, что такие ассоциативные цепочки могут не осознаваться человеком, но при этом широко использоваться мозгом. Прошлые впечатления действительно влияют на наше поведение, и это, по-видимому, не выдумка психологов и психоаналитиков, а обычный принцип работы мозга.

Результаты исследований опубликованы в журнале Science.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Нейробиологии

Сон необходим человеку для консолидации памяти, сортировки впечатлений, полученных во время бодрствования, и записи их в долговременные нейронные цепи. Ведущую роль в этом играют три раздела мозга: неокортекс, энторинальная кора и гиппокамп.

Нейрон энторинальной коры (фото mikeeconomo)Нейрон энторинальной коры (фото mikeeconomo)Во время сна эти зоны начинают интенсивный диалог, и, как считается, именно в этот момент происходит запись долговременной памяти. Причём ведущую роль в консолидации памяти отводили неокортексу и гиппокампу. Однако детали этого обмена информацией долгое время ускользали от учёных.

Нейрофизиологи из Калифорнийского университета в Лос-Анджелесе (США) сумели записать одновременную активность нейронов всех трёх вышеупомянутых участков мозга, что и позволило представить процесс обработки информации хотя бы в общих чертах.

Известно, что бóльшую часть сна неокортекс проводит в медленноволновой активности, периодически переходя из активного состояния в пассивное и обратно. На деятельность неокортекса реагирует энторинальная кора. Её можно разделить на внешнюю и внутреннюю. Так вот, по словам исследователей, внешняя часть полностью повторяет действия неокортекса: когда новая кора работала, активизировалась и внешняя часть энторинальной коры. Необычным было другое: когда неокортекс замолкал, тут же просыпалась внутренняя область энторинальной коры, как будто повторяя только что «сказанное» неокортексом. При этом активные нейроны внутренней части энторинальной коры побуждали к работе и гиппокамп. И наоборот: когда начинал активничать неокортекс, гиппокамп замолкал. То есть во время сна (а эксперименты ставились на спящих мышах) три зоны мозга, отвечающие за память, находятся в сложном диалоге, последовательность реплик в котором мы теперь немного представляем.

Странность полученных результатов состоит в том, что, как полагали ранее, энторинальная кора занимается исключительно кратковременной памятью. То есть она держит «в уме» только что полученный стимул. Например, если мы идём от одного человека с поручением к другому, то это поручение держится в энторинальной коре. Однако, как пишут исследователи в журнале Nature Neuroscience, эта зона кратковременной памяти активизировалась не только во сне, но даже под анестезией, когда никакие внешние стимулы до мозга уж точно не доходят. То есть в деле записи долговременной памяти энторинальная кора — полноправный участник.

Кроме того, как опять же считалось, в этом процессе ведущая роль принадлежит гиппокампу, который управляет активностью неокортекса. В действительности же всё, по-видимому, выглядит с точностью до наоборот: неокортекс дирижирует двумя другими партнёрами, которые подстраиваются под его ритмы и выслушивают его реплики, чтобы потом повторить.

Тут следует заметить, что есть клинические данные, которые подтверждают полученные результаты, хотя бы и косвенно. Например, болезнь Альцгеймера начинается с энторинальной коры, а её первые симптомы — нарушение именно долговременной памяти и сна. Полученные результаты, несомненно, имеют большое фундаментальное значение, но можно ли применить их к лечению расстройств памяти, исследователи пока сказать не могут.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Нейробиологии

Учёные проанализировали молекулярно-генетические отличия мозга человека от мозга обезьян.

Хотя у шимпанзе мозг в два раза меньше, чем у человека, учёные полагают, что главные отличия нашего мозга от обезьяньего — качественные, а не количественные (фото Bettmann / Corbis)Хотя у шимпанзе мозг в два раза меньше, чем у человека, учёные полагают, что главные отличия нашего мозга от обезьяньего — качественные, а не количественные (фото Bettmann / Corbis)Исследователи из Калифорнийского университета в Лос-Анджелесе (США) сумели подтвердить гипотезу о том, что развитие мозга приматов не столько увеличивало его, сколько усложняло его архитектуру. Учёные использовали образцы, взятые у человека, шимпанзе и макаки-резус из трёх зон: лобных долей, гиппокампа и полосатого тела. (В будущем авторы работы собираются повторить исследования с другими участками мозга.) Сравнивали, однако, не саму нервную ткань, а активность генов, которую оценивали по спектру мРНК.

Как пишут исследователи в статье, опубликованной в журнале Neuron , наибольшие различия были найдены в лобных долях, наименьшие — в древнем полосатом теле. У человека, по сравнению с обезьянами, во много раз усложнилась схема генетической активности в нейронах лобных долей. И в первую очередь это касается генов, отвечающих за синаптическую пластичность , которая лежит в основе обучаемости и вообще высших когнитивных функций.

Особенное внимание исследователей привлёк ген CLOCK, который считается главным регулятором циркадного ритма, а нарушения в его работе сопутствуют психоневрологическим болезням вроде биполярного расстройства . По-видимому, у CLOCK есть дополнительные функции, не связанные с суточным ритмом, — учёные полагают, что CLOCK организует работу разных генетических комплексов, в том числе тех, что обеспечивают наше отличие от остальных приматов.

Также по сравнению с обезьянами у человека более тесно взаимодействуют гены, управляемые FOXP1 и FOXP2. Об этой паре обычно вспоминают, когда речь заходит о способности говорить и понимать чужую речь.

Гены, отвечающие за размер мозга, в поле зрения исследователей не попали. То есть эволюционный скачок от обезьяны к человеку произошёл, очевидно, за счёт усложнения молекулярных взаимодействий между генами, с помощью изменений в активности генов-операторов, которые этими взаимодействиями управляют. А уж молекулярно-генетические изменения повлекли за собой перестройки в архитектуре.

Но совсем сбрасывать со счетов изменения в объёме мозга нельзя: всё-таки у шимпанзе он в два раза меньше, чем у человека. Но при этом учёные делают вывод, что главные отличия человеческого мозга от обезьяньего относятся всё же к характеристикам качественным, а не количественным.


Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Нейробиологии

Страна

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Растения адаптировались к жизни на суше благодаря генам грибов и…

25-10-2012 Просмотров:12705 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Растения адаптировались к жизни на суше благодаря генам грибов и бактерий

Анализ генома примитивного мха позволил ученым выдвинуть новую гипотезу о переходе растений к сухопутному образу жизни. Американские биологи из Университета Восточной Каролины пришли к выводу, что первые растения приспособились к жизни...

Жизнь на суше, или О тенденции окаменелостей всё время удивлять

13-12-2012 Просмотров:15081 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Жизнь на суше, или О тенденции окаменелостей всё время удивлять

Когда на суше появилась жизнь? Ответ на этот вопрос (один из фундаментальных в науке) зависит прежде всего от значения слов «жизнь» и «суша». Существуют чёткие свидетельства жизни в пресной воде (в...

На Дальнем Востоке нашли тропического ихтиозавра

03-06-2014 Просмотров:7779 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

На Дальнем Востоке нашли тропического ихтиозавра

Весной 2014 года палеонтолог-любитель из Владивостока Игорь Борисов собирал окаменелости на острове Русский (Приморский край). Среди его находок оказались и фрагменты челюстей морской рептилии со своеобразными зубами. Ихтиозавр Phalarodon. Реконструкция: Н.Г....

Природоохранные зоны

19-10-2013 Просмотров:39066 Заповедники и национальные парки Антоненко Андрей - avatar Антоненко Андрей

Природоохранные зоны

Что такое природоохранные зоны? К природоохранным зонам (особо охраняемым природным территориям - ООПТ) относятся территории требующие особой охраны в следствие своих природных, научных, рекреационных, культурных и других особенностей. Сейчас в мире существует около...

У гелад нашли «почти человеческую» речь

09-04-2013 Просмотров:10877 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

У гелад нашли «почти человеческую» речь

Учёные продолжают искать и находить сходства между человеческой речью и звуками, издаваемыми обезьянами. Новое открытие сделал Тор Бергман из Мичиганского университета (США), изучавший повадки эфиопских гелад. Самец и самка гелады (фото...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.