Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Все добавления


Система солнечной навигации в усиках бабочек-монархов состоит из двух независимых солнечных "навигаторов", что позволяет насекомому сохранять способность к межконтинентальным перелетам при повреждении одной из антенн, заявляют ученые в статье, опубликованной в журнале Nature Communications.

Бабочка-монархСевероамериканская бабочка-монарх (Danaus plexippus) принадлежит к числу насекомых, мигрирующих на далекие расстояния. Летом эти бабочки и их личинки предпочитают обитать в умеренных и субтропических регионах Соединенных штатов, а осенью и зимой они мигрируют в южные пределы Мексики и других стран Центральной Америки. Известны случаи, когда монархи перелетали на другие континенты - некоторые бабочки были замечены в южной Британии, на российском Дальнем Востоке, в Австралии и на Гавайских островах.

Группа биологов под руководством Стивена Репперта (Steven Reppert) из Медицинской школы университета штата Массачусетс в городе Уорчестер (США) изучала систему навигации бабочек, отдельные компоненты которой - светочувствительные клетки в антеннах и центр обработки информации в мозге - они открыли в 2009 и 2011 годах.

Репперт и его коллеги проверили, как монархи будут вести себя при повреждении левой или правой антенны. Для этого ученые поймали нескольких мигрирующих бабочек осенью 2011 года, удалили один из усиков и стали наблюдать за поведением насекомых.

Оказалось, что повреждение антенны почти не повлияло на навигационные способности монархов - бабочки с одним усиком летели примерно в том же направлении, что и насекомые с двумя антеннами-"навигаторами". Это открытие позволило ученым предположить, что вторая антенна является своеобразной запасной деталью на тот случай, если первый усик будет поврежден. Тем не менее, нельзя исключать, что насекомое использует обе антенны в том случае, если они исправны.

Авторы статьи проверили эту гипотезу, покрасив одну из антенн бабочек в черный цвет при помощи светонепроницаемой краски, и повторили эксперимент. На этот раз бабочки потеряли способность ориентироваться по свету Солнца и начали двигаться беспорядочно.

Как полагают исследователи, центр навигации в мозге бабочек может работать в двух режимах - с использованием одной и двух антенн. Во втором случае он объединяет сигналы с левого и правого усика и получает некое "усредненное" значение о положении Солнца на небосводе.

По всей видимости, мозг бабочки не считает закрашенную антенну поврежденной и пытается объединить ее нервные импульсы с сигналами с исправного усика. Это подтверждается тем, что работа системы навигации была восстановлена после того, как ученые отделили закрашенные усики от головы бабочки.

Покраска антенны привела к тому, что ее светочувствительные клетки всегда сигнализировали о наступлении темного времени суток. Этот ложный сигнал смешивался с корректными навигационными данными с исправного усика, что и дезориентировало бабочку.

Таким образом, бабочки-монархи оказались обладателями двух полноценных и независимых друг от друга солнечных "навигаторов", которые помогают им достигать цели при межконтинентальной миграции даже при повреждении одной из светочувствительных антенн.

 


Источник: РИАНОВОСТИ


Рыбы-харацины "ловят" самок при помощи приманок, похожих на насекомыхСамцы тропических рыб-харацинов выработали уникальную стратегию для  привлечения внимания самок - они вырастили специальные приманки на своих жабрах, напоминающие по форме и окраске тело насекомых - основу рациона этих рыб, заявляют биологи в статье, опубликованной в журнале Current Biology.

Самцы практически всех видов позвоночных животных используют сложные ритуалы  ухаживания для привлечения особей слабого пола в сезон размножения. В частности, птицы-шалашники строят замки и используют оптические иллюзии для улучшения их  облика, лягушки-тунгары соревнуются в громкости и сложности брачных песен. Эти  ухаживания помогают самкам выбрать наиболее приспособленных партнеров для  спаривания и отличать их от похожих особей других видов.

Группа биологов под руководством Горана Арнквиста (Goran Arnqvist) из  университета Упсалы (Швеция) наблюдала за брачным поведением тропических  рыб-харацинов (Corynopoma riisei) на территории острова Тринидад.

Данный вид харацинов питается насекомыми, упавшими на поверхность воды - муравьями, жуками, гусеницами или личинками комара. Во время спаривания самец  привлекает самку при помощи яркого выроста на жаберной крышке. При удачном  стечении обстоятельств ухажер вводит сперму в специальное хранилище на теле  самки, где сперматозоиды могут сохраняться в течение нескольких месяцев.

Арнквист и его коллеги заметили, что форма и расцветка выростов сильно  отличается для разных популяций харацинов, обитающих в разных уголках острова. Биологи сравнили их и заметили, что они похожи по цвету и очертаниям на  некоторых насекомых, в том числе и муравьев.

Исследователи предположили, что такое разнообразие в оформлении данных  выростов связано с переносом неполовых признаков - в данном случае пищевых  предпочтений самок - в сферу размножения. Как объясняют ученые, самки из разных  популяций предпочитают питаться одним видом насекомых - к примеру, муравьями. В  данном случае самцы с узором на жабрах, похожим на форму тела и окраску муравья, будут чаще спариваться с самками, так как особей слабого пола будет привлекать  приманка, похожая на муравья.

Биологи проверили свои выводы, поймав несколько самцов и самок харацинов. Самцы обладали приманками в виде муравья, тогда как самки жили в другом регионе  острова и предпочитали есть другую пищу. Ученые попытались изменить пищевые  предпочтения особей слабого пола, предлагая им исключительно муравьев.

Когда рыбы привыкли к новому виду пищи, Арнквист и его коллеги запустили в  аквариум самцов с узорами в виде муравья. Как и ожидали ученые, самки "клюнули" на приманку и позволили харацинам оплодотворить себя. Таким образом, неполовой  признак - пищевые предпочтения самок - превратился в один из факторов, напрямую  влияющих на успешность в деле продолжения рода для самцов.

"Это природный пример "приманки", предназначенной для ловли конкретного вида  рыбы. В этом случае правда, "добычей" выступают особи противоположного пола", - заключает один из участников исследования Никлас Кольм (Niclas Kolm) из  университета Упсалы.

 


Источник: РИАНОВОСТИ


Распределением органов по левой и правой сторонам организма занимается тубулиновый цитоскелет, причём программа асимметрии запускается едва ли не сразу после оплодотворения.

Цитоскелет задаёт асимметрию организму ещё до первого деления оплодотворённой яйцеклетки. (Фото Prof. G. Schatten.)При индивидуальном развитии зародыша каждый орган занимает своё место: сердце, например, становится слева, печень — справа, и т. д. Но что определяет расстановку органов, какие механизмы за неё отвечают, до сих пор толком известно не было. Предполагалось, что ведущую роль в этом играют реснички — волосковидные выросты на поверхности эукариотических клеток. Якобы биение этих ресничек создаёт в развивающемся эмбрионе токи жидкости, по которым эмбрион и может понять, грубо говоря, где у него «право», а где «лево».

Но у многих видов право-левая асимметрия получается безо всяких ресничек. Исследователи из Университет Тафтса (США) утверждают, что вместо ресничек здесь задействован тубулин, один из главных белков цитоскелета. С одной стороны, известно, что мутации в тубулине влияют на асимметрию растения Arabidopsis thaliana, с другой — есть сведения об участии каких-то элементов цитоскелета в формировании двусторонней симметрии у животных. Словом, у исследователей были все основания заняться тубулином вплотную. Мутантный тубулин, который вызывал нарушения в строении у A. thaliana, вводили эмбрионам лягушки. Внешне такие эмбрионы получались нормальными, но все внутренние органы у них располагались относительно оси симметрии совершено случайным образом.

Такие же эксперименты проводились с нематодами — и у червей в ответ нарушилась упорядоченность нервной системы. Похожий эффект был и в культуре человеческих клеток: внутреннее устройство клеток подчинено хиральности, которая нарушалась из-за мутантного тубулина. В статье, опубликованной в журнале PNAS, её авторы делают вывод, что цитоскелет контролирует симметричное и асимметричное расположение органов едва ли не у всех живых организмов и что такой тубулиновый механизм возник в незапамятные времена, ещё до разделения растений и животных.

При этом исследователи отмечают, что эффект от мутантного тубулина проявлялся только тогда, когда его вводили сразу же после оплодотворения. Если клетка хотя бы раз успевала разделиться, её правильной асимметрии ничего не угрожало. То есть цитоскелет, по-видимому, программирует расположение органов на самых ранних этапах развития эмбриона, за несколько часов до возникновения ресничек.

Итак, удалось установить, что тубулин играет ведущую роль в распределении молекул между левой и правой сторонами эмбриона. Фундаментальный смысл работы очевиден, но не стоит забывать и о том, что некоторые аномалии индивидуального развития связаны как раз с нарушениями в тканевой организации органов, когда клетки разных тканей вдруг становятся не на своё место.

 


Источник: КОМПЬЮЛЕНТА


 

 

 

Инженерам давно известно, что лучше всего собирать систему из модулей. Если один из компонентов перестанет работать, достаточно его заменить, будь то видеокарта компьютера, генератор автомобиля или камера космического телескопа.

Изображение Jason PriemНапротив, если проблемы начнутся у монолитного комплекса (экономики, финансовых рынков), их будет очень трудно исправить.

Как ни странно, это правило действует и в природе. Биологические системы, как правило, модульны — в частности те, которые могут рассматриваться как сети: мозг, генетические регуляторные сети, метаболические пути. (Сети являются модульными, если они содержат сильно связанные друг с другом скопления узлов, которые с другими кластерами соединены очень слабо.)

Здесь возникает важный вопрос: каким образом биологические сети приобрели такое свойство? Должно быть какое-то эволюционное давление, но какое?

Тайна усугубляется преимуществами, которые даёт модульность. Это делает системы более способными к развитию в случае изменения окружающих условий. Поскольку мутации влияют обычно на один модуль, они приводят к конкретным небольшим изменениям приспособляемости системы. Эволюция с лёгкостью выбирает между «за» и «против» этих изменений.

Немодульным системам развиваться сложнее, потому что мутации в них обычно влияют на всю систему и далеко не всегда оказываются полезными, о чём свидетельствуют различные эксперименты.

Но модульность, само собой, даёт явное преимущество, когда она уже существует. Это не объясняет, как и почему она развивается.

Недостатка в гипотезах нет. Одна из точек зрения гласит, что модульность возникает в быстро меняющейся среде, в которой существуют общие подзадачи, но различные проблемы первого уровня. Однако реальных доказательств в пользу этого мнения пока не найдено.

По этим причинам появление модульности остаётся одним из наиболее важных открытых вопросов в биологии.

Ход Липсон из Корнеллского университета (США) и его коллеги предлагают ещё одно объяснение. По их словам, недооценивается такой ключевой фактор, как стоимость создания и поддержки сети. «Модульность развивается не потому, что она расширяет возможности эволюции, а в качестве побочного продукта снижения стоимости подключения к сети», — говорят исследователи.

Речь идёт о расходах на изготовление соединений и их содержание, об энергии, необходимой для передачи информации по ним и для сдерживания сигналов. Стоимость растёт с увеличением числа соединений и их длины.

«Действительно, многочисленные исследования сосудистой и нервной систем (в том числе головного мозга) показали, что суммарная длина схемы сведена к минимуму», — подчёркивают авторы гипотезы.

Очевидно, что у таких сетей есть важные преимущества.

Для проверки идеи г-н Липсон и коллеги разработали компьютерную среду для измерения способности различных сетей приспосабливаться к тем или иным обстоятельствам. Поначалу сети были случайными, и ни одна из них не показала хороших результатов. Но некоторые были чуть лучше других, и именно они чаще давали «потомство». Следующее поколение не являлось точной копией предыдущего, ибо содержало случайные изменения. Таким образом и происходит биологическая эволюция.

Компьютер измерял сети по двум критериям. Первый был очень простым: насколько хорошо система распознавала некий набор входных данных. А второй требовал принять во внимание затраты на поддержание сети.

Так вот, сети, которые демонстрировали лучшие показатели по первому критерию, через 25 тыс. поколений точно идентифицировали входящие сигналы. Но только те, что набирали больше баллов по второму критерию, были модульными. То есть модульность делает систему более гибкой (в мире ограниченных ресурсов минимум затрат — важное преимущество), но дело не в стремлении к модульности, а в необходимости свести к минимуму расходы.

Результаты исследования, опубликованные на сайте arXiv, могут иметь большое практическое значение. В последние годы так называемые эволюционные вычисления используются всё чаще — и в анализе рентгеновских снимков, и в работе с наборами данных для проектирования (например, деталей для сверхзвуковых самолётов). При этом инженеры никак не могли понять, как заставить систему стать модульной. Быть может, теперь НТР пойдёт ещё немного быстрее?..

 


Источник: КОМПЬЮЛЕНТА


 

 

 

 

 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Ученые открыли богомолов, охотящихся на рыбу

21-09-2018 Просмотров:2930 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Ученые открыли богомолов, охотящихся на рыбу

Биологи обнаружили в Индии крайне необычную популяцию богомолов, которые охотятся не на других насекомых, а на гораздо более крупную добычу – рыбок, подплывающих близко к поверхности рек и озер. Его описание было представлено в Journal...

В тени динозавров скрывались драчливые тритоны-кроты

09-06-2013 Просмотров:11734 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В тени динозавров скрывались драчливые тритоны-кроты

Крошечную, но очень темпераментную амфибию обнаружили ученые в раннемеловых отложениях Британии. Древнее хвостатое земноводное, похоже, отличалось задиристым характером, из-за которого даже получило при жизни перелом челюстных костей. Wesserpeton evansae Новое животное, получившее...

Карась серебряный - Carassius auratus gibelio

11-11-2012 Просмотров:13667 Рыбы Енисея Антоненко Андрей - avatar Антоненко Андрей

Карась серебряный - Carassius auratus gibelio

Карась серебряный, завезенный из бассейна р. Амура, был выпущен в степные и лесостепные озера юга края в 1960-1964 гг. В этих озерах произошло постепенное замещение привозным серебряным карасем местного карася...

Каракатицы могут додумывать недостающие части рисунка

16-02-2012 Просмотров:9768 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Каракатицы могут додумывать недостающие части рисунка

Если каракатица видит незавершённый рисунок, то она представляет, как рисунок должен выглядеть, и дорисовывает его в своей маскировке. Каракатица, имитирующая крупногалечный рисунок (фото авторов исследования)Глядя на неумелый детский рисунок, мы всё...

Роскосмос: жизнеспособность микроорганизмов в космосе подтверждена

30-10-2014 Просмотров:7758 Новости Микробиологии Антоненко Андрей - avatar Антоненко Андрей

Роскосмос: жизнеспособность микроорганизмов в космосе подтверждена

Жизнеспособность микроорганизмов в условиях космического пространства подтверждена, утверждает Роскосмос. Северное сияник"В результате анализа проб, полученных экипажами МКС…, получены уникальные данные, подтверждающие, что на внешней стороне космических объектов могут сохраняться жизнеспособные споры микроорганизмов, устойчивые...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.