Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Все добавления


Выгляните из дома после сильного ливня — и на заднем дворе вы обнаружите миниатюрную копию Гранд-Каньона со сложной сетью притоков. Точные условия, при которых реки всех размеров образуют подобные системы, до сих пор остаются загадкой. Новое исследование намекает на то, что ответственность за это несут два противоположных процесса. Кто знает, вдруг это поможет нам понять реки в том числе иных миров — Титана, к примеру.

Реки Аллеганского плато (изображение Taylor Perron / MIT).Реки Аллеганского плато (изображение Taylor Perron / MIT)После того как дождевая вода попала на наклонную поверхность вроде склона горы или холма, она течёт к низине. Поток размывает камень и почву, расширяя и углубляя впадину. Этот процесс (он называется переуглублением русла) характеризуется жестокой борьбой и даже в каком-то смысле каннибализмом: по мере углубления мелкие ручейки растут и поглощают друг друга, формируя притоки. Непосвящённый может подумать, что углубление может продолжаться бесконечно, однако существует такое понятие, как ползучесть почвы, в результате чего все впадины медленно, но верно заполняются.

Учёные вот уже более века знают обо всех этих процессах, но до сих пор не удаётся рассчитать относительную значимость каждого из них и понять, как они сочетаются, формируя в одних местах рукава, а в других — нет, поясняет ведущий автор нового исследования Тейлор Перрон из Массачусетского технологического института (США).

Он и его коллеги рассудили, что должен существовать некий «переломный момент» во взаимодействии углубления и движения почвы. Ниже этого порога притоки не формируются, а выше него реки начинают захватывать потоки поменьше и создавать сеть притоков. Для проверки этой гипотезы исследователи сравнили калифорнийскую долину Салинас с Аллеганским плато на юго-западе Пенсильвании. Эти регионы многим схожи: площади обоих равны примерно 25 км², там тысячи речных бассейнов. В то же время калифорнийские речные системы разветвлены вчетверо сильнее. При этом ни одна из областей не имеет никакого отношения к тектоническим разломам и складкам, что позволяет измерять углубление русла и текучесть почвы без учёта прочих переменных.

Составив карты рек обоих регионов, учёные разработали математическую модель с уравнениями для ползучести почвы и переуглубления русла рек, окружённых высокими горными хребтами. Затем модель подтасовывали так и этак, пока не получили похожую на реальность картину. Оказалось, что критической точкой становится превосходство процессов углубления над движением почвы на 250−300 единиц. Выше этого значения реки поглощают друг друга, формируя притоки, а ниже его реки постепенно теряют силу, и вместо притоков появляются самостоятельные реки.

Разумеется, вне модели осталось множество факторов: количество осадков, трещины в породе, различия в типах пород и пр.

Результаты исследования опубликованы в журнале Nature.


Источник: КОМПЬЮЛЕНТА


В конце пермского периода (около 250 млн лет назад) за какие-то сотни тысяч лет на планете исчезло до 90% всех видов.

Methanosarcina acetivorans (изображение James Ferry / Penn State University).Methanosarcina acetivorans (изображение James Ferry / Penn State University)Судя по геологической летописи, сначала жизнь медленно увядала из-за постепенного подкисления океана и сокращения кислорода в воздухе и воде. Тех, кто остался, добили извержения вулканов и метеориты. По другой теории, в атмосфере оказались залежи метана, обычно спрятанные на морском дне, что привело к глобальному потеплению. Новое исследование утверждает, что ключевую роль в катастрофе сыграли бактерии.

Дело в том, что причина метановых выбросов остаётся неизвестной. Дэниэл Ротман из Массачусетского технологического института (США) и его коллеги путём генетического анализа выяснили, что археи из рода Methanosarcina приобрели способность поглощать никель и производить метан около 251 млн лет назад.

Так родилась следующая гипотеза. Сначала масштабные извержения сибирских вулканов выбросили никель в атмосферу, и тот каким-то образом попал в океан. В результате начался расцвет морских бактерий, использующих этот элемент в процессе обмена веществ, и атмосфера насытилась метаном, а в воде стало меньше кислорода (потому что бактерии добавляют молекулу кислорода к метану в ходе обмена веществ). Поскольку метан — парниковый газ, климат стал неблагоприятным для большинства форм жизни.

Комментаторы отмечают остроумность гипотезы, но указывают на ряд натяжек. Например, совершенно непонятно, как огромное количество никеля из лавовых потоков Сибири могло оказаться в океане по всему миру.

Результаты исследования были представлены на конференции Американского геофизического союза.

 


Источник: КОМПЬЮЛЕНТА


 

Мы ориентируемся в пространстве с помощью особой группы нервных клеток, называемых grid-нейронами. Это что-то вроде GPS-систем мозга: когда человек или животное движется, grid-нейроны по очереди возбуждаются, отмечая участки пространства и передавая сигнал в гиппокамп. Особенность grid-нейронов в следующем: они периодически возбуждаются, разбивая пространство на шестиугольные участки, и нейрон, попадая в вершину такого шестиугольника, реагирует импульсом.

Разномасштабные нейронные карты местности и их соотнесённость со «слоями памяти» в гиппокампе (фото авторов работы)Разномасштабные нейронные карты местности и их соотнесённость со «слоями памяти» в гиппокампе (фото авторов работы)Исследователи из Норвежского научно-технического университета обнаружили удивительную черту этих клеток. Оказывается, grid-нейроны собраны в модули, числом не менее четырёх, и каждый из модулей отвечает за один и тот же кусок пространства, но в разном масштабе. Иными словами, карта территории в мозгу складывается в виде «бутерброда» из нескольких карт, от самой общей к наиболее детальной. Если вспомнить о шестиугольной схеме возбуждения нейронов, то получится несколько сеток с гексагональными ячейками, наложенных друг на друга.

Если мы делаем, например, три шага, то нейроны более крупной сетки отреагируют на перемещение, скажем, всего два раза — в начале и в конце пути, в то время как нейроны более частой отзовутся пять, десять, пятнадцать раз. Впрочем, выдумывать цифры тут нет нужды. Оказалось, что масштабы пространственно-нейронных сеток соотносятся друг с другом по определённому математическому закону: бόльшая стека превосходит меньшую на 42% от частоты меньшей. (Эту закономерность особенно оценят поклонники бессмертного «Автостопом по галактике» Адамса, с его легендарным ответом на вопрос о «жизни, смерти и вообще».)

До сих пор такую модульную организацию нервных клеток находили только в тех отделах мозга, которые отвечают за восприятие информации от органов чувств и за моторику. То, что точно так же могут работать клетки, имеющие дело с довольно абстрактной информацией, исследователей весьма удивило. Хотя эксперименты ставились на крысах, авторы работы, опубликованной в Nature, полагают, что таким же образом картографируется пространство и у других млекопитающих, включая человека. Причём модулей может быть гораздо больше четырёх: учёные полагают, что у крыс их около десяти, только пока что не все удалось увидеть экспериментально. Особенность пространственных модулей ещё и в том, что «на глаз», с помощью микроскопа, их различить невозможно: нейроны разных карт перемешаны между собой и иногда входят в несколько разных решёток. То есть можно говорить о функциональных модулях, которые работают отчасти благодаря одним и тем же клеткам.

Исследователи полагают, что такая модульная организация может быть присуща и другим функциям мозга — к примеру, памяти. Grid-нейроны, как было сказано, посылают свои импульсы в гиппокамп, один из главных центров памяти. Можно представить, что и в гиппокампе есть похожие разномасштабные функциональные решётки нейронов, только имеющие дело не с текущим положением индивидуума в пространстве, а с его воспоминаниями.


Источник: КОМПЬЮЛЕНТА


 

Если вы решитесь потратить деньги на то, чтобы поместить нечто на орбиту Луны, оно, скорее всего, будет битком набито научными приборами. Но НАСА соригинальничало — отправило туда не один, а два корабля, зато с одним-единственным инструментом. 

Вариации силы притяжения Луны, выявленные программой Gravity Recovery and Interior Laboratory (GRAIL) в ходе первой картографической миссии с марта по май 2012 года. Высокоточные микроволновые измерения производились космическими аппаратами «Эбб» и «Флоу». (Здесь и ниже изображения NASA / JPL-Caltech / MIT / GSFC.)Вариации силы притяжения Луны, выявленные программой Gravity Recovery and Interior Laboratory (GRAIL) в ходе первой картографической миссии с марта по май 2012 года. Высокоточные микроволновые измерения производились космическими аппаратами «Эбб» и «Флоу». (Здесь и ниже изображения NASA / JPL-Caltech / MIT / GSFC.)Несмотря на внешнюю легковесность, проект GRAIL оказался феноменально успешным, ибо позволил составить самую точную геологическую карту нашего соседа. Теперь ясно видно, что этот мир сформирован сочетанием метеоритных ударов (некоторые из них, вероятно, пробили Луну до мантии) и растяжек, свидетельствующих о расширении тела в начале его истории.

Проект GRAIL создан по образцу спутников GRACE, которые исследуют Землю. Единственный инструмент отслеживает расстояние между парными аппаратами, меняющееся из-за гравитации. Поскольку на Луне нет сколько-нибудь значимой атмосферы, а сила притяжения очень слабая, аппараты GRAIL смогли снизиться до средней высоты 55 км, в результате чего масштаб карты оказался почти втрое лучше по сравнению с предыдущими усилиями.

Аномалии БугеАномалии БугеПервая стадия проекта стартовала в марте с. г. и завершилась в мае. Зонды смогли различить образования величиной около 13 км. Получено более 99,99% возможных данных с учётом разрешающей способности аппаратуры.

Что мы видим на Луне, тó там и есть — вот в чём её прелесть. Авторы одной из трёх статей о проекте, опубликованных журналом Science, отмечают, что более 98% локальных изменений гравитационного притяжения — продукт топографии поверхности. Иными словами, кратеры и хребты, которые мы видим на поверхности Луны, производят основную долю сигналов, принятых GRAIL. Ничего подобного на других изученных нами объектах нет. Земля, Венера, Марс, Меркурий обладают большой внутренней изменчивостью, которая, как правило, становится результатом тектонических процессов.

Хотя Луна пережила несколько вулканических извержений, большинство деталей рельефа сформировано метеоритными ударами. Взгляните на карты: места столкновений отличаются высокой плотностью в центральной области (где материал сжался и нагрелся), окружённой раздробленным материалом с низкой плотностью. Причём ударов было так много, что кора ноздревата и относительно однородна. То есть метеориты в каком-то смысле сыграли роль кухонного комбайна. Кстати, данные GRAIL говорят о том, что лунная кора, возможно, тоньше, чем предсказывалось.

Этот момент очень важен. «Наиболее сильные удары могли пробить тонкую кору насквозь и достигнуть мантии», — пишут авторы. Моделирование позволяет предположить, что у двух зон воздействия толщина внутренней части стремится к нулю (Море Москвы и Море Кризисов), тогда как у трёх других она близка к нулю (Море Гумбольдта, кратеры Аполлон и Пуанкаре).

Градиенты силы тяжестиГрадиенты силы тяжестиВ одной из статей рассказывается, почему иногда не было сигналов от очевидных деталей рельефа. Это те самые 2%, которых не хватало несколькими абзацами выше и которые приходятся на внутренние, скрытые от глаз причины. Среди них наиболее заметны длинные линии, отдельные из которых простираются почти на тысячу километров. Эти образования относительно глубоки: они начинаются примерно в 5 км от поверхности и уходят вниз по меньшей мере на 70 км. Это очень древние структуры, поскольку их прерывают крупные ударные кратеры, появившиеся на заре лунной истории.

Градиенты силы тяжести с выделенными линейными аномалиямиГрадиенты силы тяжести с выделенными линейными аномалиямиАвторы видят в них аналог земных групповых даек, то есть мест, в которых тектонические разломы пропустили в кору расплавленный материал с большой глубины. Хотя тектоники плит на Луне никогда особенно не было, считается, что нагрев от удара, создавшего Луну, привёл к возникновению океана магмы под лунной корой. Вот откуда мог взяться расплавленный материал. Но что стало причиной разлома?

Исследователи обращают внимание на то, что в моделях ранней Луны её слоистая структура состоит из относительно прохладного интерьера, расплавленного океана и подостывшей коры. Эта структура должна была нагревать интерьер одновременно с охлаждением внешней оболочки, что приводило к расширению Луны. Предполагается, что в первые миллиарды лет радиус нашего соседа увеличился на 0,6–4,9 км, после чего вновь сократился. По мнению авторов, этого могло быть достаточно для появления огромных трещин в коре, которые заполнила магма.

Линейная гравитационная аномалия на обратной стороне Луны протяжённостью 500 км.Линейная гравитационная аномалия на обратной стороне Луны протяжённостью 500 км.В целом данные GRAIL способны рассказать очень много о первобытной истории Луны и наложить ограничения на модели её формирования. Кроме того, они намекают на условия во внутренней Солнечной системе вскоре после её образования, проливая свет на столкновения, которые переживали все тела, несмотря на то что время могло скрыть их следы. Неплохо для одного-единственного инструмента?

Результаты исследования опубликованы в журнале Science в трёх статьях. Посмотреть лунную карту можно здесь.

Линейная гравитационная аномалия, пересекающая Море Кризисов на видимой стороне Луны.Линейная гравитационная аномалия, пересекающая Море Кризисов на видимой стороне Луны.

 Дайка на Земле (справа) и лунная дайка с более высокой силой притяжения по сравнению с окружающей областью (слева вверху она отмечена полосой в центре карты градиентов, а слева внизу приведены данные об аномалии).Дайка на Земле (справа) и лунная дайка с более высокой силой притяжения по сравнению с окружающей областью (слева вверху она отмечена полосой в центре карты градиентов, а слева внизу приведены данные об аномалии).

Крупнейшие лунные дайки. Их длина может достигать 480 км, а ширина — 40 км.Крупнейшие лунные дайки. Их длина может достигать 480 км, а ширина — 40 км.

Градиенты силы тяжести более крупным планом.Градиенты силы тяжести более крупным планом.

Поле силы тяжести Луны по данным программы Lunar Prospector. На проекции Меркатора обратная сторона расположена в центре, а видимая — по бокам.Поле силы тяжести Луны по данным программы Lunar Prospector. На проекции Меркатора обратная сторона расположена в центре, а видимая — по бокам.

 

 

То же самое, но по данным GRAIL.То же самое, но по данным GRAIL.

 Толщина лунной коры по данным GRAIL и топографическая карта, составленная зондом Lunar Reconnaissance Orbiter.Толщина лунной коры по данным GRAIL и топографическая карта, составленная зондом Lunar Reconnaissance Orbiter.

 

 


 

Источник: КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Брачная конкуренция стимулирует у самцов иммунитет

13-05-2012 Просмотров:10049 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Брачная конкуренция стимулирует у самцов иммунитет

После гона самцы серны оказываются с истощёнными энергетическими запасами, и в случае инфекции их иммунитет не может справиться с болезнью. Поэтому дольше живут те самцы, иммунная система которых более совершенна. Обычно...

Морские звезды способны удалять инородные тела

17-06-2015 Просмотров:7585 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Морские звезды способны удалять инородные тела

Необычные свойства морских звезд случайно обнаружили студенты Университета Южной Дании. В рамках исследования им потребовалось пометить датчиками ряд живых организмов — от кошек и собак до морских звезд. Современные микрочипы, создающиеся для подобных научных работ, вводятся...

Гоминина или Хоминина (лат. Hominina)

22-11-2016 Просмотров:6985 Гоминина или Хоминина (лат. Hominina) Антоненко Андрей - avatar Антоненко Андрей

Гоминина или Хоминина (лат. Hominina)

Подтриба: Гоминина или Хоминина (лат. Hominina) Научная  классификация   Без ранга: Вторичноротые (Deuterostomia) Тип:  Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные  (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые приматы (Haplorhini) Инфраотряд: Обезьянообразные (Simiiformes) Парвотряд: Узконосые обезьяны (Catarrhini) Надсемейство: Человекообразные (Hominoidea) Семейство: Гоминиды (Hominidae) Подсемейство: Гоминины (Homininae) Триба: ...

Светящиеся бактерии настраивают кальмарам биологические часы

02-04-2013 Просмотров:11698 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Светящиеся бактерии настраивают кальмарам биологические часы

Гавайский кальмар Euprymna scolopes (или, если угодно, каракатица; Euprymna scolopes занимают место между этими двумя отрядами головоногих) умеет светиться в темноте благодаря симбиотическим бактериям. Считается, что бактериальное освещение помогает моллюску...

Насколько один сперматозоид отличается от другого?

20-07-2012 Просмотров:11111 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Насколько один сперматозоид отличается от другого?

Исследователи впервые сравнили геномы сперматозоидов с геномами обычных, соматических клеток. Специалисты из Стэнфордского университета (США) рассказывают в журнале Cell о том, что увидели, прочитав ДНК человеческого сперматозоида. Но даже далёкий от...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.