Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

 Португальские и испанские биологи открыли животное, обитающее в 1980 метрах ниже поверхности земли. Прописано это чемпионское создание в самой глубокой пещере в мире, а питается оно грибами и разложившейся органикой.

Чтобы поймать это создание, учёные использовали в качестве приманки сыр  (фото Rafael Jordana and Enrique Baquero, Terrestrial Arthropod Reviews)Новое создание относится к членистоногим, а названо оно Plutomurus ortobalaganensis. Его родной дом – пещера Крубера-Воронья, чья самая низкая точка расположена на 2191 метр ниже уровня входа.

Вместе с P. ortobalaganensis исследователи обнаружили в этой карстовой пещере ещё три новых вида – Anurida stereoodorata, Deuteraphorura kruberaensis и Schaefferia profundissima (живущие ближе к поверхности). Все четыре специалисты отнесли к ногохвосткам, передаёт New Scientist. А они до сих пор попадались биологам на глубинах до 550 метров под землёй.Испанские и португальские биологи исследовали пещеру Крубера-Воронья  вместе с российскими специалистами во время международной экспедиции  2010 года. Теперь данные обработаны, и опубликованы результаты изучения  найденных там животных (фото Denis Provalov)

Что касается наземных животных вообще, то до сих пор рекордсменами числились скорпионы и насекомые из одной мексиканской пещеры, найденные в 920 метрах ниже поверхности земли.

Как и большинство обитателей тёмных недр, рекордный новичок лишён глаз. Тем не менее он обладает пигментом (пятнами на теле), что пещерным существам несвойственно.

Один из участников исследования, Энрике Бакеро (Enrique Baquero) из университета Наварры, полагает, что данная ногохвостка попала на большие глубины по эволюционным меркам не очень давно, а потому организм ещё не прошёл полную адаптацию к такой среде обитания.

Открытие животных, прекрасно себя чувствующих в условиях полного отсутствия света, постоянного холода (0,5-5 °C) и небольшого количества пищи, может изменить наши взгляды на жизнь глубоко под землёй. «Она оказалась богаче, чем мы думали», — заявила Анна София Реболейра (Ana Sofia P. S. Reboleira) из португальского университета Авейро, один из авторов сенсационной находки.

(Детали работы раскрывает статья в Terrestrial Arthropod Reviews.)

Тёмные пятна на теле самого глубоко живущего на суше существа (если не считать бактерии-экстремофилы и примитивных нематод) очень удивили учёных.  Ведь в полной темноте пигменты животным не нужны  (иллюстрация Rafael Jordana et al./ Terrestrial Arthropod Reviews).Коготки (A, B) и крошечные колючки диковинной ногохвостки  (фотографии Rafael Jordana et al./ Terrestrial Arthropod Reviews)

 

 


 

Источник: MEMBRANA


 

Охотящиеся дельфины стараются запутать добычу сетью из воздушных пузырей. Одновременно они пользуются сонаром и производят сложнейшие преобразования с вернувшимся звуковым эхом, чтобы отличить значимый сигнал от фонового шума.

Дельфины на охоте (фото Dmitry Miroshnikov)Охотясь, дельфины используют гидролокатор, посылая звуковые сигналы в водяную толщу и прислушиваясь к вернувшемуся эху. По эху можно узнать, в каком направлении нужно устремиться за добычей. Но при этом они ещё и пытаются сбить жертву с толку, окутывая, например, косяк рыб воздушными пузырьками. И не перестают щёлкать своими сонарами. Вопрос: как в гуще пузырьков дельфины ухитряются понять, где добыча? Ведь воздушные пузырьки точно так же отражают сигналы, и к дельфинам в виде эха должна возвращаться просто неописуемая звуковая каша.

Зоологи из Университета Саутгемптона (Великобритания), кажется, нашли объяснение этой странной охотничьей стратегии. Они поставили эксперимент, в котором рыбу имитировал небольшой стальной шарик, вокруг которого роились мелкие воздушные пузырьки. Специальная аппаратура издавала дельфиньи щелчки. В статье, опубликованной в журнале Proceedings of the Royal Society A, учёные пишут, что дельфины понижают амплитуду щелчков, то есть второй может быть на две трети слабее первого. Когда оба эха возвращаются, животные доводят второе, слабое эхо до уровня первого, сильного.

Но то же самое слабое эхо отскакивает и от каждого воздушного пузырька. В итоге после операции умножения слабое эхо от пузырьков начинает преобладать над сильным. В случае добычи оба эха равны по силе друг другу. Дельфины, по сути, избавляются от шума, который мешает воспринимать значимый сигнал, но делают это своеобразным способом — усиливая шум так, чтобы значимый сигнал выглядел провалом, «белым пятном».

По словам авторов работы, чтобы проделать такую операцию, необходим недюжинный математический аппарат, который выходит далеко за рамки обычных заданий типа «отличить два от трёх», с помощью которых зоологи проверяют математические способности у животных. Как эта высшая математика встроена в дельфиньи мозги, ещё предстоит выяснить. Пока же исследователи предлагают инженерам обратить на этот феномен самое пристальное внимание. С помощью такого метода можно обнаруживать, например, морские мины, или жучки, вмурованные в стену, или, если отойти от военно-шпионской тематики, дефекты и аномалии в строительных материалах, которые могут стать причиной аварии.

 

 


 

Источник: КОМПЬЮЛЕНТА


 

 

Первые цветковые растения распространились по планете благодаря жившим в меловом периоде птерозаврам, любившим полакомиться их фруктами и перелетавшим с континента на континент.

Подробнее...

 Недавно палеонтологи из Испании смогли разгадать загадку, решить которую оказалось не под силу даже Дарвину. Они выяснили, каким образом миллионы лет тому назад цветковые растения смогли быстро расселиться по всей Земле. Оказывается, в этом им помогли сладкоежки-птерозавры, которые обожали сочные фрукты и могли летать на дальние расстояния.

ПокрытосеменныеВообще, ранняя история покрытосеменных, или, как их еще называют, цветковых растений (Magnoliophyta), долгое время была практически неизвестна ученым. Помнится, великий Чарльз Дарвин в свое время назвал этот эпизод палеонтологической истории "отвратительной тайной" (abominable mistery). Дело в том, что в каменной летописи первые представители покрытосеменных появляются весьма внезапно (это случилось в начале раннего мела), далее они миллионы лет пребывают на вторых ролях (их находки за этот период единичны), но уже к середине мелового периода цветковые растения становятся доминирующей группой среди наземной растительности.

Подобное, как вы понимаете, представлялось ученым маловероятным — ведь для того, чтобы стать ведущим компонентом сухопутных экосистем, нужны были долгие годы постепенной эволюции (по крайней мере, именно так было с предшественниками цветковых — голосеменными). Поэтому делались предположения, что, возможно, цветковые появились на Земле еще в юре, но тогда они обитали лишь в горах или на островах, ушедших позже под воду (не попадая по этой причине в палеонтологическую летопись), а в середине мела эта группа просто смогла выйти на простор, то есть заселить все доступные им местообитания. Но против этого довода имелись чисто палеонтологические возражения.

Давно было известно, что пыльца покрытосеменных, которая хорошо сохраняется везде, куда ее принесет ветер, вода или опылитель, появляется в летописи одновременно с их макроостатками. Чего не могло бы быть, если бы группа вела скрытный образ жизни в юрском периоде — ведь для пыльцы, как было сказано выше, ни горы, ни океан не являются помехой. Так что, судя по всему, цветковые действительно возникли именно в начале мела.

Схему возникновения самих цветковых обычно представляют так: цветок был эволюционным ответом растений на происки насекомых, которые повадились питаться ничем не защищенными репродуктивными органами (этакий вариант фигового листка). Ведь у голосеменных, с их жесткими листьями и плотной древесиной, особенно и питаться-то было нечем. Когда же предки покрытосеменных защитили свои органы размножения, создав цветок, то выяснилось, что существует проблема с переносом пыльцы — ветер теперь не мог разносить ее также эффективно, ибо пыльники оказались закрытыми.

Пришлось идти на сделку со своими бывшими врагами, то есть насекомыми. Растения стали вырабатывать питательный для них нектар, который скапливался в самом цветке. Насекомое же, в попытках добыть его, оказывалось перепачканным пыльцой с ног до головы, которая потом посредством того же насекомого доставлялась на другое растение. В результате антагонистические отношения преобразовались в дружественные и началась параллельная эволюция насекомых и цветковых растений.

Отечественные палеонтологи В.В. Жерихин и А.Г. Пономаренко в своих работах обратили внимание на то, что эволюция насекомых в начале мела действительно связана с таковой цветковых растений. В частности, все известные ныне отряды основных шестиногих опылителей появились незадолго до того, как цветковые завоевали весь мир. Вряд ли это было случайно. Скорее всего, именно из-за нового, более эффективного способа опыления, который повышал скорость размножения, покрытосеменные и смогли вытеснить всех своих конкурентов.Птирозавры

Обращает на себя внимание и такая деталь — среди покрытосеменных распространена склонность к неотении, то есть способности размножаться, не достигнув взрослого возраста. Травянистые растения — это не что иное, как неотеники (которых не было у голосеменных). А неотеники всегда являются самыми агрессивными эксплерентами (или, образно выражаясь, сорными растениями), мгновенно захватывающими места нарушений растительного покрова и имеющими возможность нормально развиваться при недостатке питательных веществ.

Исходя из этого, ученые предположили, что, видимо, сначала цветковые росли в качестве зеленых "экстремалов" по свободным от других растений участкам (например, на речных отмелях, береговых оползнях, гарях). То есть они чем-то напоминали маргинальные, но живучие и радикально настроенные группировки человеческого общества. Со временем в таких экстремальных местах сложились свои растительные сообщества, членами которых были исключительно цветковые, а голосеменным туда вход был запрещен.

Дальше же произошло вот что. Агрессивные покрытосеменные пионеры начали вытеснять таковых среди голосеменных. Лишившись же собственной пионерной растительности, сообщества голосеменных начинали деградировать, поскольку они не могли восстанавливаться. Так произошел захват власти цветковыми растениями, и они утвердились на Земле в качестве господствующей группы. Голосеменные же сохранили свои позиции только в тех местах, где цветковым существовать было достаточно сложно (например, вблизи полярного круга или высоко в горах).

Справедливость этой гипотезы была доказана в работах многих отечественных палеонтологов — С.В. Мейена, В.В. Жерихина, А.Г. Пономаренко, К.Ю. Еськова. Однако один вопрос все-таки до последнего времени оставался открытым. Дело в том, что в раннем мелу покрытосеменные растения достаточно долго "тусовались" лишь в одном уголке земного шара, в районе современной Австралии. И это было достаточно долго. Потом же они вдруг внезапно появляются на всех мезозойских континентах. Каким же образом это могло произойти?

Конечно же, дело явно не обошлось без некоего переносчика, который распространял их семена. В принципе, это могли быть ветер или вода. Однако в таком случае палеонтологи обнаружили бы постепенную экспансию — сначала цветковые проникли бы на близлежащие территории и потом медленно распространились бы дальше. Но картина совершенно иная — покрытосеменные одновременно возникают в самых удаленных друг от друга частях суши. Кто же распространял их семена? Насекомым это было явно не под силу, а растительноядных перелетных птиц тогда еще не было.

И вот недавно палеонтологи из Испании предложили выход из этой непростой ситуации. Год назад они обнаружили на юго-западе Пиренейского полуострова останки нового птерозавра из семейства Tapejaridae, назвав его Europejara olcadesorum. Интересно, что это была первая находка данного ящера на территории Европы — до этого Tapejaridae находили лишь в Бразилии и Китае. Возраст останков Europejara olcadesorum составляет около 125-130 миллионов лет, и для данного гиганта был характерен беззубый прямой клюв. Интересно, что под ним не было выроста, напоминающего мешок пеликана, который был свойственен всем рыбоядным птерозаврам. Получается, что данный ящер не ел рыбу, но и питаться другими существами он тоже не мог, поскольку был лишен необходимых для удержания добычи зубов.

Это навело ученых на мысль, что, возможно, данный ящер питался фруктами. Следовательно, он идеально подходит на роль распространителя семян цветковых (ведь настоящие фрукты с сочной мякотью характерны только для этой группы). Кроме того, уже давно известно, что громадные птерозавры могли путешествовать на весьма большие расстояния — они могли облететь даже половину Земного шара без единой посадки. Исследователи также сопоставили места, где были сделаны известные находки раннемеловых покрытосеменных (пыльца — от 130 миллионов лет, находки — от 125 миллионов лет), с картой находок представителей семейства Tapejaridae. После этого ученые сделали смелый, но весьма достоверный вывод: покрытосеменные и данные птерозавры начинают массово появляться в отложениях одновременно и в одних и тех же местах.

Получается, что именно эти громадные сладкоежки еще в начале мела начали переносить семена примитивных цветковых на большие расстояния. Они сперва поедали сладкие плоды в районе Австралии, потом летели по своим делам дальше, и там, где эти ящеры ходили в туалет, семена попадали в почву. Конечно, выжить удавалось далеко не всем. Однако постепенно на новых местах начали возникать сообщества цветковых, которые потом вытеснили голосеменных.

Итак, как видите, эти ящеры действительно могли ускорить распространение цветковых растений, причем в сотни раз. Поэтому тем, кто обожает цветы, овощи и фрукты, следует поблагодарить давно исчезнувших с лица Земли огромных птерозавров — без их деятельности победа цветковых над голосеменными была бы невозможной…

 


 

Источник: pravda.ru


 

 

 Небольшие хищные динозавры, жившие в конце мелового периода, откладывали яйца, напоминающие яйца современных куриц.

Палеонтологи нашли яйца динозавров необычной формыИспанские палеонтологи нашли яйца необычной для динозавров ассиметричной формы, что является еще одним свидетельством близкого родства птиц и динозавров. Описание находки опубликовано в журнале Palaeontology.

Возраст яиц, найденных в Южных Пиренеях, оценивается в 73-80 миллиона лет(конец мелового периода). Большинство обнаруженных яиц расколото на небольшие фрагменты, однако палеонтологам удалось найти и несколько целых. Длина яиц составляет 7 сантиметров, ширина – 4 сантиметра, а толщина скорлупы – 0,27 миллиметров. Согласно предположению палеонтологов, такие яйца откладывали небольшие тероподы, хищные двуногие динозавры.

Как правило, яйца динозавров имеют правильную овальную или округлую форму и одинаковы с двух концов. Однако форма яиц, обнаруженных палеонтологами, нетипична для динозавров и близка к эллипсовидной. Подобные яйца, сужающиеся к одному концу, свойственны современным птицам, что обусловлено особенностями их репродуктивной системы (у птиц, в отличие от рептилий, имеется всего один яйцевод). При этом микроструктура скорлупы «странных» яиц всё же свидетельствует о том, что они были отложены именно динозаврами.

Помимо Испании, яйца такой же «куриной» формы, относящиеся к концу мелового периода, были найдены лишь в Аргентине и принадлежат первым ископаемым птицам. Как подчеркивают ученые, находка яиц птичьей формы, отложенных динозаврами,является еще одним подтверждением родства динозавров и птиц. В ассиметричных птичьих яйцах в широком конце находится воздушная камера, которая помогает зародышу дышать на поздних стадиях его развития. Новая находка доказывает, что подобное эволюционное новшество могло быть свойственно и некоторым динозаврам.

 

 


 

Источник: infox.ru


 

 

 Крупный растительноядный динозавр обдирал листву с высоких ветвей деревьев, однако питаться корой он не мог.

Палеонтологи установили способ питания диплодока (источник Reuters)Ученые из Бристольского университета и лондонского Музея естествознания при помощи новой технологии проанализировали череп диплодока, крупного растительноядного динозавра, чтобы определить, чем и как он питался. Результаты исследования опубликованы в журнале Naturwissenschaften.

Диплодок, существовавший в юрском периоде около 150 миллионов лет назад,относится к зауроподам, четвероногим динозаврам. Вес гиганта составлял около 15 тонн, поэтому среди ученых не утихают споры о том, чем же должен был питаться этот динозавр, чтобы прокормить себя. Особое внимание привлекают длинная шея, узкие зубы и сравнительно небольшая голова диплодока, которые, по мнению ряда палеонтологов, исключают возможность того,что диплодок мог перерабатывать большие объемы грубой растительной пищи.

«Диплодок настолько отличается от современных животных, что его не с кем сравнить. Поэтому только биомеханический подход способен пролить свет на его физиологию», -- пояснил Марк Ян, один из авторов работы. Чтобы построить биомеханическую модель головы диплодока, ученые обработали данные компьютерной томографии его черепа с помощью метода, изначально разработанного для расчета нагрузки, приходящейся на разные детали самолетов и гоночных автомобилей.

Сравнив предполагаемую нагрузку, которая могла приходиться на зубы, челюсти и остальной череп диплодока при различных типах его питания, ученые пришли к выводу, что наиболее вероятным способом питания этого динозавра было обдирание листвы с веток деревьев. Расчеты также показали, что обдирать кору, подобно современным оленям, диплодок не мог, так как его череп был слишком хрупким для этого. Кроме того, выяснилось, что максимальная нагрузка у диплодока приходилась на предчелюстную и челюстную кости, что согласуется с данными об эволюции зауроподов, которые в течение миллионов лет развивались так, чтобы ее рассредоточить.

 

 


 

Источник: infox.ru


 

 

Система солнечной навигации в усиках бабочек-монархов состоит из двух независимых солнечных "навигаторов", что позволяет насекомому сохранять способность к межконтинентальным перелетам при повреждении одной из антенн, заявляют ученые в статье, опубликованной в журнале Nature Communications.

Бабочка-монархСевероамериканская бабочка-монарх (Danaus plexippus) принадлежит к числу насекомых, мигрирующих на далекие расстояния. Летом эти бабочки и их личинки предпочитают обитать в умеренных и субтропических регионах Соединенных штатов, а осенью и зимой они мигрируют в южные пределы Мексики и других стран Центральной Америки. Известны случаи, когда монархи перелетали на другие континенты - некоторые бабочки были замечены в южной Британии, на российском Дальнем Востоке, в Австралии и на Гавайских островах.

Группа биологов под руководством Стивена Репперта (Steven Reppert) из Медицинской школы университета штата Массачусетс в городе Уорчестер (США) изучала систему навигации бабочек, отдельные компоненты которой - светочувствительные клетки в антеннах и центр обработки информации в мозге - они открыли в 2009 и 2011 годах.

Репперт и его коллеги проверили, как монархи будут вести себя при повреждении левой или правой антенны. Для этого ученые поймали нескольких мигрирующих бабочек осенью 2011 года, удалили один из усиков и стали наблюдать за поведением насекомых.

Оказалось, что повреждение антенны почти не повлияло на навигационные способности монархов - бабочки с одним усиком летели примерно в том же направлении, что и насекомые с двумя антеннами-"навигаторами". Это открытие позволило ученым предположить, что вторая антенна является своеобразной запасной деталью на тот случай, если первый усик будет поврежден. Тем не менее, нельзя исключать, что насекомое использует обе антенны в том случае, если они исправны.

Авторы статьи проверили эту гипотезу, покрасив одну из антенн бабочек в черный цвет при помощи светонепроницаемой краски, и повторили эксперимент. На этот раз бабочки потеряли способность ориентироваться по свету Солнца и начали двигаться беспорядочно.

Как полагают исследователи, центр навигации в мозге бабочек может работать в двух режимах - с использованием одной и двух антенн. Во втором случае он объединяет сигналы с левого и правого усика и получает некое "усредненное" значение о положении Солнца на небосводе.

По всей видимости, мозг бабочки не считает закрашенную антенну поврежденной и пытается объединить ее нервные импульсы с сигналами с исправного усика. Это подтверждается тем, что работа системы навигации была восстановлена после того, как ученые отделили закрашенные усики от головы бабочки.

Покраска антенны привела к тому, что ее светочувствительные клетки всегда сигнализировали о наступлении темного времени суток. Этот ложный сигнал смешивался с корректными навигационными данными с исправного усика, что и дезориентировало бабочку.

Таким образом, бабочки-монархи оказались обладателями двух полноценных и независимых друг от друга солнечных "навигаторов", которые помогают им достигать цели при межконтинентальной миграции даже при повреждении одной из светочувствительных антенн.

 


Источник: РИАНОВОСТИ


Самцы тропических рыб-харацинов выработали уникальную стратегию для  привлечения внимания самок - они вырастили специальные приманки на своих жабрах, напоминающие по форме и окраске тело насекомых - основу рациона этих рыб.

Подробнее...

Рыбы-харацины "ловят" самок при помощи приманок, похожих на насекомыхСамцы тропических рыб-харацинов выработали уникальную стратегию для  привлечения внимания самок - они вырастили специальные приманки на своих жабрах, напоминающие по форме и окраске тело насекомых - основу рациона этих рыб, заявляют биологи в статье, опубликованной в журнале Current Biology.

Самцы практически всех видов позвоночных животных используют сложные ритуалы  ухаживания для привлечения особей слабого пола в сезон размножения. В частности, птицы-шалашники строят замки и используют оптические иллюзии для улучшения их  облика, лягушки-тунгары соревнуются в громкости и сложности брачных песен. Эти  ухаживания помогают самкам выбрать наиболее приспособленных партнеров для  спаривания и отличать их от похожих особей других видов.

Группа биологов под руководством Горана Арнквиста (Goran Arnqvist) из  университета Упсалы (Швеция) наблюдала за брачным поведением тропических  рыб-харацинов (Corynopoma riisei) на территории острова Тринидад.

Данный вид харацинов питается насекомыми, упавшими на поверхность воды - муравьями, жуками, гусеницами или личинками комара. Во время спаривания самец  привлекает самку при помощи яркого выроста на жаберной крышке. При удачном  стечении обстоятельств ухажер вводит сперму в специальное хранилище на теле  самки, где сперматозоиды могут сохраняться в течение нескольких месяцев.

Арнквист и его коллеги заметили, что форма и расцветка выростов сильно  отличается для разных популяций харацинов, обитающих в разных уголках острова. Биологи сравнили их и заметили, что они похожи по цвету и очертаниям на  некоторых насекомых, в том числе и муравьев.

Исследователи предположили, что такое разнообразие в оформлении данных  выростов связано с переносом неполовых признаков - в данном случае пищевых  предпочтений самок - в сферу размножения. Как объясняют ученые, самки из разных  популяций предпочитают питаться одним видом насекомых - к примеру, муравьями. В  данном случае самцы с узором на жабрах, похожим на форму тела и окраску муравья, будут чаще спариваться с самками, так как особей слабого пола будет привлекать  приманка, похожая на муравья.

Биологи проверили свои выводы, поймав несколько самцов и самок харацинов. Самцы обладали приманками в виде муравья, тогда как самки жили в другом регионе  острова и предпочитали есть другую пищу. Ученые попытались изменить пищевые  предпочтения особей слабого пола, предлагая им исключительно муравьев.

Когда рыбы привыкли к новому виду пищи, Арнквист и его коллеги запустили в  аквариум самцов с узорами в виде муравья. Как и ожидали ученые, самки "клюнули" на приманку и позволили харацинам оплодотворить себя. Таким образом, неполовой  признак - пищевые предпочтения самок - превратился в один из факторов, напрямую  влияющих на успешность в деле продолжения рода для самцов.

"Это природный пример "приманки", предназначенной для ловли конкретного вида  рыбы. В этом случае правда, "добычей" выступают особи противоположного пола", - заключает один из участников исследования Никлас Кольм (Niclas Kolm) из  университета Упсалы.

 


Источник: РИАНОВОСТИ


Распределением органов по левой и правой сторонам организма занимается тубулиновый цитоскелет, причём программа асимметрии запускается едва ли не сразу после оплодотворения.

Цитоскелет задаёт асимметрию организму ещё до первого деления оплодотворённой яйцеклетки. (Фото Prof. G. Schatten.)При индивидуальном развитии зародыша каждый орган занимает своё место: сердце, например, становится слева, печень — справа, и т. д. Но что определяет расстановку органов, какие механизмы за неё отвечают, до сих пор толком известно не было. Предполагалось, что ведущую роль в этом играют реснички — волосковидные выросты на поверхности эукариотических клеток. Якобы биение этих ресничек создаёт в развивающемся эмбрионе токи жидкости, по которым эмбрион и может понять, грубо говоря, где у него «право», а где «лево».

Но у многих видов право-левая асимметрия получается безо всяких ресничек. Исследователи из Университет Тафтса (США) утверждают, что вместо ресничек здесь задействован тубулин, один из главных белков цитоскелета. С одной стороны, известно, что мутации в тубулине влияют на асимметрию растения Arabidopsis thaliana, с другой — есть сведения об участии каких-то элементов цитоскелета в формировании двусторонней симметрии у животных. Словом, у исследователей были все основания заняться тубулином вплотную. Мутантный тубулин, который вызывал нарушения в строении у A. thaliana, вводили эмбрионам лягушки. Внешне такие эмбрионы получались нормальными, но все внутренние органы у них располагались относительно оси симметрии совершено случайным образом.

Такие же эксперименты проводились с нематодами — и у червей в ответ нарушилась упорядоченность нервной системы. Похожий эффект был и в культуре человеческих клеток: внутреннее устройство клеток подчинено хиральности, которая нарушалась из-за мутантного тубулина. В статье, опубликованной в журнале PNAS, её авторы делают вывод, что цитоскелет контролирует симметричное и асимметричное расположение органов едва ли не у всех живых организмов и что такой тубулиновый механизм возник в незапамятные времена, ещё до разделения растений и животных.

При этом исследователи отмечают, что эффект от мутантного тубулина проявлялся только тогда, когда его вводили сразу же после оплодотворения. Если клетка хотя бы раз успевала разделиться, её правильной асимметрии ничего не угрожало. То есть цитоскелет, по-видимому, программирует расположение органов на самых ранних этапах развития эмбриона, за несколько часов до возникновения ресничек.

Итак, удалось установить, что тубулин играет ведущую роль в распределении молекул между левой и правой сторонами эмбриона. Фундаментальный смысл работы очевиден, но не стоит забывать и о том, что некоторые аномалии индивидуального развития связаны как раз с нарушениями в тканевой организации органов, когда клетки разных тканей вдруг становятся не на своё место.

 


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Наездники-паразиты заставляют пауков-хозяев плести им паутинные убежища

11-10-2011 Просмотров:9748 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Наездники-паразиты заставляют пауков-хозяев плести им паутинные убежища

Оса-наездник Zatypota percontatoria пополнила собою список паразитических видов, которые управляют поведением хозяина. Самой большой известностью среди таких паразитов пользуются грибы рода Cordyceps, поражающие муравьёв и других насекомых, и токсоплазмы. Грибы...

Не такой уж зоркий сокол: почему птицы натыкаются на провода…

20-03-2011 Просмотров:12887 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Не такой уж зоркий сокол: почему птицы натыкаются на провода и самолёты

Оказывается, пернатые в полёте очень хорошо видят творящееся на земле, но при этом мало внимания обращают на то, куда они летят. Скопа (Pandion haliaetus) (фото Gregory Jordan) По статистике европейских природоохранных...

Летные испытания МКА ФКИ «Зонд-ПП» подходят к концу

14-11-2012 Просмотров:12529 Новости Технологии Антоненко Андрей - avatar Антоненко Андрей

Летные испытания МКА ФКИ «Зонд-ПП» подходят к концу

Специалисты ФГУП «НПО им. С.А. Лавочкина» завершают работы по выполнению первого этапа программы летных испытаний МКА-ФКИ (ПН1) «Зонд-ПП». Аппарат функционирует в штатном режиме, все бортовые системы исправны и выполняют свои...

Почему деревья не растут выше ста метров?

19-01-2013 Просмотров:12124 Новости Ботаники Антоненко Андрей - avatar Антоненко Андрей

Почему деревья не растут выше ста метров?

Как правило, чем выше дерево, тем меньше его листья. Математическое объяснение этого феномена, оказывается, одновременно накладывает ограничение на максимальную высоту деревьев. Секвойи на Медвежьей горе в Калифорнии (фото MizzD) Каре Йензен из...

Морями мелового периода правили акулы

15-08-2013 Просмотров:9991 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Морями мелового периода правили акулы

Когда мы говорим о морях времен динозавров, на ум сразу же приходят чудовищные ящеры вроде мозазавров или Predator X. Но подлинными владыками морей мелового периода были акулы современного типа, утверждают...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.