Океанические сине-зелёные водоросли Synechococcus производят 20% кислорода на планете. Такой высочайшей производительностью они обязаны уникальному умению приспосабливаться к нужной длине световой волны. То есть водоросль настраивает свою фотосинтетическую систему в зависимости от того, какая длина волны сейчас более доступна. Соответственно, у водорослей меняются пигменты, отвечающие за ловлю фотонов, и сама клетка следом меняет цвет, подобно хамелеону.
Цианобактерия Synechococcus крупным планом (фото Science VU / DOE)Учёным из
Изменения в окраске цианобактерий Synechococcus в зависимости от режима освещённости (рисунок авторов работы)Соответствующим образом меняется и цвет водорослей. В прибрежных водах, где они поглощают зелёный свет, пигмент придаёт клеткам красный оттенок. Вдали от берега, в более глубоких водах усиливается доля синего и водоросли становятся оранжевыми. Эта молекулярно-генетическая уловка и позволяет Synechococcus жить и успешно вести фотосинтез в разном режиме освещённости, снабжая океан и всю планету кислородом.
Источник: КОМПЬЮЛЕНТА
Чтобы поддерживать размножение в условиях фосфорного голодания, бактериофаги морских бактерий приходят в хозяйские клетки с набором генов, который помогает хозяевам более эффективно «выхватывать» из среды фосфор.
Бактериофаги, специализирующиеся на морских бактериях Prochlorococcus (фото авторов исследования)Исследователи из Массачусетского технологического института (США) обнаружили, что некоторые вирусы-бактериофаги приходят к своим жертвам с чем-то вроде генетического троянского коня: они приносят заражаемым бактериям гены, которые должны облегчать им жизнь в условиях стресса. Учёные работали с океаническими бактериями Prochlorococcus и Synechococcus, которые производят шестую часть кислорода на планете. Бактерии рода Prochlorococcus в диаметре не превышают одного микрона, а их плотность достигает 100 миллионов клеток на литр воды. Synechococcus чуть крупнее и не столь многочисленны. Соответственно, вирусы, поражающие эти бактерии, относятся к самым распространённым среди себе подобных.
Жизнь в океане полна превратностей, в том числе для микроорганизмов. Часто случается, что бактерии заносит в воды, бедные фосфором. А он критически необходим для жизнедеятельности: без фосфорных соединений невозможно синтезировать нуклеиновые кислоты, то есть размножаться. На такие случаи у бактерий есть специальная генетическая система, чувствующая, когда фосфора начинает не хватать, и активирующая другие гены, которые кодируют связывающие фосфор белки. Эти дополнительные белки позволяют бактериям наловить больше фосфора и пережить кризис.
Но, как оказалось, у вирусов тоже есть такие гены для ловли фосфора. Размножение вируса требует изрядных фосфорных запасов для штамповки вирусной ДНК. Исследователи заметили, что, когда бактериофаг заражает бактерию в условиях недостатка фосфора, в вирусном геноме включаются гены белков, отвечающих за «ловлю» фосфорных соединений.
Оказалось, что вирусные белки управляются теми же генами, что и бактериальные. То есть когда бактерия чувствует фосфорный стресс, она включит как свою, так и вирусную систему по добыче дополнительного фосфора. Основная его масса пойдёт на нужды вируса. Разумеется, самой бактерии может что-то перепасть от усилившегося фосфорного потока, но впрок ей это не пойдёт: через 10 часов цикл размножения вируса закончится, и бактериальную клетку разорвёт под напором выходящих наружу вирусных частиц.
В статье, опубликованной в журнале Current Biology, авторы пишут, что далеко не все бактериофаги, паразитирующие на Prochlorococcus и Synechococcus, обладают этими генами, а только те, что живут в атлантических популяциях бактерий. К примеру, тихоокеанские Prochlorococcus и Synechococcus не сталкиваются с недостатком фосфора, а потому соответствующей системы у них нет. А вот атлантические вирусы когда-то давно сумели скопировать гены хозяев, создавших себе молекулярный механизм на случай фосфорного голодания; в результате вирусы могут размножаться, не обращая внимания на изменения в среде: удвоенный поток фосфора позволяет им синтезировать столько ДНК, сколько нужно.
Столь тонкое приспособление вируса под нужды хозяина исследователи видят впервые. Впрочем, по их словам, бóльшая часть сведений о взаимоотношениях бактерий и фагов пришла к нам из биомедицинских исследований. А жизнь в человеческом организме и биологической лаборатории всё-таки сильно отличается от того, что происходит в Мировом океане. Поэтому не исключено, что это не единственный трюк, с помощью которого «дикорастущие» вирусы облегчают себе жизнь.
Источник: КОМПЬЮЛЕНТА
Океанические бактерии Synechococcus плавают с помощью волнообразных биений клеточной мембраны, которые вызывает белковая спираль, тянущаяся через всю клетку.
Бактерии плавают с помощью жгутиков. Белковую нить жгутика приводит в движение хитроумный молекулярный мотор, закрепленный в мембране клетки: мотор работает, жгутик крутится, подобно пропеллеру, бактерия движется. Но есть весьма распространённый род бактерий, называемых Synechococcus, у которых жгутика нет, а однако ж они перемещаются с довольно значительной для бактерий скоростью в 25 мкм/с.
Synechococcus живут в океане и служат важным компонентом пищевой пирамиды. Генóм этих бактерий был прочитан ещё в 2003 году, но ответа на вопрос, как они двигаются, это не дало. В статье, опубликованной на сайте
У Synechococcus тоже наблюдаются волны, пробегающие по клетке, которые зависят от наличия у бактерии белка SwmA, располагающегося во внешней мембране. Но скользить так по поверхности намного легче, чем плавать. Хватает ли бактерии «мембранного волнения», чтобы плыть в толще воды? Ответом на вопрос стала математическая модель, построенная учёными. Согласно их выкладкам, чтобы плавать таким образом, амплитуда бегущей волны должна достигать 0,05 мкм, а сама волна — распространяться со скоростью 73 мкм/с. Частота вращения двигателя-спирали в этом случае будет равна где-то 186 Гц.
Synechococcus, как пишут исследователи, справляется с задачей благодаря особенностям строения внешней клеточной мембраны. На ней, как уже было сказано, сидит белок SwmA, и его молекулы располагаются под углом 60˚ друг к другу. Когда спираль поворачивается, соединённые с ней молекулы SwmA тоже движутся, но из-за особенностей их взаиморасположения образующаяся волна оказывается больше, что дополнительно ускоряет бактерию. Хотя, разумеется, такой способ передвижения — с помощью белкового «буравчика» — всё равно не столь эффективен, как старый добрый жгутик, скорость вращения которого, для сравнения, составляет 1 700 Гц.
Источник: КОМПЬЮЛЕНТА
13-03-2013 Просмотров:13513 Новости Зоологии Антоненко Андрей
В 1970-х психологи провели эксперимент, который демонстрировал, как человек может выбирать между сиюминутной выгодой и более значительными, но и более отдалёнными целями. Эксперимент ставили с детьми, которым давали маршмеллоу (опыт...
14-02-2013 Просмотров:12310 Новости Зоологии Антоненко Андрей
Мы знаем, что биоразнообразие — это хорошо, но часто это лишь следствие из сугубо теоретических рассуждений. Получить экспериментальные подтверждения положительного влияния биоразнообразия на экосистему порой нелегко. Причина этого — в...
13-01-2015 Просмотров:8049 Новости Палеонтологии Антоненко Андрей
Древняя рыба, чьи останки были найдены на плато Путорана советскими палеонтологами еще в 1972 году, является уникальным существом, которое одновременно обладает признаками хрящевых и костистых рыб и претендует на роль предка всех челюстных животных, в том...
06-12-2016 Просмотров:6867 Новости Эволюции Антоненко Андрей
Биологи разобрались с эволюцией хвостов. Оказалось, что хвост современных рыб и хвост четвероногих животных возникли из двух разных половин одного и того же предкового хвоста. На переднем плане, мордой вправо -...
31-10-2010 Просмотров:11994 Новости Палеонтологии Антоненко Андрей
Динозавр, стоявший где-то близ самых корней инфраотряда зауроподов, обнаружен на юге Китая. Ценность находки объяснил палеонтолог Санкар Чаттерджи (Sankar Chatterjee) из Техасского технологического университета. Одно из главных откопанных сокровищ – череп...
Участники международного океанологического проекта SERPENT сообщают о грандиозном успехе: им, возможно, впервые удалось заснять на видео в естественной среде обитания так называемого «сельдяного короля» – самую длинную из живущих в…
Гидрографы Северного флота обнаружили в ходе экспедиции в Арктике два новых острова. "Вблизи ледников у побережья Новой Земли на экранах радиолокационных станций гидрографами судна "Горизонт" были обнаружены два новых объекта. Планируется, что визуально обследует данные…
Окаменелости экзотических животных, пролежавшие в земле 6 миллионов лет, обнаружены на территории Кочкора в Нарынской области Киргизии, сообщила американская исследовательница Уин Маклафлин. Она отметила, что исследования проводились под руководством директора Института сейсмологии, доктора геолого-минералогических наук…
За миллионы лет в эмиратской каменистой пустыне практически ничего не изменилось, что создает уникальные условия для работы ученых-палеонтологов. На этот раз, как сообщила газета "Нэшнл", Объединенные Арабские Эмираты (ОАЭ) открыли секрет…
Тропическая растительность вносит важный вклад в образование дождей. Источник - Rex FeaturesБританские климатологи из Лидского университета пришли к выводу, что продолжающаяся вырубка тропических лесов в будущем уменьшит число атмосферных осадков, что…
Учёные из Великобритании разглядели останки органических веществ, законсервированные в теле древнего существа в течение 50 миллионов лет. Заднюю часть неизвестной зверушки откопали в формации Грин-Ривер (Green River Formation) в штате Юта.…
Исследователи климата из Университета Эксетера (Англия) определили первые тревожные сигналы, свидетельствующие об изменениях в циркуляции Атлантического океана, которые могут иметь катастрофические последствия для мирового климата. Их модель, считают ученые, позволяет…
Долгосрочные тренды солнечной активности указывают на то, что следующая фаза затишья в жизни Солнца может не только замедлить изменение климата, и вызвать заметные снижения в скорости роста среднегодовых температур на севере Евразии и в северных уголках Канады…
Объединение цианобактерий с хозяйской клеткой, которое привело к образованию хлоропластов, происходило при участии третьего участника — паразитической бактерии, осуществлявшей перенос генов между симбионтами. Водоросль-глаукофит Cyanophora paradoxa (фото cuplantdiversity)Считается, что растения и…