Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Зоологии


Новости Зоологии (727)

В сезонных миграциях бабочки совки, используя попутный ветер, легко нагоняют мигрирующих по тому же маршруту пернатых.

Совка к полёту готова! (Фото Wipeout Dave.) Совка к полёту готова! (Фото Wipeout Dave.) Каждый может представить себе летящую птицу и порхающую бабочку и сказать, кто из них быстрее. Разумеется, птица. Соревнования по полётам на короткие дистанции пернатые разгромно выигрывают всегда и везде...

...А вот в случае долгих путешествий с птицами и бабочками начинают происходить странные вещи.

Долговременный перелёт — это сезонная миграция. Исследование учёных из Швеции (Лундский университет) и Великобритании (Йоркский и Гринвичский университеты и Ротамстедский научно-исследовательский институт) было посвящено осенним и весенним перелётам певчих птиц (главным образом славок) и бабочек совок между Северной Европой и побережьем Средиземного моря и Северной Африкой. С помощью специальных радаров учёные следили за скоростью передвижения стай птиц и бабочек. Ожидалось, что первые будут перемещаться в среднем в четыре раза быстрее насекомых.

Но птицы и бабочки шли, что называется, ноздря в ноздрю! Скорости полёта были близки и колебались в среднем между 30 и 65 км/ч. Оказалось, что совки поднимаются на крыло только при попутном ветре, который их весьма и весьма ускоряет. Птицы же летят, не обращая внимания на ветер, и часто сильно теряют в скорости при встречных или боковых дуновениях. Разные стратегии поведения при дальних путешествиях и стали причиной того, что «черепаха догнала Ахиллеса»: «умные» бабочки летели вровень с «упрямыми» птицами.

Описываемая работа опубликована сегодня в журнале Proceedings of the Royal Society B.

Учёные подчёркивают, что подробности жизненного цикла таких многочисленных насекомых, как бабочки совки, имеют не только фундаментальное, но и ощутимое прикладное значение. Эти насекомые играют важную роль в опылении растений, в том числе агрокультурных. При этом совки одновременно являются важнейшими вредителями, эти самые растения поедающими. Именно поэтому исследователи столь интенсивно домогаются всё новых подробностей из жизни этих не самых красивых представителей чешуекрылых. 

 


Источник: КОМПЬЮЛЕНТА


 

Когда бразильским капуцинам хочется полакомиться термитами, засевшими в своих гнёздах, находчивые и рукастые обезьяны используют «удочки» из веток деревьев.

Капуцин Cebus flavius (фото авторов исследования)Капуцин Cebus flavius (фото авторов исследования)«Обезьяна встала на задние лапы, взяла в руки палку и превратилась в человека». Это общепринятая точка зрения: человек вознёсся над другими приматами из-за свободных рук, которыми мог манипулировать. Бразильским капуцинам Cebus flavius удалось поколебать эту теорию.

Эти древесные обезьяны едят всё, на что упадёт их глаз: фрукты, пауки, мелкие позвоночные, насекомые... Меню самое разнообразное, и, казалось бы, зачем при таком «столе» сосредотачиваться на труднодоступных термитах, которые надёжно защищены своими гнёздами-термитниками? И тем не менее. Группа учёных из Федерального университета в Пернамбуко стала свидетелями причудливой техники, которую капуцины «разработали» специально для добычи термитов.

В статье, которая готовится к печати в журнале Royal Society Biology Letters, описывается, как обезьяны выуживают термитов из их гнёзд. Капуцин находит висящий на дереве термитник и плотно усаживается перед ним, используя свой гибкий хвост. Затем он в течение некоторого времени похлопывает лапами по стенке термитника, после чего отламывает небольшую веточку и начинает «бурить» ею гнездо — там, где похлопывал. Наконец, добившись успеха, обезьяна достаёт ветку, которая, разумеется, облеплена термитами.

Антонио Соуто, один из исследователей, считает, что похлопывание вносит беспокойство в ряды термитов-солдат — охранников гнезда, и те начинают собираться у того места, откуда идут вибрации. Таким образом, обезьяна, втыкая в термитник свою «удочку», вытаскивает оттуда куда больше насекомых.

Капуцины проявили смекалку и ещё в одном моменте. Если просто долбить термитник веткой, она быстрее сломается, чем вы пробьётесь сквозь твёрдую стенку. Поэтому обезьяны во время своей «рыбалки» вращают палку, используя её как дрель.

Учёные сожалеют, что не застали момент рождения технологии: в наблюдаемой группе обезьян такая охота на термитов уже широко использовалась. Скорее всего, описанное поведение было перенято прочими членами стаи от какого-нибудь «первооткрывателя». Исследователи связывают сообразительность капуцинов с их исключительно разнообразной диетой, которая побуждает обезьян к нестандартным решениям.

 


 

Источник: КОМПЬЮЛЕНТА


 

Непрерывные сигналы делают некоторые виды этих млекопитающих более искусными охотниками на насекомых, чем их сородичи, испускающие прерывистый ультразвук.

Подковоносы охотятся более умело благодаря непрерывному сканированию  окрестностей. (Фото Frank Greenaway.)Подковоносы охотятся более умело благодаря непрерывному сканированию окрестностей. (Фото Frank Greenaway.)О том, что часть летучих мышей лучше распознаёт трепет крылышек своих жертв-насекомых, исследователи догадывались. Брок Фентон и его помощник Луис Лазур из Университета Западного Онтарио (Канада) провели эксперимент, чтобы выяснить, как и почему это происходит.

Для этого они использовали «робота-мотылька» — механический флажок, издающий колебания, которые имитируют движение крыльев небольших ночных насекомых. С точки зрения акустики идентичность была практически абсолютной. Этот своеобразный манок использовался в экспериментах на Тайване и в Белизе.

Выяснилось, что большинство летучих мышей испускают пучки ультразвуковых сигналов, а затем слушают эхо, чтобы создать «картинку» окружающего пространства. Однако 20% видов (например, малый подковонос) способны издавать непрерывные сигналы. Благодаря более чувствительным органам слуха они могут выделять из общего потока отражённый сигнал. Если первые приближались к «роботу-мотыльку» только в 1,2% случаев, то вторые — в 18,6%.

Более того, летучие мыши, обладающие более тонким слухом, различают отражение от деревьев и других «стационарных» объектов (для них это звук в одной тональности) и сигнал, который отражён от крыльев насекомых (он «скачет» из тональности в тональность, подобно сирене).

Результаты работы опубликованы в издании Journal of Experimental Biology.


Источник: КОМПЬЮЛЕНТА


При ухаживании самец дрозофилы по-особому вибрирует крыльями, что воспринимается самкой как любовная песнь.

Любовная серенада понравилась настолько, что! (Фото Gustavo (lu7frb).)Любовная серенада понравилась настолько, что! (Фото Gustavo (lu7frb).)Как выяснили австрийские исследователи из Института молекулярных патологий в Вене, самцы фруктовой мушки (Drosophila melanogaster) соблазняют самок любовными серенадами.

И серенады эти они «поют» крыльями.

Чтобы воссоздать церемонию ухаживания, учёные использовали генетически модифицированных мух. Обычные мухосамцы реагируют на некий запах, который испускает самка. Молекулы, несущие запах, проникают в особые канальцы на голове самца, которые открываются только при 30 ˚C и выше. Генетически модифицированные мухи, использованные в исследовании, впадали в любовную лихорадку при простом повышении температуры, безо всяких окрестных «дам».

Эти канальцы, которые ловят запах самки, соединены с двумя нервными центрами. Первый находится в головном мозгу и принимает одно-единственное решение — начинать ухаживание или нет. К нему ведут пути не только от чувствительных обонятельных канальцев, но и от других органов чувств и центров мозга. Второй располагается в груди, и его функция — регулировать работу мышц крыльев, частоту и ритм движений.

Как только вблизи самца дрозофилы появляется самка, его крылья переключаются в особый режим взмахов и вибраций. Шум, который самец производит крыльями, нам покажется монотонным скрипом и шуршанием. Тем не менее дрозофилы находят эти звуки очаровательными.

Результаты исследования опубликованы в февральском номере журнала Neuron. С точки зрения учёных, детали полового поведения дрозофилы — анализ данных, принятие решения и его практическое выполнение — позволят глубже понять принципы функционирования нервной системы всего класса насекомых.


Источник: КОМПЬЮЛЕНТА


Человек в процессе эволюции утратил некоторые участки ДНК, а вместе с ними — вибриссы и часть полового органа. И благодаря тем же генетическим потерям приобрел большой мозг.

ШимпанзеШимпанзеЧеловек многими деталями анатомии и физиологии отличается от животных, но генетическая основа этих отличий до сих пор изучена недостаточно. Этот пробел частично заполняет исследование, проведенное Дэвидом Кингсли (David Kingsley) из Медицинского института имени Говарда Хьюза (Howard Hughes Medical Institute) Стенфордского университета с участием специалистов из Пенсильванского университета и Университета штата Джорджия. Ученые сравнили геномы человека, шимпанзе, макаки и мыши и нашли несколько сотен фрагментов ДНК, которые есть у мышей и обезьян, но отсутствуют у человека. Фактически, они имеются в геноме всех млекопитающих, включая шимпанзе, но наши предки в процессе эволюции их утратили.

Биологи описали 510 последовательностей, утраченных человеком. Из них только в одном случае предки человека потеряли целый ген, а остальные 509 представляют собой некодирующие участки, которые регулируют работу генов. От них зависит, где (в каких клетках) и когда (на какой стадии развития) тот или иной ген включится в работу. Изменение в регуляторных участках, как правило, не фатально для организма. «Если изменить схему включения и выключения гена в процессе развития, это может привести к большим изменениям в строении органов, хотя сами функции гена остаются прежними, — объясняет Дэвид Кингсл. – Именно такие изменения чаще всего ведут к появлению новых признаков в ходе эволюции».

Анализ расположения этих участков показал, что большая часть из них соседствует с генами развития нервной системы и с генами системы стероидных гормонов. По словам авторов работы, для того, чтобы досконально изучить генетические отличия человека, они нуждаются в помощи разных специалистов: нейрофизиологов, антропологов, эмбриологов и т.д. Но кое-что удалось выяснить уже сейчас. Сложность заключается в том, что роль большинства утерянных регуляторных участков в геномах млекопитающих неизвестна. Поэтому непонятно, от чего отказались предки человека.

Потеря части ДНК привела к большому мозгу

Чтобы ответить на этот вопрос, ученые изолировали некоторые фрагменты из генома имеющих их животных (мыши и шимпанзе), промаркировали их цветной меткой и поместили полученные гибридные последовательности в оплодотворенные яйцеклетки мыши. Проследив за светящимися метками в развивающихся мышиных эмбрионах, они увидели, где и в какой момент действуют регуляторы, а также как они изменяют экспрессию генов.

Один утраченный человеком сегмент ДНК расположен вблизи гена, который в норме ограничивает размножение клеток. «Если ген отсутствует полностью, начинается неконтролируемое размножение клеток, ведущее к раковой опухоли», — объясняет Кингсли. Помеченный сегмент в эмбрионах мыши обнаружился в развивающемся мозге: в коре, вентральном таламусе и гипоталамусе, в субвентрикулярной (то есть, поджелудочковой) зоне. По-видимому, наши предки утратили фрагмент, запускающий ограничитель, и в результате получили интенсивный рост мозга, особенно новой коры. Это сыграло решающую роль в эволюции человека.

О вибриссах и шипиках

В другом случае предки человека вместе с утерей гена потеряли и часть органов: чувствительные вибриссы на морде и кератиновые шипики на пенисе. И то, и другое имеется у всех млекопитающих, кроме человека. За развитие того и другого отвечает андрогенный рецептор (он связывается с мужскими половыми гормонами, которые, кстати, имеются и у женщин).

В мышиных эмбрионах помеченные цветной меткой сегменты ДНК можно было видеть в зачатках вибрисс и в гениталиях. Это означает, что в данных областях они вызывают работу гена рецептора андрогена. Дальнейшие наблюдения показали, что эти сегменты участвуют в развитии вибрисс и шипиков. У человека, естественно, имеется ген андрогенного рецептора, но из-за потери регулятора в данных клетках в данное время он не включается. Поэтому у человека нет ни вибрисс на лице, ни шипиков на пенисе. Как отмечают авторы, последняя утрата снижает чувствительность и увеличивает длительность копуляции. Это предпосылка к развитию у наших предков устойчивых моногамных отношений с длительным половым актом. Параллельно происходили другие изменения – некоторая феминизация мужчин по сравнению с самцами шимпанзе: утрата самцовых клыков, уменьшение величины семенников и снижение подвижности сперматозоидов.

Очевидно, таких примеров намного больше, говорят исследователи. Они подчеркивают, что впервые удалось на молекулярном уровне описать изменения, связанные со специфически человеческими чертами. А такие черты касаются не только анатомии и физиологии, но и развития многих заболеваний. «Мы думаем, что такой подход поможет разобраться в механизмах возникновения человеческих болезней, — говорит Кингсли. – И мы сможем понять, как черты современного человека формировались в ходе нашей генетической истории».

Результаты ученые опубликовали в последнем выпуске Nature.


Источник: Infox.ru


Чтобы зафиксировать в массе зоопланктона перемещения отдельной особи, шведские экологи буквально подковали водяную блоху.

Дафния (фото Chantal Wagner)Дафния (фото Chantal Wagner)Биологи обычно не затрудняются с наблюдениями за миграцией животных. В этом им помогают разнообразные устройства — от радиодатчиков (которые можно прикрепить, допустим, на панцирь черепахи) до систем спутникового слежения.

А вот поведение самого массового «вида» животных, от которого, без преувеличения, зависит жизнь на Земле, остаётся для исследователей недостижимой областью. Мы говорим о зоопланктоне, который движется в толще воды и остаётся за пределами досягаемости современных технологий. Да, гидролокатор способен «вести» перемещения многомиллиардных масс микроскопических организмов, но как уследить за отдельной особью?

Статья экологов из Лундского университета, опубликованная в сетевом журнале PloS One, предлагает изящное решение — метод квантовых точек. Эти наночастицы, которые флуоресцируют при попадании на них света, прикрепляются к карапаксу водяной блохи (она же дафния, Daphnia magna). Всё! Остаётся лишь следить за передвижениями особи.

Впрочем, технология хоть и остроумна, но несовершенна. Чтобы квантовая точка засветилась, возбуждающий её источник должен быть поблизости — в нескольких дюймах, так что эксперимент выполним пока только в лабораторных масштабах. Имеет значение и чувствительность камеры, воспринимающей свечение квантовой точки, но в открытом водоёме дафния может уплыть из поля зрения камеры в течение нескольких часов. Наконец, во время линьки животное скидывает карапакс (вместе с квантовой точкой!), и происходит это раз в два дня.

И всё же предложенная шведами методика небезнадёжна. Квантовая точка позволяет биологам хотя бы ненамного, но приблизиться к вопросам, которые ранее даже не поднимались ввиду заведомой их неразрешимости. Как движутся эти микроорганизмы? Ищут ли они целенаправленно еду? Убегают ли от хищников?..

Узнав, как и зачем плавает отдельная особь, экологи смогут решить вопросы, связанные с поведением зоопланктонных масс в ответ на глобальные трансформации окружающей среды — например, изменения кислотности воды и температуры или попадание популяции под озоновую дыру. И нет нужды подробно объяснять, как тайны планктонных миграций помогут в изучении поведения наших старых и милых знакомых — рыб, птиц, морских черепах и белых мишек...


Источник: КОМПЬЮЛЕНТА


Тигровые и лисьи акулы запоминают карту «охотничьих угодий», облегчая себе   добычу пропитания.

Тигровая акула и спутники-прилипалы (фото RedCineUnderwater)Тигровая акула и спутники-прилипалы (фото RedCineUnderwater)    Индивидуальный участок обитания   морского хищника может достигать сотен и даже тысяч квадратных километров.   Понятно, что случайное блуждание в поисках куска хлеба на такой территории   неэффективно, тем более в открытом океане, где пищевые ресурсы могут быть   довольно скудны. Тут могла бы помочь «карта», но её «создание» опирается на   эффективную память и пространственное чутьё, которого многие животные лишены.

    Многие, но, как выяснилось, не тигровые акулы и не акулы-лисицы,   выказавшие способность к прокладыванию маршрутов.

    Несколько особей тигровых и   лисьих акул были снабжены датчиками, которые позволили учёным отслеживать их   перемещения в океане. Полученные данные были обработаны с помощью фрактального   анализа. «Исследования показали, что в поисках пищи (или полового партнёра, или   укрытия, в котором можно отдохнуть) акулы не блуждают беспорядочно, а   целенаправленно плывут в определённое место», — говорит один из соавторов работы   Янис Папастаматиу из Музея естественной истории во Флориде (США).

    При коротких путешествиях внутри   «личного» участка акулы ориентируются по запаху, температуре, направлению   течения и магнитному полю. А во время длинных заплывов по своим обширным   территориям наши герои, скорее всего, используют «картографические способности»,   для которых нужна хорошая пространственная память и внимательность к «рельефу   местности».

    Учёные отмечают, что «навык» к   прокладке маршрутов в поиске еды у акул отнюдь не врождённый, поскольку взрослые   рыбы использовали «карту местности» не в пример чаще, чем молодые. Расширение   границ собственного участка у акул тоже, скорее всего, связано со способностью   запоминать в прямом смысле слова «рыбные места» и неоднократно туда   возвращаться.

    Необычность этого исследования   заключается также в том, что «картографические способности» прежде считались   прерогативой лишь некоторых крупных наземных животных. Теперь в этот «клуб»   введены подводные хищники.

    Статья Яниса Папастаматиу и   коллег опубликована в мартовском номере издания Journal of Animal   Ecology.


Источник:  КОМПЬЮЛЕНТА


На примере первичной зубатой моли японские исследователи показали, что   видообразование далеко не всегда происходит за счёт смены меню.

Первичная зубатая моль Micropterix imperfectella (фото EduardoMarabuto Photography)Первичная зубатая моль Micropterix imperfectella (фото EduardoMarabuto Photography)    Чешуекрылые (они же бабочки, мотыльки и моли) — самый многочисленный   отряд насекомых, представителей которого нет разве что в Антарктиде. Обычное   объяснение их чудовищного многообразия таково: видообразование бабочек есть результат коэволюции с растениями. А именно: бабочки — точнее, их гусеницы — ели   растения, растения придумывали способы защиты, бабочки эти системы защиты   учились обходить либо просто меняли пищевые предпочтения.

    Кормовая база — ключевая   характеристика экологической ниши, поэтому такое видообразование получило название   экологического. По словам Томми Наймана из Университета Восточной Финляндии, биологи-эволюционисты в массе своей испытывают особую любовь   к такому — экологическому — типу видообразования, а потому пытаются объяснить с его помощью всё на свете.

    Юме Имада из Киотского университета провела сравнительный анализ всех видов первичной зубатой моли, обитающих на Японском архипелаге.   Исследователи проанализировали ДНК мотыльков для выяснения родственных связей   между видами. Таким образом было описано 25 видов, чьи эволюционные пути   разошлись примерно 35–15 млн лет назад. Важная деталь: все эти мотыльки ели одно   и то же растение — печёночный мох Conocephalum conicum. И живут они во влажных,   болотистых местах, расположенных по руслам рек.

    Объяснение подобному   многообразию видов в одной экологической нише простое, старое, но, по словам   Томми Наймана, хорошо забытое.

    Новые виды могут образовываться   не только в результате «прыжка» из одной экологической ниши в другую.   Видообразование может идти географическим путём — когда две популяции одного вида оказываются разделены   непреодолимым препятствием. Японские мотыльки — плохие летуны, привыкшие к   влажному климату, им почти не по силам преодолеть относительно сухую зону —   допустим, между двумя реками. При этом японские учёные не отвергают   экологическое видообразование полностью. Они лишь уточняют, что эколого-пищевые   механизмы вступают в силу после того, как произошло географическое разделение   вида, и в дальнейшем оба механизма могут действовать одновременно.

    Рассматриваемая работа   опубликована в свежем номере журнала Proceedings of the Royal Society   B.

    Ну а упомянутый выше Томми   Найман в статье, которая появилась в издании BMC Evolutionary Biology, подчёркивает, что географический (или   аллопатрический) способ видообразования может быть причиной появления на свет от   20 до 50 процентов современных видов животных. Так что от эволюционистов требуется не притягивать «любимую» экологию к образованию любого вида, а честно отвечать на вопросы, когда, как и почему появился новый вид.


Источник:  КОМПЬЮЛЕНТА


Эти дельфиновые научились добывать себе пропитание, не распугивая добычу   ультразвуковыми сигналами.

Тихоокеанские косатки очень умны и исключительно осторожны, когда дело идёт к обеду. (Фото Denis Scott / Corbis.)Тихоокеанские косатки очень умны и исключительно осторожны, когда дело идёт к обеду. (Фото Denis Scott / Corbis.)    Ультразвуковые щелчки и   посвистывания, издаваемые китообразными,   хорошо известны. Это и способ общения, и эхолокация при поиске пищи. И тут возникает следующий   парадокс. Хищные косатки едят не только рыбу, но и других морских млекопитающих —   тюленей и дельфинов, кои обладают исключительным слухом.

    Вопрос: как косаткам это удаётся   — находить добычу, не потревожив её?

    Фолькер Дике из Университета Сент-Эндрюс (Великобритания) и Рюдигер Риш из Университета Северной Каролины (США) исследовали охотничье поведение   кочующих косаток вблизи тихоокеанского побережья Аляски и Канады. Учёные   использовали специальные подводные микрофоны, позволявшие слышать даже треск   костей при пережёвывании дельфинами своих жертв.

    Наблюдение за косатками показало, что те демонстрируют довольно сложное охотничье поведение. Словно   спецназовцы, они прочёсывают большую территорию, построившись веером, с   расстоянием между особями в несколько сотен метров. При этом они плывут молча,   не переговариваясь и не сканируя подводное пространство эхолотом. Как только   кто-нибудь один замечает добычу, подводный «эфир» взрывается от сообщений, группа собирается на обед. После «обеденного перерыва» косатки снова замолкают и   продолжают патрулирование территории. Подробнее об этом любопытном исследовании   можно узнать из статьи в журнале Behavioral Ecology and Sociobiology.

    Члены группы не могут видеть   соседа, поскольку прозрачность этих вод невелика из-за постоянного таяния льдов,   прибывающих из Арктики. Остаётся только догадываться, как косаткам удаётся   сохранять боевой порядок, не общаясь и не видя друг друга. Исследователи   предполагают, что это поведение — возможно, результат тщательных «репетиций».   Известно, что косатки обладают педагогическими способностями и могут натаскивать   молодняк в части охотничьих тактик.

    Любопытно, что подобным   поведением отличаются только кочующие дельфиновые. Оседлые особи свободно   пользуются эхолотом, охотятся исключительно на «глухую» рыбу и демонстрируют   совсем другое поведение в группе.


Источник:  КОМПЬЮЛЕНТА


Ввезённый в Северную Америку из Азии кустарник тамариск доставляет местной природе кучу проблем. Вторгаясь в экосистемы по берегам рек, он вызывает эрозию, заиление и обезвоживание почвы. Самым эффективным методом борьбы с «оккупантом»   оказалось расселение по захваченным районам азиатского же жучка, природного   пожирателя тамариска.

Тамариску тамарисково! (Фото Chinch Gryniewicz / Ecoscene / Corbis.)Тамариску тамарисково! (Фото Chinch Gryniewicz / Ecoscene / Corbis.)    Кустарник тамариск, чьей родиной являются Азия, Африка и юг   Европы, около сотни лет назад проник в Северную Америку и успел превратиться в   настоящее экологическое бедствие. Это растение, непривередливое по отношению к   почве и терпящее существенные перепады температуры, любит селиться вдоль рек,   энергично вытесняя местные виды. В итоге пойменные леса постепенно уменьшаются под давлением тамариска, усиливаются эрозия и заиление почв, а сам кустарник интенсивно   выкачивает из земли воду.

     Больше всего страдает американский юго-запад, в тёплом и засушливом климате   которого растения и животные особенно зависят от содержания влаги в почве.   Тамариск распространяет своё влияние не только на дикую природу, но и на   фермерские хозяйства, прилегающие к рекам. Чтобы предотвратить превращение   территории в столь привычную для тамариска полупустыню, необходимо тратить   огромное количество воды и денег на мелиорацию захваченных «азиатом» земель...

    ...Или использовать особого жучка под названием Diorhabda   carinulata, который с чрезвычайной энергией поедает листву   тамариска.

    Учёные из Университета   Калифорнии в Санта-Барбаре по достоинству оценили этот способ   борьбы с растением-захватчиком. Результаты их исследования опубликованы в   журнале Oecologia. Учёные приводят впечатляющие цифры: за   год «работы» жучка в бассейне реки Гумбольдт на севере Невады, который   безнадежно захвачен кустарником, в почве осталось 3 083 750 кубометров воды,   которая при здравствующем тамариске могла отправиться в атмосферу. Эту величину   проще представить в практическом приложении: именно столько нужно воды, чтобы   напоить 400 га сельхозугодий, а ещё это ежегодный расход от 5 до 10 тыс.   сельских домохозяйств. Один-единственный жук оказался в состоянии вернуть к жизни целые   гектары пойменных экосистем и фермерских полей!      Роберт Паттисон, один из авторов исследования, говорит, что между   крестьянами, которые трудились на захваченных тамариском землях, и учёными,   оценивавшими эффективность жучка, наблюдалось редкое взаимопонимание. Целые   тамарисковые «леса» через пару лет после прибытия жука стояли абсолютно без   единого листа.


 

Источник:  КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Сальмонеллы вступают в союзы для защиты от нахлебников, узнали ученые

22-02-2013 Просмотров:9912 Новости Микробиологии Антоненко Андрей - avatar Антоненко Андрей

Сальмонеллы вступают в союзы для защиты от нахлебников, узнали ученые

Патогенные штаммы сальмонеллы оказались способными к вступлению в своеобразные "союзы" — колонии с особой химической средой, которая защищает ее от появления мутантов-"нахлебников", активно расходующих ресурсы и не приносящих пользы "альянсу",...

Ученые нашли останки саблезубого травоядного динозавра в Южной Африке

03-10-2012 Просмотров:11078 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ученые нашли останки саблезубого травоядного динозавра в Южной Африке

Американский палеонтолог обнаружил в осадочных породах из Южной Африки останки крайне необычного динозавра, обладавшего клювом, примитивными иглообразными перьями и длинными клыками, которые ящер использовал для поедания листьев и побегов деревьев...

Морские звезды способны удалять инородные тела

17-06-2015 Просмотров:7110 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Морские звезды способны удалять инородные тела

Необычные свойства морских звезд случайно обнаружили студенты Университета Южной Дании. В рамках исследования им потребовалось пометить датчиками ряд живых организмов — от кошек и собак до морских звезд. Современные микрочипы, создающиеся для подобных научных работ, вводятся...

Ученые выяснили, когда люди современного типа пришли в Арктику

26-05-2022 Просмотров:1372 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Ученые выяснили, когда люди современного типа пришли в Арктику

Ученые из Европы и России выяснили, что люди пришли в Арктику 40 тысяч лет назад.  Ученые исследовали найденные в низовьях Оби обработанные кости животных и выяснили, что самые древние следы присутствия...

Обнаружено влияние температуры на пол сцинков

04-11-2010 Просмотров:9786 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Обнаружено влияние температуры на пол сцинков

    Сколько "мальчиков" или "девочек" родится у сцинков вида Niveoscincus ocellatus, решают подчас не гены, а температура окружающей среды. Это установили Идо Пен (Ido Pen) и его коллеги из...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.