Перечни таких рангов, как и их названия, различаются в различных кодексах биологической номенклатуры.
В ботанике используются пять инфравидовых рангов (в порядке понижения уровня):
подвид (лат. subspecies),
разновидность (лат. varietas),
подразновидность (лат. subvarietas),
форма (лат. forma),
подформа (лат. subforma).
Формами называют, как правило, группы, морфологические различия между которыми определяются незначительным числом наследуемых признаков (нередко единственным признаком). Например, единственным отличием формы Gymnocalycium mihanovichii var. friedrichii f. rubra от прочих растений, относящихся к этой разновидности, является красный цвет стебля.
В зоологии используются два инфравидовых ранга (в порядке понижения уровня):
подвид (лат. subspecies),
вариетет (лат. varietas).
В бактериологии также используются два инфравидовых ранга, но они оба имеют одинаковый уровень (являются альтернативными названиями):
подвид (лат. subspecies),
вариетет (лат. varietas).
Подвидом называется географически или экологически обособленная часть вида, организмы которой под влиянием факторов среды в процессе эволюции приобрели устойчивые морфофизиологические особенности, отличающие их от организмов других частей этого вида. В природе организмы, относящиеся к разным подвидам одного вида, могут свободно скрещиваться и давать плодовитое потомство.
РАЗНОВИДНОСТЬ - в биологии - таксономическая категория (ранг) ниже подвида в систематике растений. Разновидность - группа особей, отличающихся от типичных для вида особей какими-либо второстепенными признаками (характером роста, окраски).
Форма (forma), одна из инфраподвидовых категорий в систематике растений и животных. Ботаниками употребляется обычно для обозначения категории по рангу ниже, чем разновидность; зоологами как синоним термина вариетет. Иногда термин форма применяют в том же значении, что и термин таксон, т. е. для обозначения систематической единицы любого ранга. В биологической литературе термин форма широко используется не только в строго таксономическом значении, но и для того, чтобы отметить различные особенности, связанные с циклом развития, характером существования, динамикой и становлением вида (например, полнокрылые и короткокрылые формы. у насекомых, сезонные формы. у растений, экологические, архаичные, прогрессивные, специализированные и многие другие формы у всех живых организмов).
Отличия между различными формами, относящимися к одной разновидности, обычно ограничиваются всего одним устойчивым признаком (например, окраской листьев).
При этом следует учитывать, что нет каких-либо точных критериев (определений), по которым организмы могут быть объединены в таксономическую категорию именно данного ранга.
Правила образования и применения инфравидовых названий, как и названий таксонов другого ранга, зафиксированы в международных кодексах ботанической и зоологической номенклатуры и сходных с ними кодексов номенклатуры бактерий и вирусов.
Международный кодекс ботанической номенклатуры признаёт пять таксономических категорий рангом ниже вида.
Названия инфравидовых таксонов состоят из названия вида, к которому они относятся, следующего за ним слова, обозначающего ранг таксона, и эпитета. Названия подвидов триномиальны, а названия таксонов более низкого ранга могут состоять из большего числа слов, но обычно сокращаются до тринарной формы, если это не приводит к неясности.
Ранги | Обозначения | Примеры |
---|---|---|
Подвид | subsp., ssp. | Petasites japonicus subsp. giganteus |
Разновидность | var. | Salix repens subsp. repens var. fusca Empetrum nigrum var. asiaticum |
Подразновидность | subvar. | Lupinus angustifolius var. angustifolius subvar. viridulus Kurl. et Stankev. |
Форма | f. | Lupinus angustifolius var. griseomaculatus f. belorussicus Kurl. et Stankev. |
Подформа | subf. | Citrus aurantium subf. banyu (Hayata) M.Hiroe |
Международный кодекс зоологической номенклатуры регламентирует только названия подвидов: эти названия триномиальны (триноминальны или тринарны), то есть состоят из трёх слов — названия вида и третьего слова, называемого в зоологии подвидовым названием. Названия подвидов пишутся в зоологии, в отличие от ботаники, без пояснительного слова, обозначающего ранг таксона. Пример: Canis lupus hallstromi — Новогвинейская поющая собака, один из подвидов волка.
Международный кодекс номенклатуры бактерий, как и Международный кодекс зоологической номенклатуры, регламентирует только названия подвидов. Отличие от названий зоологических подвидов состоит в том, что в бактериологии обычно приводится слово, указывающее на ранг таксона, при этом названия подвид и вариетет являются альтернативными названиями.
Источник: Википедия
Подсемейство (лат. subfamilia) — один из производных рангов иерархической классификации в биологической систематике.
В иерархии систематических категорий подсемейство стоит ниже семейства и выше трибы и рода.
Примеры: семейство бабочек голубянок (Lycaenidae Leach, 1815) в фауне России представлено подсемействами Theclinae, Lycaeninae и Polyommatinae.
Названия подсемейств образуются по правилам, регулируемым международными кодексами зоологической и ботанической номенклатуры. В зоологии название надсемейства образуется от названия типового рода, к основе которого добавляется стандартное окончание -inae. В ботанике к основе названия типового рода добавляется стандартное окончание -oideae.
Примеры. Род Geometra (бабочка-пяденица): основа Geometr- и окончание -inae дают название Geometrinae.
Источник: Википедия
Образ жизни адского вампира совершенно не соответствует его имени: вместо того чтобы преследовать добычу во мраке вод и высасывать из неё кровь, сей глубоководный головоногий моллюск предпочитает мирно собирать плавающий вокруг органический мусор.
Адский вампир, обитающий на глубинах до тысячи метров, — на редкость необычный моллюск. Во-первых, он обитает в зоне кислородного минимума, где могут жить лишь очень немногие из животных. Поэтому потребности в кислороде у него, как у настоящего вампира, минимальны. У глубоководных обитателей часто развиваются светящиеся органы, и адский вампир тут не исключение; правда, подсветку он использует для маскировки, чтобы сделать себя невидимым снизу, на более светлом фоне верхних слоёв воды.
Во-вторых, его строение настолько своеобразно, что адского вампира, вообще говоря, выделяют в отдельный отряд, где-то между настоящими кальмарами и осьминогами. Его небольшое (длиной до 30 см) тело красно-бурого цвета увенчано своеобразным «плащом»: щупальца адского вампира соединены перепонкой, что придаёт ему особенно зловещий вид. Кроме щупалец, в «плаще» есть ещё пара длинных нитевидных выростов, которые могут вытягиваться намного дальше настоящих щупалец. Существовали даже гипотезы, что и питается он по-вампирски, то есть высасывает кровь с помощью этих нитевидных выростов.
Однако, как пишут в
Все головоногие моллюски — хищники, поэтому, когда зоологи заглянули в желудок адского вампира, они ожидали увидеть пережёванные, раздробленные его клювом останки креветок или рыб. А вместо этого обнаружили смесь органических остатков: икру, конечности и антенны членистоногих, личинок, фекалии — в общем, то, что называется детритом. Весь это мусор был скреплён слизью.
Более подробные исследования анатомии длинных выростов-филаментов позволили понять, как питается адский вампир. Эти выросты покрыты липкими волосками, и, когда моллюск держит их на плаву, на них налипает всякая мелкая всячина. Затем он счищает то, что налипло, с помощью главных щупалец, которые образуют плащ, и запаковывает мусор в слизь. После чего остаётся лишь проглотить получившийся слизистый комок. Трудно представить другое животное, у которого образ жизни столь фатально расходился бы с названием.
Зоологи не исключают, что, возможно, существуют и другие головоногие-детритофаги, но пока что это единственный пример среди этой группы моллюсков. Впрочем, для адского вампира такой образ жизни вполне оправдан. С тем ничтожным уровнем кислорода в воде, в которой ему приходится жить, он не может позволить себе активную погоню за добычей, а потому довольствуется мирным собирательством.
Источник: КОМПЬЮЛЕНТА
Пользователи смогут увидеть в водах Большого Барьерного рифа
Google подчёркивает, что появление подводных панорам в Google Maps — это ещё один шаг на пути к созданию наиболее полной, точной и удобной карты мира.
Источник: КОМПЬЮЛЕНТА
Отряд (ordo) в систематике животных, таксономическая категория, объединяющая несколько семейств. Близкие отряды составляют класс. В ряде случаев, в связи с усовершенствованием системы, отряды объединяют в классы не непосредственно, а через соподчинённые категории: надотряд, инфракласс, подкласс. Новые данные, касающиеся как современных, так и вымерших животных, известные различия в воззрениях учёных на содержание и смысл системы порой приводят к необходимости пересмотра объёма отрядов, к разделению устаревших отрядов; так, ныне уже общепризнанно разделение отряды грызунов на два отряда: собственно грызунов и зайцеобразных. В систематике растений отряду равнозначен порядок.
Примеры:
Иногда используются также производные ранги:
в зоологии:
надотряд (лат. superordo) — ранг выше отряда,
подотряд (лат. subordo) — ранг ниже отряда,
инфраотряд (лат. infraordo) — ранг ниже подотряда;
в ботанике:
надпорядок (лат. superordo) — ранг выше порядка,
подпорядок (лат. subordo) — ранг ниже порядка.
Названия отрядов (порядков), как и названия других таксонов, ранг которых выше рода, являются униномиальными, то есть состоят из одного слова — существительного (или прилагательного, используемого как существительное) во множественном числе, написанного с заглавной буквы. В ботанике и бактериологии для названия порядков используется стандартизированное окончание -ales, для названий подпорядков — окончание -ineae. Эти окончания добавляются к основе названия типового рода (основа определяется по форме родительного падежа): например, от названия рода Crossosoma (родительный падеж — Crossosomatis; русское название — Кроссосома) образовано название порядка Crossosomatales — Кроссосомоцветные.
___________________________________________________________________________
Отряд как ранг иерархической классификации живых организмов впервые был введен в употребление лейпцигским ботаником Августом Квиринусом Ривинусом (Бахманом) в его ботанических работах 1690-х гг. Карл Линней был первым, кто последовательно применил категорию отряда в разделении всех трёх царств природы (минералов, растений и животных) в своей работе Система природы (Systema Naturae) (1-е издание: 1735).
Порядки растений, которые Карл Линней использовал в книгах Система природы (Systema Naturae) и Виды растений (Species Plantarum), были искусственными, введёнными лишь для того, чтобы разделить искусственные классы системы на более удобные для запоминания и определения растений мелкие группы.
Одновременно с этим Линней использовал категорию порядка в своей естественной системе, опубликованой в работах Классы растений (Classes plantarum, 1738) и Философия ботаники (Philosophia botanica, 1751). Эти группы получили название естественных порядков и в несколько переработанном виде использовались в естественных системах растений в течение XVIII и XIX вв. (включая системы в Prodromus Декандоля и Genera Plantarum Бентама и Гукера). В то же время, во французской ботанической литературе (начиная с работы Мишеля Адансона Familles naturelles des plantes (1763) и до начала XX века в качестве эквивалента латинского ordo использовалось французское слово famille (мн. ч. familles). Эта эквивалентность была формально закреплена правилами ботанической номенклатуры (Lois de la nomenclature botanique, 1868) Альфонса Декандоля, которые были предшественником используемого в настоящее время Международного кодекса ботанической номенклатуры.
В первых Международных правилах ботанической номенклатуры (1906) ранг семейства (familia) был закреплен за группами, которые до этого назывались в франкоязычной литературе «famille», в то время как название порядок (ordo) было сохранено для более высокого ранга, который в XIX веке нередко называли когортой (cohors, мн. ч. cohortes).
Некоторые из семейств растений все ещё сохраняют названия линнеевских «естественных порядков» или даже названия долиннеевских естественных групп, например, Palmae (пальмы) или Labiatae (губоцветные).
В зоологии некоторые линнеевские отряды выдержали проверку временем. Некоторые из предложенных им названий отрядов всё ещё находятся в употреблении, например Lepidoptera для отряда, объединяющего бабочек и мотыльков, или Diptera для отряда, объединяющего мух и комаров.
Источник: Википедия
Три́ба или, реже, коле́но (лат. tribus) — ранг таксона в биологической систематике, стоящий в иерархии систематических категорий ниже семейства и выше рода.
В некоторых случаях применяются производные ранги:
надтриба (лат. supertribus) — только в зоологии;
подтриба (лат. subtribus).
Ранги трибы и, тем более, надтрибы и подтрибы используются лишь в чрезвычайно детально разработанных классификациях отдельных групп.
С номенклатурной точки зрения, триба относится к группе семейства: название трибы образуется при помощи добавления характерного окончания к основе имени типового рода в родительном падеже. В зоологической номенклатуре для триб принято стандартизованное окончание -ini, в ботанической — -eae. Для подтриб в зоологической номенклатуре принято стандартизованное окончание -ina, а в ботанической -inae.
В русскоязычных работах по ботанике иногда употребляются термины колено и подколено, соответствующие трибе и подтрибе. Эта традиция была закреплена и в одном из переводов МКБН на русский язык. Примеры употребления:
Роды Люди (Homo) и Шимпанзе (Pan), наряду с Австралопитеком (Australopithecus) и несколькими другими ископаемыми родами, относятся к трибе Hominini
Род Белокопытник (Petasites) относится к подтрибе Мать-и-мачеховые (Tussilagininae) трибы Крестовниковые (Senecioneae).
Источник: Википедия
Группа исследователей под руководством
Напомним, нынешней весной японские исследователи высоко
Напротив, авторы рассматриваемой работы
Наибольший интерес в этом сценарии, по мнению исследователей, представляют первые сотни миллионов лет после формирования планет. Дело в том, что образование звёзд (и планетных систем) происходит внутри относительно плотных открытых звёздных скоплений, где в сфере не более парсека в диаметре одновременно находятся от 100 до 1 000 молодых звёзд, что весьма актуализирует захват обломков планет одной из таких звёзд другим светилом.
Через сотни миллионов лет после начала звездообразования открытые скопления постепенно рассеиваются. У скопления, в котором возникло Солнце, на это ушло около 700 млн лет. Однако до этого в планетных системах скопления может произойти всякое. К примеру, нечто вроде
По подсчётам авторов работы, вероятность переноса материала нашей планетной системы, попавшего в космос в ходе ПТБ, в соседнюю по скоплению составляет порядка 100 трлн — 30 квдрлн событий (для обломков тяжелее 10 кг). Из них примерно 200 млрд имели земное происхождение. Увы, не вполне ясно то, как много из них несли на себе первых представителей земной жизни. Впрочем, с учётом многочисленности обломков, какое-то их количество, несомненно, могло быть «заселено» (если, конечно, к тому моменту жизнь уже была).
Первые свидетельства наличия воды на Земле датируются 290 млн лет после образования Солнечной системы. Можно предположить, что сходные условия характерны и для многих планет звёзд того открытого звёздного скопления, в котором образовалось Солнце. Следовательно, подытоживают астрономы, при условии раннего зарождения жизни обмен первыми организмами между Солнцем и его соседями мог произойти примерно 300 млн раз за первые 700 млн лет.
Любопытно, что у этого процесса есть и другая сторона. Если предположить, что процессы типа поздней тяжёлой бомбардировки имели место и у соседей Солнца, причём у таких, которые уже имели свои планеты с первичной жизнью, то сходное количество случаев переноса могло иметь место и в обратном направлении.
Соответствующее исследование опубликовано в журнале
Источник: КОМПЬЮЛЕНТА
Развитие средств прямого обнаружения экзопланет идёт полным ходом и ставит перед исследователями вопрос: как полученные изображения экзопланет и экзолун можно использовать для определения их обитаемости? Астрономы из Германии и США, проведя моделирование различных вариантов такой «окраски», пришли к выводу, что по ней действительно можно судить о наличии и даже до некоторой степени о составе биосферы.
Однако так планета выглядела не всегда, и очень вероятно, что такого цвета нет у многих потенциально обитаемых планет за пределами нашей Солнечной системы.
Более того, гипотетический наблюдатель (с аппаратурой соответствующего уровня) из другой звёздной системы разглядит не только этот (голубой) цвет. Давно известно, что при суточном вращении Земли поглощение красного света будет периодически резко падать («
С другой стороны, отмечают исследователи, анализ цвета способен помочь при выявлении менее развитой жизни — например, экстремофильной. Лишайники, биоплёнки, цианобактериальные маты эффективно обнаруживаются по специфическим цветам, и их доминирование, несомненно, придаст поверхности планеты свои оттенки.
В целом авторы работы при выборе объектов рекомендуют отдавать предпочтение планетам голубой части спектра перед красноватыми типа Марса. Среди прочего такой цвет сигнализирует о значительном присутствии жидкой воды, что повышает шансы на обнаружение жизни.
В то же время остаются варианты, не поддающиеся обнаружению названным способом. Почвенные экстремофилы для защиты от ультрафиолета и иных угроз могут вовсе исчезнуть с поверхности, и тогда их влияние на цвет экзопланеты будет минимально. Очень сложно также наблюдать планеты с серьёзной облачностью…
И ещё одно. Современный научный мир не вполне твёрдо уверен в исключительности нынешних оттенков земной тверди. Ведь в иные геологические эпохи окрас мог отличаться от сегодняшнего, не так ли? Скажем, гипотеза «
Кстати, предполагается, что зелёный цвет хлорофилловые организмы приобрели случайно — в конкуренции с пурпурными. После же вытеснения тех, первичных автотрофов зелёный закрепился как общая черта фотосинтезирующих организмов. Словом, если гипотеза верна, то зелёный цвет даже в условиях жизни под солнцеподобной звездой случаен, а потому не может рассматриваться как достоверное свидетельство высокоразвитой жизни.
С препринтом соответствующего исследования можно ознакомиться
Источник: КОМПЬЮЛЕНТА
Если муравьям приходится иметь дело с большим объёмом информации, решение принимает колония в целом, поскольку отдельно взятая особь в этом случае непременно ошибётся.
Время от времени муравьям приходится менять место жительства: вся колония уходит из родного муравейника, унося с собой яйца и личинок. Но перед переездом нужно выяснить, где будет располагаться новое гнездо. Информацию о потенциальных местах собирают разведчики.
Некоторое время назад зоологи заметили, что, даже если ни один из муравьёв не исследовал все возможные места, колония всё равно выберет для будущего муравейника наиболее подходящее. Иными словами, колония как будто объединяет данные от всех посланных муравьёв.
Чтобы проверить это, исследователи из
Переезжая, муравьи учитывают множество параметров: расположение входа в укрытие, его глубину, затенённость и т. д. То есть при восьми потенциальных местах для колонизации на насекомых обрушивалась лавина данных. Отдельные особи, как показал опыт, делали правильный выбор между двумя вариантами, но с восемью часто ошибались. Если же решение зависело от колонии, то и при множестве вариантов насекомые останавливались на оптимальном. Иными словами, муравьи будто бы осознают ограниченность индивидуальных умственных способностей, и при информационной перегрузке решение оставляют за всей колонией. Разрозненные данные каким-то образом распределяются и анализируются внутри сообщества, хотя как именно это происходит, ещё предстоит выяснить.
В выборе из нескольких вариантов нельзя не увидеть аналогию с некоторыми ситуациями, в которые часто попадает современный человек. В нынешнем гиперинформационном обществе на нас постоянно льётся поток информации, который отдельно взятый человек переработать не в состоянии. Разумеется, есть компьютерные методы анализа, но они далеко не всегда могут подсказать правильное решение. Не пора ли и нам заняться организацией чего-то вроде коллективного мозга, по образу и подобию муравьиного?
Результаты исследования будут опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
Аппаратам, которые отправятся исследовать
Новое исследование говорит о том, что вода может оставаться в жидком состоянии близ поверхности Европы лишь несколько десятков тысяч лет — мгновение по сравнению с возрастом Солнечной системы.
О том, что Европа, диаметр которой 3 100 км, имеет гигантский океан под ледяной оболочкой, говорят многие. Хотя поверхность спутника холодна, тепла, создаваемого в её внутренностях притяжением Юпитера, вполне достаточно для поддержания воды в жидком состоянии. По некоторым оценкам, дно океана может располагаться в 100 км под замороженной твердью.
На Земле жизнь можно найти повсюду, где есть вода, поэтому Европа и манит к себе исследователей. Однако остаётся неизвестным, насколько трудно будет добраться до тамошнего океана отважному автоматическому путешественнику. Есть и такие учёные, которые подозревают, что до воды всего несколько километров.
Г-жа Калусова провела математическое моделирование того, как смесь жидкой воды и твёрдого льда ведёт себя в определённых условиях. Выяснилось, что различия в плотности и вязкости (а также других показателях), возможно, заставляют воду, оказавшуюся близ поверхности Европы, быстро просачиваться через частично растаявший лёд вниз — к остальному океану.
Европа не единственная луна Солнечной системы с подземным океаном. Другие спутники Юпитера,
Результаты исследования представлены на
Источник: КОМПЬЮЛЕНТА
18-02-2014 Просмотров:8910 Новости Эволюции Антоненко Андрей
Возникновение и первоначальное развитие жизни на Земле вовсе не нуждались в высоком содержании кислорода. Это экспериментально доказали датские биологи, поставив опыт над современными морскими губками. Первые в мире животные сидели на...
27-01-2011 Просмотров:10515 Новости Эволюции Антоненко Андрей
Животным понадобилось каких-то 85 млн лет (мгновение по геологическим меркам) на то, чтобы развиться и обжить бóльшую часть суши и океанов. Хотя ископаемые останки и молекулярная биология могут многое рассказать...
22-09-2016 Просмотров:6133 Новости Палеонтологии Антоненко Андрей
Подобно современным омарам, жившие сотни миллионов лет назад трилобиты могли собираться группами и отправляться в совместные путешествия по дну древних океанов. К такому выводу пришли польские палеонтологи, изучив десятки окаменелостей...
05-02-2019 Просмотров:2739 Новости Палеонтологии Антоненко Андрей
Останки нового вида динозавров, которые отпугивали хищников с помощью длинных шипов на спине, обнаружили в Аргентине, сообщает интернет-портал Phys.org со ссылкой на исследователей. Сотрудник CONICET Пабло Галлина на фоне реконструкции скелета...
08-03-2011 Просмотров:11388 Новости Зоологии Антоненко Андрей
Чтобы зафиксировать в массе зоопланктона перемещения отдельной особи, шведские экологи буквально подковали водяную блоху. Дафния (фото Chantal Wagner)Биологи обычно не затрудняются с наблюдениями за миграцией животных. В этом им помогают разнообразные...
Биологи выяснили, что два очень необычных штамма микробов научились запасать энергию крайне непривычным способом для живых организмов – они выращивают в себе микроскопические кристаллы магнетита и "накачивают" их электронами, таким образом превращая…
Когда мозг совершает ошибку, он пытается понять, что было сделано не так, — и предпринимает ещё одну попытку справиться с заданием. И самое удивительное, как пишут в Nature Neuroscience исследователи из Брауновского университета, Йеля и Айовского университета (все…
Мельчайшие крупинки металлов и металлоидов попадают в атмосферу по самым разным причинам — например, во время извержения вулканов. Однако, по мнению экологов, ничто не сравнится с человеческой деятельностью. Металлургические заводы,…
Самый ранний пример заботы насекомых о своем потомстве обнаружили китайские ученые в янтарях Бирмы (Мьянмы). Уже в середине мелового периода пластинчатые червецы вынашивали молодь внутри специального воскового кокона, оберегавшего новорожденных…
Английские геологи обнаружили на Шпицбергене следы того, что они считают признаком еще одного — шестого — массового вымирания жизни на Земле. Подробности опубликованы в The Geological Society of America Bulletin. Найденные окаменелостиВ принципе ученым…
Это может показаться странным, но, хотя жить без сна невозможно, мы до сих пор не знаем, зачем спим. Считается, что во время сна происходит консолидация памяти, перевод информации из кратковременного хранилища…
В системе Енисея пескарь сибирский принадлежит к распространенным рыбам. Населяет большие и малые реки, ручьи, озера, преимущественно проточные, пруды и водохранилища. В Енисее встречается вплоть до Полярного круга. Известен в…
Ца́рство (лат. regnum) — иерархическая ступень научной классификации биологических видов. Таксон самого высокого уровня среди основных. Исторически выделяют пять основных царств живых организмов: Животные, Растения, Грибы, Бактерии (или дробянки) и Вирусы. С…
Папа Римский Франциск рассказал, что между христианским учением, теорией эволюции и современной космологией нет противоречия. Папа Франциск заявил о своем согласии с теорией эволюции Такое заявление он сделал, выступая в Папской…