Мир дикой природы на wwlife.ru
Вы находитесь здесь:Словарь>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Мышцы


Шимпанзе оказались всего в 1,35 раза сильнее человека на килограмм массы, что опровергает популярные представления о сверхъестественной силе этих человекообразных обезьян, заявляют ученые в статье, опубликованной в журнале PNAS.

ШимпанзеШимпанзе"За последние 100 лет накопилось множество свидетельств очевидцев, указывающих на то, что мускулы шимпанзе сами по себе сильнее, чем их аналоги в организме человека. Никто, правда, не проверял, так ли это на самом деле. Если подобные различия существуют, то это было бы большим сюрпризом для биологов, учитывая все то, что мы знаем о свойствах мышц существ примерно одинаковых размеров — таких, как шимпанзе и люди", — рассказывает Брайан Амбержер (Brian Umberger) из университета штата Массачусетс в Амхерсте (США).

Еще в эпоху покорения Африки британскими и французскими путешественниками и авантюристами в середине и конце XIX века в прессе и научно-популярной литературе стали распространяться истории о мифической силе африканских человекообразных обезьян, способных разорвать человека на части и одновременно бороться с несколькими охотниками сразу, что относилось в том числе и к шимпанзе.

Подобные видимые различия в силе людей и приматов многие эволюционисты и натуралисты того времени связывали с тем, что человек присвоился к жизни в цивилизованном обществе. Благодаря ему люди могут использовать орудия труда и другие приспособления для добычи пищи, и грубая физическая сила им не так сильно нужна, как приматам.

С другой стороны, эксперименты, которые измеряли прямую физическую силу шимпанзе в зоопарках и питомниках, рисовали противоположную картину: обезьяны в среднем оказывались всего в полтора раза сильнее человека в пересчете на килограмм массы. Амбержер и его коллег проверили, сохранялась ли эта пропорция для одиночных мышечных волокон или же она была на самом деле выше для них, как утверждали путешественники конца XIX – начала XX веков.

Для проведения подобных опытов ученые выделили из образцов мускулов ноги шимпанзе и человека несколько одиночных мышечных нитей, в которых присутствовал один из трех видов белков, отвечающих за сжатие мышц. Силу каждого из них ученые измерили, заставляя клетки сокращаться, попутно изучая то, как были устроены молекулы человеческих и обезьяньих версий этих аминокислотных цепочек.

Используя эти данные и то, как распределены волокна всех трех типов по телу приматов и людей, ученые вычислили совокупную силу конечностей и тех, и других, а также сравнили их между собой. Оказалось, что различия между обезьянами и людьми были не такими существенными, как показывали старые тесты: шимпанзе были всего в 1,35 раза сильнее человека, и их мышцы рук и ног почти не отличались по своему устройству от человеческих аналогов.

Единственным отличием шимпанзе от людей было то, что их руки и ноги содержат в себе относительно много "быстрых" мышечных волокон, отвечающих за мгновенное приложение силы, что, вероятно, объясняет то, как обезьянам удавалось проявлять "суперсилу" на протяжении очень коротких промежутков времени.

"Обратной стороной этого является то, что люди, благодаря наличию у них множества "медленных" мышц, обладают большей выносливостью и лучше выдерживают длительные нагрузки, такие как путешествия на большие расстояния. Когда мы сравнили обезьян, людей и других животных, мы обнаружили, что не приматы, а человек является здесь аномалией: эволюция толкала нас в сторону роста выносливости, а не роста "мгновенной" силы", — заключает Амбержер.


Источник: РИА Новости


 

Опубликовано в Новости Зоологии
Понедельник, 01 Сентябрь 2014 15:34

Древнейшее существо с мышцами

Остатки самого древнего существа, обладавшего настоящими мышцами, обнаружили британские палеонтологи на канадском острове Ньюфаундленд. По предварительным данным, первый потенциальный бодибилдер планеты был родственником кораллов и жил на дне морском в эдиакарском периоде.

Haootia quadriformis. Реконструкция: Martin BrasierHaootia quadriformis. Реконструкция: Martin Brasier Новое существо назвали Haootia quadriformis. Внешне оно напоминало четырехугольную вазочку для конфет, балансирующую на тонкой ножке. Симметрия четвертого порядка, которой обладала хаоотия, навела ученых на мысль о том, что она могла бы приходиться родственницей книдариям – типу ископаемых и современных животных, к которому относятся кораллы, медузы и актинии.

Весьма почтенный возраст Haootia quadriformis составляет 560 млн лет. Традиционно изучение появления, развития и распространения животных начинается с так называемого кембрийского взрыва, стартовавшего около 540 млн лет назад. Более древние остатки живых существ, безусловно, тоже встречаются, но их мало и они, как правило, достаточно плохой сохранности.

"Проблема в том, что хотя животные явно существовали и до кембрийского взрыва, очень немногие окаменелости, найденные в более древних породах, обладают особенностями, которые позволили бы убедительно идентифицировать их как животных, – констатировал ведущий автор исследования, доктор сказал Алекс Лю из Кембриджского университета. – Поэтому нам приходится изучать различные аспекты их экологии, питания и размножения, чтобы понять, что они представляли собой на самом деле. В последние десятилетия было найдено немало следовых дорожек и химических доказательств, происходящих из этих древних, докембрийских пород. Они и некоторые молекулярные сопоставления дают нам косвенные основания предложить, что животные имеют гораздо более древнее происхождение, чем это считалось ранее".

По словам доктора Лю, Haootia quadriformis отличается от любого известного науке эдиакарского организма. Кроме нестандартного плана строения с редко встречающейся симметрией четвертого порядка она также определенно обладала пучками мышечной ткани, проходящими по ребрам "вазочки" и продолжающимися в раздваивающиеся выросты по ее углам. Это обстоятельство переводит хаоотоию из разряда просто редких докембрийских организмов в первое в мире существо, обладавшее настоящими мышцами.

До сих пор наличие мышц у эдиакарских обитателей определялось лишь по косвенным признакам вроде следовых дорожек. Раз были оставившие следы конечности, рассуждали палеонтологи, значит, были и приводившие их в движение мышцы. Однако теперь отпечатки мышечных пучков описаны и сами по себе.

"Эволюция мускулистых животных, обладавших мышечной тканью, позволявшей точно контролировать свои движения, проложила путь к освоению широкого спектра пищевых стратегий и экологических ниш и в конечном итоге позволила животным стать доминирующей формой жизни на Земле", – подчеркнул Лю.

 


 

Истчоник: PaleoNews


 

Опубликовано в Новости Палеонтологии

Летающие насекомые машут крыльями с чудовищной частотой: например, у комара она может достигать 500 взмахов в секунду. И довольно долго учёные пытались выяснить, как насекомым это удаётся. Можно было бы предположить, что они машут крыльями как-то иначе, чем мы, то есть позвоночные, двигаем крыльями, лапами, ногами и руками, что у насекомых работает какой-то свой механизм. Но нет. Молекулярные исследования, проведённые в научно-исследовательском институте JASRI (Япония), привели к неожиданному результату: оказалось, никакого особенного «насекомого» механизма для махания крыльями нет, механика тут та же, что и в наших с вами мышцах. 

Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина. (Рисунок Shutterstock.)Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина. (Рисунок Shutterstock.)Любое мышечное сокращение начинается с того, что на мышечную клетку приходит нервный импульс, который открывает в мембране мышечной клетки каналы для ионов кальция. Кальций связывается с белком тропонином, который находится в связке с нитевидным полимерным белком актином. Ионы заставляют тропонин изменить своё положение на актине так, что с ним теперь может провзаимодействовать другой белок — миозин. Длинная молекула миозина начинает изгибаться и как бы идти по нити актина; это смещение актиновых и миозиновых нитей относительно друг друга и приводит к сокращению мышцы.

Но если речь идёт о сверхчастых сокращениях, как в случае крыльев насекомых, такой механизм не работает: кальциевые насосы просто не успевали бы включать и выключать потоки ионов в ответ на нейронный импульс. И у насекомых никаких сверхчастых потоков кальциевых ионов действительно нет. После того как к мышце приходит импульс, она начинает осциллировать, то есть в ответ на один импульс производится множество сокращений. Это можно сравнить с тем, как маятник какое-то время качается по инерции от одного-единственного толчка. При этом сокращения мышц поддерживаются сами собой: чем сильнее мышца-антагонист сократится и тем самым растянет мышцу напарника, тем сильнее потом сократится вторая мышца. То есть растяжение тут стимулирует последующее сокращение. 

Этот феномен известен давно, и свойствен он тем мышцам, от которых требуются ритмичные сокращения, — например, сердцу. Но и у сердца в ритмичных сокращениях задействованы кальциевые каналы. У насекомых же они во время работы крыльев молчат. Такую особенность пытались объяснить тем, что растяжение мышцы даёт больше возможностей миозину связаться с актином. Но это одновременно предполагало и то, что тропонину не нужна кальциевая стимуляция, чтобы освободить от себя актин, а отсюда, в свою очередь, вытекало, что сократительные белки насекомых принципиально отличаются от белков позвоночных.

Хироюки Ивамото и Наото Яги проанализировали структурные изменения в мышечных белках насекомых, происходившие во время полёта. Объектом исследования послужил шмель, которого просвечивали рентгеновскими лучами, пока он махал крыльями, и всё это снимали на камеру с частотой 5 000 кадров в секунду. Учёные убедились, что у насекомых (у шмелей по крайней мере) нет никаких принципиальных модификаций молекулярного механизма мышц. Первичный нейронный импульс запускает серию сокращений, которые поддерживаются вышеописанной «активацией на растяжение»: чем сильнее растягивается мышца, тем сильнее она потом сократится. 

Единственная особенность была в том, что растяжение провоцировало структурные деформации в миозине, из-за которых он прочнее связывался с актином, что и повышало силу сокращения. В остальном же всё было так, как обычно: и кальций-зависимое поведение тропонина, и скольжение миозина и актина друг относительно друга. Иными словами, насекомые просто реализовали скрытые возможности того же самого молекулярного механизма, с помощью которого, например, птицы машут крыльями. 

Надо сказать, что попытки сделать рентгеноструктурный «портрет» летящего насекомого предпринимались неоднократно, однако получить полную информацию о работе крыльев мешало несовершенство техники. И надо было дождаться наших дней, когда появились камеры, способные делать 40 кадров на один взмах шмелиного крыла, чтобы понять, как всё-таки насекомые летают. 

Результаты исследования опубликованы в журнале Science

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Цитологии
Суббота, 15 Июнь 2013 10:52

Как животные берегут кислород

Без кислорода жизни нет, и все организмы неустанно заботятся о том, чтобы эффективно снабжать свои органы и ткани этим газом. Всё, что связано с газообменом, изучается довольно давно, и, казалось бы, белых пятен тут быть не может. Тем не менее эти самые физиологические, генетические и молекулярно-биохимические уловки, повышающие эффективность газообмена, столь разнообразны, что до сих пор интригуют учёных. Интригуют настолько, что в журнале Science, например, вышло сразу три статьи, посвящённые особенностям газообмена у разных групп животных.

Схема молекулы миоглобина. (Иллюстрация giselaguarneros.)Схема молекулы миоглобина. (Иллюстрация giselaguarneros.)Самыми изобретательными в смысле снабжения тканей кислородом считаются водные животные, особенно те, что начинали свою эволюцию на суше, но потом вернулись в водную стихию — как китообразные. В первой из статей как раз и говорится об особенностях газообмена у китов, точнее, об особенностях их миоглобина. Миоглобин — это мышечный белок, который запасает кислород и снабжает им мышцы; он же придаёт мышцам красный цвет. Очевидно, чем больше миоглобина, тем больше кислорода удастся запасти, и у животных, которые ныряют глубоко и надолго, миоглобина в мышцах так много, что они выглядят уже не красными, а чёрными.

Скелет пакицета — древнейшего предка китов. (Фото Esteban Rivas.)Скелет пакицета — древнейшего предка китов. (Фото Esteban Rivas.)Однако миоглобин в таких концентрациях должен слипаться и превращаться в бесполезные белковые скопления. Но, как пишут Майкл Беренбринк и его коллеги из Ливерпульского университета (Великобритания), у китов миоглобин имеет некоторые особенности: его молекулы несут избыточный положительный заряд, из-за которого они отталкиваются друг от друга — как одноимённые полюса магнита. То есть «водный» миоглобин защищают от слипания электростатические силы.

Однако исследователи этим не ограничились — они попытались восстановить молекулы миоглобинов, которые были у предков современных китообразных. А по структуре миоглобина можно было прикинуть, сколько времени мог проводить под водой тот или иной ископаемый организм. Так учёным удалось показать, что древний наземный предок современных китообразных по имени пакицет, хоть и жил вблизи водоёмов, мог проводить под водой не более 90 секунд. При этом по размерам тела пакицет не превосходил современного волка. Но уже спустя 15 млн лет шеститонный базилозавр мог нырять на 17 минут. Ну а нынешние киты проводят под водой более часа.

Другая работа, выполненная международной командой учёных из Австралии, Франции, Италии и Канады, посвящена гемоглобину лучепёрых рыб. Гемоглобин представлять не надо, это, наверное, самый известный из белков крови (и вообще — из белков). Однако у некоторых организмов гемоглобин имеет любопытные особенности. Например, гемоглобин рыб сверхчувствителен к кислотности и быстро избавляется от кислорода, если кислотность среды начинает расти. Если, скажем, в воде оказывается чуть больше углекислого газа, который повышает кислотность, то рыбий гемоглобин старается избавиться от кислорода («эффект Рута»).

Иными словами, в условиях повышенной кислотности ткани должны быстро насыщаться кислородом. Это действительно так в случае плавательного пузыря, когда гемоглобин интенсивно накачивает его кислородом, чтобы не дать рыбе задержаться на слишком большой глубине, в области высокого давления. То же самое исследователям удалось увидеть и в рыбьих мышцах: они вводили в мышцы сенсор, чувствующий уровень кислорода, и помещали рыб в воду, насыщенную CO2. Кислород в мышцах немедленно подскакивал на 65%. Видимо, в тяжёлых условиях важно было насытить ткани кислородом, чтобы выдержать стресс. Учёные полагают, что, например, лосось может подниматься по реке, преодолевая препятствия, как раз благодаря такому свойству гемоглобина, насыщающему мышцы кислородом.

Белоногие хомячки, обитающие в горах, пользуются особой версией гемоглобина. (Фото n.clark.)Белоногие хомячки, обитающие в горах, пользуются особой версией гемоглобина. (Фото n.clark.)В третьем материале, написанном коллективом авторов из Университета Небраски в Линкольне (США) и Университета Орхуса (Дания), речь идёт опять-таки о гемоглобине, но на примере совсем не водного животного — белоногого хомячка. Эти грызуны живут на разных высотах над уровнем моря, что и отражается на структуре их гемоглобина: у тех хомячков, что забрались высоко, гемоглобин лучше связывает кислород. То есть даже при пониженной его концентрации гемоглобин всё равно выхватит кислород из воздуха и доставит куда надо. В этом нет ничего неожиданного, однако авторы работы обнаружили любопытное свойство у мутаций, которые отвечали за разницу в сродстве к гемоглобину. Этих мутаций было двенадцать, причём крайне важным был контекст. Если мутация оказывалась в определённой комбинации с другими, то эффект от неё был положительный. Если же благоприятного контекста не было, мутация вела к обратному эффекту — гемоглобин начинал хуже связывать кислород. То есть польза и вред от мутации (по крайней мере в случае гемоглобина у белоногих хомячков) — понятия относительные, а не абсолютные.

Все перечисленные работы посвящены главным газообменным белкам, однако, разумеется, модификациями в гемоглобинах и миоглобинах дыхательные усовершенствования не исчерпываются. Легко заметить, что во всех случаях адаптации в физиологии и молекулярной механике газообмена возникали, когда животным нужно было решить стрессовую проблему — например, выйти в новую среду обитания или преодолеть изменения в окружении. Если учесть, что прогресс человеческой цивилизации тоже подчас приводит к сильному недостатку кислорода (что в первую очередь касается жителей мегаполисов), то не пора ли и нам перенять что-то из газообменных изобретений китов? Или хотя бы белоногих хомячков?..

 


 

Истчоник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Зоологии

Губки возникли ещё до того, как у многоклеточных появилась мышечная ткань. Но они способны двигаться за счёт сокращений покровных, эпителиальных клеток. Учёные полагают, что эти клетки губок являются древнейшими предками мышечной ткани у животных.

Морская губкаМорская губкаЛюбое животное, от улитки до гепарда, двигается за счёт сокращения и расслабления мышц. Существует, однако, группа многоклеточных организмов, которые возникли ещё до того, как в эволюции появились мышечные клетки, — это губки. И тем не менее губки тоже могут двигаться: то, что они сжимаются, если их потревожить, люди знают с античных времён.

Зоологи из Йенского университета имени Фридриха Шиллера (Германия) решили выяснить, за счёт чего движутся губки. У этих организмов, как считается, простая, дотканевая организация: их клетки не обладают резко различной структурой. До сих пор полагали, что за сокращение тела отвечают веретенообразные клетки, пронизывающие толщу тела губки. Чтобы однозначно ответить на этот вопрос, исследователи получали трёхмерные изображения микросрезов губок в разных состояниях (технология называется трёхмерным волюметрическим анализом).

В статье, опубликованной в издании Journal of Experimental Biology, исследователи показывают, что своими двигательными способностями губки обязаны эпителиальным клеткам — пинакоцитам, которые выстилают наружную поверхность тела, а также стенки крупных каналов. Предположительно, покровные клетки инициируют сокращение, а уже в сжатом виде губка удерживается благодаря веретенообразным клеткам в глубине тела.

Открытие немецких зоологов не только отвечает на вопрос, за счёт чего сокращаются губки, но и проливает свет на происхождение мышечной ткани. До сих пор приходилось считать, что мышечная ткань возникла в прямом смысле из ниоткуда: эволюционных предков мышечной клетки обнаружить не удавалось. Хотя сходство между покровными клетками губок и мышечными клетками других животных много раз отмечалось, только сейчас удалось получить прямые доказательства сократительной функции эпителиальных пинакоцитов у губок. Но чтобы окончательно записать эти клетки в предки мышечной ткани, нужны генетические подтверждения родства между этим «переходным звеном» и настоящими мышечными клетками.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Зоологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Сухопутные млекопитающие превратились в китов очень быстро

19-11-2011 Просмотров:9859 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Сухопутные млекопитающие превратились в китов очень быстро

Обнаружены останки самого древнего антарктического кита, известного науке. Челюсть длиной 60 см была найдена на Антарктическом полуострове. Древний кит в представлении художника (изображение Marcelo Reguero / AFP / Getty Images)Животное, достигавшее...

Люди и обезьяны стареют одинаково

19-03-2011 Просмотров:11602 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Люди и обезьяны стареют одинаково

Человек живёт долго вовсе не оттого, что стареет медленнее. Как оказалось, по скорости дряхления мы не отличаемся от других приматов. Мартышка мона (фото Max Milligan) Мало кто из животных может поспорить...

Ученые нашли в Австралии останки сумчатого льва размером с крысу

24-08-2016 Просмотров:6292 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ученые нашли в Австралии останки сумчатого льва размером с крысу

Палеонтологи обнаружили в Австралии останки необычно маленького сумчатого льва, который был назван в честь известного телеведущего и натуралиста Дэвида Аттенборо, британского "кузена" и друга Николая Дроздова, говорится в статье, опубликованной в журнале Palaeontologia Electronica. Microleo attenboroughi"Microleo attenboroughi...

Цветовое зрение меняется в зависимости от сезона, доказали ученые

04-09-2015 Просмотров:6872 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Цветовое зрение меняется в зависимости от сезона, доказали ученые

Физиологи впервые показали, что люди по-разному воспринимают цвета в зависимости от времени года. Это связано с подстройкой глаза под обилие зелени на улицах. К такому выводу пришли британские ученые из Университета...

Охотничья стратегия тигров не изменилась за 2 млн лет

23-07-2015 Просмотров:7157 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Охотничья стратегия тигров не изменилась за 2 млн лет

Редкая окаменелость, найденная китайскими палеонтологами в провинции Ганьсу, помогла раскрыть повадки древних больших кошек азиатского континента. Насколько можно судить по ископаемым остаткам, предки современных тигров использовали во время охоты те...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.