Американские микробиологи выяснили, что бактерии могут использовать биологическое оружие против своих сородичей. Некоторые из них содержат в своем геноме ДНК бактериофагов - вирусов, убивающих микроорганизмы. Когда такие "камикадзе" считают, что вокруг стало несколько тесновато, они напускают этих бактериофагов на своих противников и те гибнут.
Обычно когда говорят о биологическом оружии, то в первую очередь подразумевают применение против врага болезнетворных бактерий. Правда, болезни вызывают не только они — как мы знаем, есть еще грибки и вирусы. Однако первые достаточно капризны и не в состоянии быстро вызвать целую эпидемию (хотя для порчи продуктов на складах их, конечно же, использовать можно). А что касается вирусов, то их достаточно сложно культивировать, поскольку они могут размножаться только в живых клетках. Поэтому-то в основном биологическое оружие делают из культур бактерий, вызывающих эпидемиологические заболевания.
Но вот что интересно — оказывается, бактерии тоже имеют свое собственное биологическое оружие. Причем то, применять которое люди пока что как следует не могут, а именно — вирусы. Эти микроорганизмы могут "натравливать" бактериофагов (вирусы, поражающие только бактерии) на своих конкурентов. Причем каждая бактерия носит это оружие в себе до того момента, когда выпускает на врага.
Недавно ученые из Юго-Западного медицинского центра Техасского университета в Далласе (США), работая с условно-патогенной бактерией Enterococcus faecalis, которая составляет 1 процент от общего числа всех микроорганизмов нашей кишечной микрофлоры, заметили, что ее штаммы могут конкурировать друг с другом. При этом чаще всего побеждал штамм V583, представители которого полностью уничтожали своих конкурентов. И, что самое удивительное, те не могли противостоять этому неведомому оружию.
Биологам показалось это странным — известно, что Enterococcus faecalis довольно устойчива ко многим антибиотикам. Однако здесь все противники штамма V583 оказывались бессильными. Возможно, предположили исследователи, этот "агрессор" использует не бактериальный антибиотик, а что-то другое. Чтобы разобраться в ситуации, ученые решили изучить геном представителей всех штаммов.
В результате выяснилось, что, во-первых, их ДНК достаточно сильно отличается, а, во-вторых, — что в геноме штамма V583 скрывается так называемый профаг. Так называют ДНК бактериофага, внедрившуюся в наследственную молекулу бактерии. И происходит это весьма интересным способом. Чаще всего бактериофаги, заражая клетку, прикрепляются к специфическим рецепторам на ее поверхности, затем "впрыскивают" свою ДНК внутрь микроорганизма и она сразу же внедряется в геном хозяина. Инъекция генома вируса вызывает полную перестройку метаболизма клетки — прекращается синтез бактериальной ДНК, РНК и белков.
А вот наследственная молекула бактериофага времени зря не теряет — она начинает деятельность по самокопированию и синтезу нужных вирусу белков, используя при этом ресурсы клетки. Как только все "запчасти" оказываются готовыми, происходит сборка молодых бактериофагов. И в конце концов они покидают клетку хозяина, разрывая ее при этом.
Но иногда все происходит несколько иначе — молекула ДНК бактериофага, внедрившись в геном бактерии, не проявляет никакой активности. Вот тогда-то и образуется профаг. Клетка хозяина вообще не замечает его присутствия — она ест, растет и размножается, передавая данную "бомбу" своим потомкам. Кстати, "бомбой" эту чужеродную ДНК микробиологи называют не зря — она может "проснуться" в любой момент и начать работу по созданию новых фагов. Однако пока ДНК спит, то никакой опасности для клетки в общем-то нет.
Правда, иногда ради безопасности бактерии все же вырезают ДНК бактериофага из своего генома и помещают в специальный пузырек — плазмиду. Потом эту плазмиду можно передать какому-нибудь сородичу (бактерии часто обмениваются ими) и, соответственно, зажить спокойно — пусть он сам и разбирается с опасным "подарком". В то же время плазмиды с профагами также часто передаются по наследству потомкам.
Так вот, изучив ДНК штамма V583, ученые обнаружили там даже не одного, а двух профагов. Одна ДНК вируса позволяет синтезировать его структурные элементы, а другая — белки проникновения, позволяющие заразить клетку противника. Удивительно, что когда оба профага активизируются, то в итоге получается гибридный бактериофаг. И именно он и убивает всех конкурентов — ведь у бактерий до сих пор не выработались эффективные механизмы защиты от этих вирусов (кроме вышеописанного "приручения", то есть превращения в профаг).
Ученые пока не знают, каким образом происходит активация спящих профагов — возможно, у бактерии есть какие-то специальные белки, которые могут "пробудить" ДНК вируса. Ясно пока лишь одно — вырвавшиеся на волю бактериофаги, попадая в клетки других штаммов, остаются активными и разрушают их. А вот проникнув внутрь представителей штамма V583, они снова превращаются в профагов. Так что, вероятно, эти микроорганизмы имеют еще и специальные средства защиты, природу которых также предстоит выяснить.
Конечно же, клетки из штамма V583 после "пробуждения" профагов погибают — образовавшиеся вирусы, как и положено, разрывают их при выходе. Однако их жертва не напрасна — конкуренты-то оказываются уничтоженными. Такое поведение похоже на ситуацию, когда солдат бросается под танк со связкой гранат — его гибель при этом спасает войсковую часть, которую атакуют. Но чем именно эти микроорганизмы-альтруисты отличаются от своих сородичей, пока что не ясно. Биологи считают, что ответ может дать более тщательное изучение ДНК изобретательного штамма.
Судя по всему, способность содержать в своем геноме профага выработалась у этой бактерии в процессе эволюции. Возможно, в далеком прошлом ослабленные особи вирусов, которые не могли полностью захватить контроль над клеткой, оставались в геноме бактерии, а те, в свою очередь, привыкли к этому "имплантанту" и со временем научились его использовать. Это-то и послужило началом такого интересного и необычного боевого союза.
Кстати, не исключено, что такое использование фагов не является редкостью среди сложных бактериальных сообществ. Известно, что наши полезные кишечные сожители помогают людям бороться с патогенными бактериями. Вполне возможно, что не последнюю роль в этом играет именно такое биологическое оружие…
Источник: pravda.ru
17-04-2015 Просмотров:8330 Новости Зоологии Антоненко Андрей
Российские ученые установили, что западные серые киты совершают самые длинные миграции среди всех млекопитающих. К такому выводу они пришли, наблюдая за странствиями кита Варвары. Западный серый китОб этом говорится в статье...
19-01-2013 Просмотров:12062 Новости Ботаники Антоненко Андрей
Как правило, чем выше дерево, тем меньше его листья. Математическое объяснение этого феномена, оказывается, одновременно накладывает ограничение на максимальную высоту деревьев. Секвойи на Медвежьей горе в Калифорнии (фото MizzD) Каре Йензен из...
14-02-2014 Просмотров:7919 Новости Палеонтологии Антоненко Андрей
Недра Китайской народной республики продолжают удивлять научный мир остатками древних существ. Одно из них, только что описанное палеонтологом Уханьского института геологии и минеральных ресурсов Лун Ченом, своим видом могло бы...
21-09-2018 Просмотров:2923 Новости Зоологии Антоненко Андрей
Биологи обнаружили в Индии крайне необычную популяцию богомолов, которые охотятся не на других насекомых, а на гораздо более крупную добычу – рыбок, подплывающих близко к поверхности рек и озер. Его описание было представлено в Journal...
25-08-2013 Просмотров:9990 Новости Цитологии Антоненко Андрей
Летающие насекомые машут крыльями с чудовищной частотой: например, у комара она может достигать 500 взмахов в секунду. И довольно долго учёные пытались выяснить, как насекомым это удаётся. Можно было бы...
Азиатская беззубка перевернула с ног на голову отношения между моллюсками и рыбами горчаками, которые сложились в восточноевропейских водоёмах: теперь не рыбы паразитируют на моллюсках, откладывая в них икру, а личинки…
Охотящиеся дельфины стараются запутать добычу сетью из воздушных пузырей. Одновременно они пользуются сонаром и производят сложнейшие преобразования с вернувшимся звуковым эхом, чтобы отличить значимый сигнал от фонового шума. Охотясь, дельфины используют…
Когда мозг совершает ошибку, он пытается понять, что было сделано не так, — и предпринимает ещё одну попытку справиться с заданием. И самое удивительное, как пишут в Nature Neuroscience исследователи из Брауновского университета, Йеля и Айовского университета (все…
Палеонтологи обнаружили в Аргентине ступню одного из самых крупных динозавров в истории. Выяснилось, что это животное обладало рекордно короткими пальцами на задних конечностях. Зауропод Notocolossus gonzalezparejasiОписание находки, сделанной американскими и аргентинскими…
За 40 млн лет до того, как известный рок-музыкант и солист группы The Doors Джим Моррисон начал называть себя королем ящериц, настоящий король ящериц бродил по жарким и влажным лесам…
Новый вид динозавров-зауропод длинной более 15 метров, обнаружили канадские палеонтологи в Китае. Живший в юрском периоде ящер обладал особо длинномерной шеей, на которую приходилось порядка половины всей его длины. Теперь…
Обезьяны впервые появились в Южной Америке примерно 37 млн лет назад. Высадившись в бассейне Амазонки, они постепенно расселились на север до Карибского бассейна и на юг до Патагонии, уверен профессор…
Ученые выяснили, что за исчезновением конечностей у змей стоит изменение одного-единственного участка ДНК. Ученые смогли обратить это изменение вспять и заставили змеиный ген участвовать в образовании конечностей мыши. Результаты исследования, проведенного…
Палеонтологи обнаружили первое ископаемое свидетельство паразитирования «зомбирующего» гриба на муравьях. Оказалось, что грибы впервые овладели мозгом муравьев десятки миллионов лет назад. Об этом говорится в статье американских и немецких ученых, опубликованной в журнале…