У растений, как известно, есть собственная транспортная система, которую можно до какой-то степени уподобить кровеносной системе животных. Вода и нужные вещества из земли распространяются от корней по всему телу растения с помощью ксилемы, сосуды которой сложены из мёртвых клеток. Сахара, получающиеся в результате фотосинтеза в листьях, транспортируются живыми сосудами флоэмы.
В 1980-х учёные обнаружили, что одним лишь транспортом функция флоэмы не исчерпывается: её живые клетки выполняли ещё и роль нервной системы, передавая друг другу электрические импульсы. Как и у животных, эти электрические импульсы, разбегающиеся по всему телу, могут сообщать растениям о каких-то воздействиях внешней среды — к примеру, о том, что пришло некое травоядное и отъело у растения кусок. Правда, в случае растений импульсы не сбегаются в мозг, а отправляются в другую часть тела. И тогда растение может как-то отреагировать и защитить свои неповреждённые части от нападения травоядного (скажем, быстро выделить какое-нибудь едкое или резко пахнущее вещество).
Однако некоторые животные (например, гусеницы), «нападая» на растение, не причиняют ему сразу таких уж сильных повреждений. И может показаться, что в этом случае животное как бы обманывает растение: электрические импульсы ни о чём серьёзном не сигнализируют, и гусеница может продолжать спокойно питаться. Но, как показали исследования специалистов Лозаннского университета (Швейцария), даже при небольших повреждениях, наносимых гусеницами, растения всё равно их чувствуют и могут отреагировать.
Однако куда более любопытно тут то, что биологи обнаружили это с помощью тлей.
Тли питаются растительным соком, вводя свои хоботки во флоэму, при этом целостность флоэмы они не нарушают. То есть они подключаются к сосудистой системе, становясь как бы её частью. И вот Эдварду Фармеру (Edward E. Farmer) и его коллегам пришло в голову, что тлей можно использовать подобно... электродам, вводимым в нервные клетки: как электроды чувствуют электрический импульс, бегущий по нервной цепочке, так и тля может быть естественным датчиком, демонстрирующим движения электрических сигналов по флоэме растения.
Оставалось лишь посадить на растение с тлями гусениц и наблюдать, какие электрические сигналы приходят к тлям.
В журнале New Phytologist исследователи сообщают, что, несмотря на ничтожность повреждений, растения реагировали на «пощипывания» гусеницы, и реакция эта была подобна той, которая возникает в ответ на более серьёзный вред (только в случае гусеницы ответ был заметно слабее). Электрические сигналы распространялись по растению волнами, и быстрее всего они приходили к листьям, находившимся рядом с тем участком, на котором кормилась гусеница. При этом сам лист с гусеницей сигналов тревоги не чувствовал.
Что же до молекулярного механизма, лежащего в основе этих сигналов, то, по словам исследователей, тут у животных и растений дело опять-таки обстоит похожим образом: у клеток есть ионные каналы, благодаря которым в нужный момент случается перераспределение ионов по обе стороны мембраны, и за счёт этого рождается электрохимический импульс. Когда во флоэме отключали канал для ионов кальция, никакой реакции на гусеницу не было, растение не чувствовало повреждений. (Стоит подчеркнуть, что, хотя система передачи электрического импульса у растений в чём-то сильно похожа на то, как это происходит у животных, совсем уж уподоблять это специализированной нервной системе животных нельзя.)
Учёные надеются, что с помощью этой необычной уловки — использования тлей для того, чтобы подслушивать внутренние сигналы растений, — можно будет ещё многое узнать о том, как растения реагируют на внешнюю среду. Возможно, у растений есть и некие сенсорные системы, предназначенные специально для тлей: всё-таки эти насекомые достаточно долго живут вместе с растениями, чтобы те научились их чувствовать.
Источник: КОМПЬЮЛЕНТА
Паразиты влияют на поведение тех, на ком паразитируют. Самый известный пример — грибы-зомбификаторы из рода
Ос подселяли к тлям, обитающим в специальных клетках с растениями, и наблюдали за их поведением. Заражённые тли умирали в течение десяти дней. Исследователи проанализировали расположение мёртвых тлей и пришли к выводу, что паразит влияет на поведение жертвы. Но при этом оказалось, что поведение заражённых тлей варьируется от того, кто были родители той личинки, что росла внутри тли.
Для ос важно, чтобы жертва оставалась в живых, пока личинка внутри неё не созреет. А вот заражённой тле разумнее совершить суицид, чтобы не дать личинке паразита развиться и тем самым защитить всю популяцию. Вероятность преждевременной гибели для тли резко возрастает, если она спускается на землю: тут и еды нет, и хищников больше. То есть задача тлей — почувствовав внутри «чужого», бросить растение и спуститься на землю, а задача ос — заставить тлей сидеть на растении как можно дольше.
Однако далеко не все тли после заражения оставались на растении. То есть у ос не всегда получалось подавить волю жертвы и принудить её действовать в интересах паразита. Вероятность того, останется ли тля на растении или пойдёт искать преждевременную смерть, зависела от комбинации генов в личинке осы, причём свою роль играли как отцовские, так и материнские гены. То есть по крайней мере в случае ос и тлей нельзя говорить об однозначной стопроцентной зомбификации, поскольку гены ос, отвечающие за управление поведением жертвы, не обязательно работают с идеальной эффективностью. Иными словами, осы продолжают эволюционную борьбу с тлями за контроль над поведением последних.
Особое внимание, по словам исследователей, привлекает то, что результат зависит, по-видимому, от комбинации родительских генов: для управления тлёй нужна именно эффективная комбинация генов отца и генов матери, а не какой-то конкретный вариант одного-единственного гена. Но пока что биологи не знают, что это за гены и как именно они воздействуют на поведение тлей-жертв.
Результаты экспериментов будут опубликованы в журнале
Источник: КОМПЬЮЛЕНТА
Чтобы приспособиться к условиям внешней среды, обычным тлям требуется всего год.
Принято считать, что эволюция живых организмов — это довольно длительный процесс: чтобы в геноме возникли и закрепились какие-то изменения, нужны тысячи и сотни тысяч лет. Устойчивые к антибиотикам бактерии служат, казалось бы, одним из самых наглядных опровержений такой точки зрения, но в данном случае на руку бактериям играет высочайшая скорость размножения и относительная простота генома. Но вот исследователи из Университета Калифорнии в Риверсайде (США) показали: обычным тлям хватает одного сезона, чтобы ускоренным образом проэволюционировать и приспособиться к изменившимся условиям среды.
Каждую осень у тлей появляется крылатое и раздельнополое поколение, предназначенное для расселения по новым местам и полового размножения. На следующий год эти тли производят потомство, которое в течение лета много раз размножается бесполым путём, образуя таким образом клоны самих себя. Линии клонов с разной генетикой вступают в соревнование друг с другом, и в результате остаются только те, чей набор генов позволяет наиболее успешно выживать.
Зоологи взялись выяснить, сколько времени нужно тлям, чтобы определить, кому оставаться в эволюционном выигрыше.
О приспособленности популяции к условиям среды можно судить по изменению её численности, и исследователи оценивали прирост в двух разных группах тлей: в первой все особи были точными клонами друг друга, вторую группу составляли два генетически разных клона. Обе популяции подвергались давлению окружающей среды в виде конкурентов и хищников, при этом первая служила «точкой отсчёта» — естественному отбору в ней не из чего было выбирать. Регулярно подсчитывая численность особей, учёные обнаружили следующее. В популяции, состоящей из двух клонов, их соотношение изменилось довольно быстро, за 30 дней, что соответствует 4–5 поколениям. При этом разнородная популяция увеличивалась на 42% быстрее, чем однородная, — но только в присутствии факторов отбора в виде хищников и конкурентных видов. В конечном итоге разноклоновая популяция достигала на 67% большей плотности, чем моноклоновая.
Результаты работы исследователи опубликовали в журнале Ecology Letters.
В общем, даже без человеческого влияния тлям было достаточно одного весенне-летнего периода, чтобы совершить эволюционный шаг, более адекватно приспособившись к среде. Если учесть, что поколение, которое размножается половым способом, оставляет много разных клонов, то тлям ничего не стоит из множества вариантов-клонов выбрать самый подходящий, чтобы справиться, допустим, с каким-то пестицидом. Оставшийся в живых клон произведёт потомство для полового размножения, за счёт которого осуществится ещё более тонкая настройка популяции «под человека».
Авторы подчёркивают, что необходимо учитывать высокую скорость эволюции, демонстрируемую тлями, если мы хотим как-то ослабить давление этих вредителей на сельское хозяйство.
Источник: КОМПЬЮЛЕНТА
Обнаружена зависимость между содержанием у тлей пигментов каротиноидов и уровнем энергетических молекул АТФ.
Исследователи из технопарка
Тем не менее тли удивили учёных ещё раз. Начнём с того, что они, в отличие от других живых существ, могут сами синтезировать
В статье, опубликованной в
Кроме того, пигменты образуют слой на глубине 0–40 мкм, что является оптимальным для улавливания световых волн.
Сами авторы описывают результаты с большой долей осторожности, говоря скорее о том, что существование фотосинтеза у тлей вполне возможно, но требует дальнейших доказательств. Если это действительно так, то тли станут единственными многоклеточными животными, которые способны получать энергию таким растительным способом. По мнению учёных, это умение могло бы пригодиться тлям при неблагоприятных условиях или же при переселении с растения на растение.
Источник: КОМПЬЮЛЕНТА
31-03-2014 Просмотров:7478 Новости Зоологии Антоненко Андрей
Насекомые отличаются исключительно чувствительным обонянием, благодаря которому они не только могут по нескольким запаховым молекулам узнать, где их ждёт угощение, но и общаться друг с другом с помощью изощрённых химических...
06-03-2013 Просмотров:11572 Новости Палеонтологии Антоненко Андрей
Палеонтологи нашли крокодилий зуб, застрявший в кости молодого травоядного динозавра. Следовательно, периодически попадая на обед к крокодилам, динозавры не были безраздельными хозяевами Земли. Охота на динозавровОб этом говорится в статье, опубликованной...
11-09-2013 Просмотров:10847 Новости Зоологии Антоненко Андрей
Муравьи редко болеют инфекционными болезнями, но зато часто страдают от так называемых социальных паразитов — других муравьёв (и других насекомых), которые проникают в колонию и безвозмездно пользуются её ресурсами. Этим...
17-06-2010 Просмотров:10645 Новости Зоологии Антоненко Андрей
Две из четырёх специальных наград Queensland Health выиграл препарат, полученный из яда смертельно опасной морской улитки-конуса. Обезболивающее нового поколения на порядок мощнее всех современных аналогов, включая морфий, – утверждают специалисты...
05-02-2016 Просмотров:6743 Новости Зоологии Антоненко Андрей
Международная команда биологов, куда входили ученые из МГУ им. М.В. Ломоносова, открыла в Красном море, на рифах архипелага Фарасан (Саудовская Аравия) новый вид флуоресцирующих полипов, живущих на раковинах моллюсков, и...
Американские ученые открыли необычный способ взаимодействия между особями муравья Pachycondyla chinensis. Фуражир, нашедший крупную добычу, быстро прибегает в муравейник, где хватает челюстями первого попавшегося ему муравья и относит его к…
Американские палеонтологи описали нового утконосого динозавра, обладавшего совершенно исключительным носом. Однако пока относительно Rhinorex condrupus, как назвали этого ящера, у ученых имеется больше вопросов, чем ответов. Rhinorex condrupus отбивается от гигантского…
Останки индивида, жившего на севере Италии около 30–40 тыс. лет назад, сочтены гибридом человека и неандертальца. Нижняя челюсть возможного гибрида (изображение авторов работы).Если дальнейший анализ докажет верность предположения, это будет первое…
Эукариоты Надцарство Животные Грибы Растения Протисты Царство Эуметазои Прометазои Водоросли Простейшие Слизевые плесени Подцарство Раздел Билате-ральные Радиаль-ные
Океанические сине-зелёные водоросли Synechococcus производят 20% кислорода на планете. Такой высочайшей производительностью они обязаны уникальному умению приспосабливаться к нужной длине световой волны. То есть водоросль настраивает свою фотосинтетическую систему в…
Биологи впервые расшифровали ДНК зеленокровных сцинков – уникальных ящериц с зеленой кровью, ядовитой для всех остальных животных Земли, и выяснили, что подобная необычная черта развивалась у них четыре раза, говорится в статье, опубликованной в журнале Science…
Некоторые люди больше подвержены угрозе инсульта, чем другие. Группа исследователей в Гетеборге обнаружила ген, который может дать этому объяснение. Ген назвали FoxF2. Каждый из нас является его носителем, но у некоторых людей ген выглядит…
Ископаемые остатки морского многощетинкового червя уникальной сохранности нашли британские палеонтологи в меловых отложениях Ливана. Очень подробные окаменелости мягких тканей позволяют различить даже отдельные мышечные волокна. Назвали древнее существо Rollinschaeta myoplena…
У человека, как известно, генов в пять раз больше, чем у кишечной палочки: 20 000 против 4 100. (При этом речь идёт, разумеется, только о тех последовательностях ДНК, которые кодируют…