Мир дикой природы на wwlife.ru
Вы находитесь здесь:Регионы>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Планета


Планеты, вращающиеся вокруг двух светил, могут быть не только газовыми гигантами, непригодными к жизни, но и двойниками, уменьшенными или увеличенными копиями Земли, которых должно быть достаточно много в Млечном Пути, заявляют планетологи в статье, опубликованной в Astrophysical Journal.

Планетная система с двумя солнцами Kepler-16Планетная система с двумя солнцами Kepler-16"Больше десяти лет мы верили, что похожие на Землю планеты не могут возникать у большинства двойных звезд на достаточно близком расстоянии к ним для того, чтобы на их поверхности могла существовать жизнь. Проблема заключается в том, что двойные звезды дергают "зародыши" планет в разные стороны, из-за чего их орбиты будут спутываться, и они начнут сталкиваться на высоких скоростях, что приведет к их разрушению, а не росту", — заявил Бен Бромли (Ben Bromley) из университета Юты в Солт-Лейк-Сити (США).

Бромли и его коллега Скотт Кенион (Scott Kenyon) из Гарвард-Смитсоновского центра астрофизики в Кембридже (США) пришли к выводу, что на самом деле это не так, построив новую модель формирования "татуинов" в системе из двух или более звезд.

Как показали вычисления авторов статьи, зародыши планет, вращающиеся вокруг двойных светил, будут двигаться не по эллиптическим или круговым орбитам, а по своеобразным овальным спиралям, чьи витки закручиваются гравитационными взаимодействиями между звездами. Благодаря этим необычным орбитам, столкновения между ними будут происходить крайне редко, что позволит им постепенно расти и накапливать массу.

В результате этого должна возникнуть некая критическая масса планетарных зародышей, один или несколько из которых смогут в конечном итоге превратиться в аналоги Татуина, родины Люка Скайуокера из "Звездных Войн". Поэтому, как показывают расчеты Бромли и Кениона, число землеподобных двойников Татуина в нашей Галактике может быть заметно большим, чем мы считаем сегодня.

Пока такая гипотеза не нашла подтверждения в наблюдениях наземных и орбитальных телескопов — к примеру, "Кеплеру" удалось найти семь "татуинов"-газовых гигантов в зоне жизни, но ни одной землеподобной планеты у двойной звезды. Как считает Бромли, это связано с тем, что малые планеты сложнее находить, и новые телескопы, такие как космическая обсерватория TESS, смогут решить эту задачу.


Источник: РИА Новости


 

Опубликовано в Новости Астрономии

Астрономы из Европейской южной обсерватории в Чили во главе с Гиллемом Англада-Эскуде (Guillem Anglada-Escudé), представляющим Гёттингенский университет (Германия), используя данные спектрографа «Очень большого телескопа» и других наблюдательных инструментов, уточнили наши представления о Глизе 667 С — звезде в тройной системе, отстоящей от нас на 22,1 световых года.

Хотя не вполне подтверждённая планета h кажется слишком жаркой для жизни (200% от получаемого Землей излучения), в плотно «набитой» системе красного карлика и так не менее трёх планет в зоне обитаемости (показана зелёным). Масштаб расстояний не соблюдён. (Здесь и ниже иллюстрации ESO.) Хотя не вполне подтверждённая планета h кажется слишком жаркой для жизни (200% от получаемого Землей излучения), в плотно «набитой» системе красного карлика и так не менее трёх планет в зоне обитаемости (показана зелёным). Масштаб расстояний не соблюдён. (Здесь и ниже иллюстрации ESO.) Хотя это светило спектрального класса M1,5 по массе втрое уступает Солнцу (31%), при диаметре в 42% от солнечного, и имеет крайне малую светимость (1,4% солнечной), оно кажется весьма перспективным в смысле наличия планет в зоне обитаемости. Дело в том, что все шесть открытых планет (до этих наблюдений были известны лишь три) вращаются ближе к звезде, чем Меркурий к Солнцу, поэтому семидесятикратно меньшая светимость вполне компенсируется малыми расстояниями.

До сих пор в этих местах была известна лишь одна планета в зоне обитаемости. Теперь же стало ясно, что половина из этой полудюжины находится там, где на поверхности может существовать жидкая вода:

Заметим, что это первый пример такого рода, когда три потенциально несущие жизнь планеты вращаются вокруг одной звезды в тройной системе. При этом две другие звезды Глизе 667 периодически меняют расстояния между собой, а это значит, что и все остальные компоненты системы в теории должны находиться под переменными гравитационными воздействиями. Прежде считалось, что в такого рода окружении устойчивые планетные системы образоваться не могут.

Пока известные минимальные массы этой троицы (кои обычно близки к реальным) составляют 3,8, 2,7 и 2,7 земных для Глизе 667 С с (0, 125 а. е.), Глизе 667 С f (0, 156 а. е.) и Глизе 667 С e (0,212 а. е.) соответственно. То есть перед нами почти наверняка не «тёплые Нептуны» с огромным атмосферным давлением, а планеты земной группы.

Обнаружение в одной системе сразу трёх планет в зоне обитаемости намекает на то, что представления о количестве подобных тел в нашей Галактике могут быть несколько неверными — ведь ранее вероятность такого события не рассматривалось астрономами, поскольку для этого требовалось весьма тесное расположение планет в такого рода образованиях. И в случае Глизе 667 C без этого тоже не обошлось, ибо там нет ни одной устойчивой орбиты в зоне обитаемости, которая не была бы уже занята тем или иным телом.

Из-за относительной близости Глизе 667 С к своим планетам на небосводе она даже на Глизе 667 С е будет выглядеть больше, чем Солнце на земном небе. Конечно, изображение не даёт точного представления о видимых размерах: в силу особенностей нашего зрения реальное светило у горизонта будет казаться куда крупнее. Из-за относительной близости Глизе 667 С к своим планетам на небосводе она даже на Глизе 667 С е будет выглядеть больше, чем Солнце на земном небе. Конечно, изображение не даёт точного представления о видимых размерах: в силу особенностей нашего зрения реальное светило у горизонта будет казаться куда крупнее. Хотя астрономы, основываясь на методике Коппарапу, определили границы обитаемости в системе в 0,095–0,126 а. е. для внутренней линии зоны обитаемости и в 0,241–0,251 а. е. для внешней линии, их вычисления базировались на данных для планеты массой с Землю. На практике все они в 2,7–3,8 раза тяжелее и могут иметь более плотную атмосферу, способную защитить как от излишнего нагрева поверхности (ведь из-за рэлеевского рассевания даже углекислый газ в больших количествах начинает охлаждать атмосферу), так и от её переохлаждения. Поэтому Глизе 667 С d, которую учёные описали как слишком холодную для жизни, лежащая в 0,276 а. е. от своей звезды, при массе в 5,21 земных в действительности может иметь условия, необходимые для существования жидкой воды на поверхности.

Несмотря на то что Глизе 667 А и Глизе 667 В довольно далеки от «суперземель» вокруг Глизе 667 С, они будут хорошо различимы на тамошних небосводах даже днём, не говоря уже о закатах. Несмотря на то что Глизе 667 А и Глизе 667 В довольно далеки от «суперземель» вокруг Глизе 667 С, они будут хорошо различимы на тамошних небосводах даже днём, не говоря уже о закатах. Именно поэтому авторы работы, в противовес более острожному пресс-релизу Европейской южной обсерватории, сообщают в своей статье, что «планеты c, f и e находятся в зоне обитаемости; в ней же может быть и планета d. То есть вокруг Глизе 667 С, вероятно, вращаются сразу четыре потенциально обитаемые планеты».

Учёные также полагают, что их способность измерить доплеровские эффекты, оказываемые планетами на свет собственной звезды, означает, что последняя хотя и может менять яркость, не даёт вспышек, достаточно опасных для жизни даже на самой близкой из этих «суперземель».

Отчёт об исследовании принят к публикации в журнале Astronomy & Astrophysics, а с его препринтом можно ознакомиться здесь.

 


Истчоник: КОМПЬЮЛЕНТА


Опубликовано в Новости Астрономии

Среди множества открытых экзопланет и кандидатов в них в самых-самых ходят тела относительно небольших размеров и со средней плотностью, превышающей (!) показатель чистого железа. Природа их, исходя из существующих теорий образования планет, не то что неясна, но и попросту загадочна. К примеру, плотность экзопланеты CoRoT-7 b оценивается в 10,4 ± 1,8 г/см³ — будто это чистое серебро (что, напомним, значительно тяжелее железа или меди).

Земля, CoRoT-7 b и Нептун с соблюдением масштаба. CoRoT-7 b в 8 раз тяжелее Земли и всего вдвое легче Нептуна, колоссально превосходящего экзопланету по объёму. (Иллюстрация Wikimedia Commons.)Земля, CoRoT-7 b и Нептун с соблюдением масштаба. CoRoT-7 b в 8 раз тяжелее Земли и всего вдвое легче Нептуна, колоссально превосходящего экзопланету по объёму. (Иллюстрация Wikimedia Commons.)Как предположил Оливье Грассе (Olivier Grasset), геофизик из Нантского университета (Франция), единственной достоверной версией образования таких сверхплотных тел может быть теория ядра планеты-гиганта: в неразберихе становления той или иной планетной системы гигант начал мигрировать ближе к звезде и в конечном счете подошёл к ней так близко (ближе Меркурия), что потерял внешние слои, состоящие из газов, оставшись с одним сверхплотным ядром.

У этой концепции есть несколько проблем. В частности, симуляции процесса испарения газов с планет-гигантов показывают, что для полной потери лёгких веществ нужно колоссальное время, сопоставимое со сроками существования систем. Иными словами, многие «горячие Юпитеры» и прочие тела в том же роде просто не должны успеть потерять волатильные вещества внешних слоёв.

Газовый гигант, конечно, может потерять свою оболочку, подойдя слишком близко к светилу, но этот процесс вряд ли объясняет рождение сверхплотных «суперземель»: слишком уж он медленный. (Илл. NASA, ESA / C.Carreau.)Газовый гигант, конечно, может потерять свою оболочку, подойдя слишком близко к светилу, но этот процесс вряд ли объясняет рождение сверхплотных «суперземель»: слишком уж он медленный. (Илл. NASA, ESA / C.Carreau.)Чтобы проверить гипотезу, исследователи создали компьютерную модель, анализирующую сценарий потери лёгких газов. Выяснилось, что длительная потеря массы никак не объясняет существования сверхплотных планет. Дело в том, что, хотя ядро того же Юпитера или Сатурна чрезвычайно плотное, таковым оно остаётся только тогда, когда на него «давят» 500 гигапаскалей массы основной части планеты, её колоссальной атмосферы и нижних слоёв. Если же на протяжении миллиардов лет это давление постепенно падает (как итог испарения газов), ядро перестаёт удерживаться колоссальным давлением и «расслабляется», увеличившись в объеме и снизив плотность.

А вот если срыв газов случится за очень короткое по геологическим меркам время, то от планеты-гиганта останется нечто вроде «суперземли», только чудовищно плотной. При этом в дальнейшем снижение плотности такого «огрызка» бывшего газового гиганта почти не происходит.

Как же быть с тем, что все модели, анализирующие испарение, показывают весьма умеренные темпы потери газовой оболочки? Здесь, разумеется, возможны варианты, ибо пока наука слишком мало знает о недрах планет-гигантов. Одним из сценариев сверхбыстрой потери газовый оболочки может быть, например, катастрофическое столкновение гиганта с другой экзопланетой сходных габаритов. В этом случае потеря атмосферы может быть чрезвычайно быстрой, а то, что такие события не исключены, подтверждает присутствие в нашем небе Луны, являющейся реликтом сходной коллизии между Землёй и неким планетарным телом из ранней Солнечной системы.

Итоги исследования были представлены на прошлой неделе на собрании Лондонского королевского общества.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Астрономии

Используя открытые данные, полученные космическим телескопом «Кеплер», астрономы из Гарвард-Смитсоновского центра астрофизики (США) провели самостоятельный анализ исследованных красных карликов и пришли к выводу, что 6% из них имеют пригодные для обитания планеты примерно земных размеров. А поскольку именно красные карлики считаются самыми массовыми звёздами нашей Галактики и Вселенной, постольку со статистической точки зрения ближайшая пригодная для обитания планета вокруг красного карлика должна отстоять от нас на 13 световых лет. И хотя это более квадриллиона километров, речь идёт о сверхтесном, по астрономическим меркам, соседстве.

Отдельно отметим, что исследование не рассматривает как кандидаты в обитаемые тела спутники планет вокруг красных карликов: оценить вероятность их существования пока невозможно. (Здесь и ниже иллюстрации David A. Aguilar, C. Dressing / CfA.)Отдельно отметим, что исследование не рассматривает как кандидаты в обитаемые тела спутники планет вокруг красных карликов: оценить вероятность их существования пока невозможно. (Здесь и ниже иллюстрации David A. Aguilar, C. Dressing / CfA.)«Поначалу мы думали, что придётся вести поиск на огромных дистанциях, чтобы найти землеподобную планету [около красного карлика]. А теперь понимаем, что другая Земля, возможно, находится в нашем заднем дворе, лишь ожидая того, чтобы её заметили», — признаётся ведущий автор исследования Кортни Дрессинг (Courtney Dressing), вчера представившая его итоги в Гарвард-Смитсоновском центре астрофизики.

Итак, у трёх из четырёх звёзд Млечного Пути с вероятностью 6% есть планета земной группы в зоне обитаемости. То есть 4,5% от 100–400 млрд звёзд Галактики — это потенциальные пристанища жизни. Всего это 4,5–18 млрд планет, без учёта, разумеется, систем у солнц других спектральных классов. Это может показаться странным, ибо такие звёзды очень тусклы: с Земли ни одна из них не видна невооруженным глазом, и в среднем они в тысячу раз менее яркие, чем наше светило. Следовательно, они могут дать значительно меньше энергии своим планетам. Но, похоже, такие звёзды полностью усвоили заветы Мольтке-старшего. А потому представляют собой больше, чем кажутся: в отличие от звёзд вроде нашего Солнца, они до своей гибели дают живым существам в зоне обитаемости не 5–10 млрд лет на эволюцию, а в 10–100 раз больше. При этом их светимость не нарастает столь же резко (у Солнца после появления жизни на Земле светимость увеличилась на 20–30%), что не вызывает постоянного давления климатических изменений на биосферу тамошних обитаемых планет.

Среди 95 планет-кандидатов, обнаруженных у красных карликов, всего три находятся в зоне обитаемости. Применительно к Галактике это означает миллиарды таких планет.Среди 95 планет-кандидатов, обнаруженных у красных карликов, всего три находятся в зоне обитаемости. Применительно к Галактике это означает миллиарды таких планет.Кортни Дрессинг обнаружила 95 кандидатов в планеты вокруг красных карликов. Исходя из того, что по крайней мере 60% таких звёзд имеют планеты меньше Нептуна, примерно полсотни из них обладают земными размерами. И три оказались достаточно тёплыми и подходящими по массе, чтобы быть мирами именно земного типа и лежащими точно в зоне обитаемости. Это KOI 1422.02, диаметр которой равен 90% земного, а год — двадцати нашим дням, KOI 2626.01, что в 1,4 раза больше Земли и живёт на 38-дневной орбите, а также KOI 854.01, которая в 1,7 раз большей нашей планеты и имеет 56-дневную орбиту. Все они расположены в 300–600 световых годах от нас.

Именно на этой основе и был сделан вывод о 6%, однако, при всей кажущейся ограниченности выборки, этот результат вряд ли преувеличен. Скорее наоборот: хотя размер диска красных карликов втрое меньше солнечного, а меньшие размеры зоны обитаемости означают, что потенциально «живые» планеты проходят ближе к диску, а потому нам легче их обнаружить, возможности «Кеплера» по их выявлению всё же ограничены. Телескопы следующих поколений смогут отыскать куда бόльшую выборку планет-кандидатов, то есть эти 6% имеют все шансы на увеличение.

Конечно, остаётся вопрос о том, означает ли нахождение в зоне обитаемости настоящую обитаемость: для красных карликов вероятен приливной захват, когда гравитация заставляет небесное тело всегда быть обращённым одной своей стороной к другому (как Луна, что всегда смотрит на Землю одной стороной). И тогда одно полушарие такой планеты будет в состоянии вечного лета, а другое, напротив, вкусит все прелести вечной зимы. Однако толстая атмо- или гидросфера определённо может переносить тепло от одного полушария к другому — а значит, жизнь там возможна, хотя и существует в несколько ином сезонном ритме, нежели земная в высоких и средних широтах.

Другой неприятной, как считалось, особенностью красных карликов являются вспышки в ультрафиолетовом диапазоне, характерные для таких звёзд в молодости. Однако толстая атмосфера способна защитить и от них. А в случае приливного захвата планеты как вдоль её терминатора, так и на её теневой стороне подобный УФ-стресс будет не слишком значим.

«Вам вовсе не нужен клон Земли для возникновения жизни», — резонно замечает г-жа Дрессинг.

Отчёт об исследовании принят к публикации в Astrophysical Journal, а с его препринтом можно ознакомиться здесь.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Астрономии
Воскресенье, 14 Октябрь 2012 11:10

Встречайте первую углеродную планету

Планета 55 Рака e, «суперземля», расположенная в системе солнцеподобной звезды HD 75732 (она же 55 Рака, спектральный класс G8V), была открыта в 2004 году. Это одна из самых близких к Земле «суперземель»: до её планетной системы всего 40,9 св. лет. Она примерно в 8,6 раза тяжелее Земли, а её диаметр всего вдвое больше нашего. Таким образом, плотность Земли и 55 Рака e вполне сравнима.

55 Рака e в сравнении с Землёй (иллюстрация Haven Giguere, NASA / JPL)55 Рака e в сравнении с Землёй (иллюстрация Haven Giguere, NASA / JPL)Свежее исследование, проведённое в Йельском университете (США), выдвигает тезис о том, что «суперземля» является типичной углеродной планетой, классом экзопланет, который до того лишь обсуждался как теоретически возможный. «Это первый взгляд на скалистый мир, с химией, фундаментально отличающейся от земной, — подчёркивает ведущий автор работы Никку Мадхусудхан. — Поверхность планеты скорее покрыта графитом и алмазами, нежели водой и гранитом».Кроме обладающей алмазной мантией 55 Рака e, в системе есть ещё четыре планеты (на изображении не хватает 55 Рака f). Разумно предположить, что у большинства из этих гигантов неизбежны спутникиКроме обладающей алмазной мантией 55 Рака e, в системе есть ещё четыре планеты (на изображении не хватает 55 Рака f). Разумно предположить, что у большинства из этих гигантов неизбежны спутники

Кроме химии, категорически отличным назван жаркий климат. На здешней солнечной стороне температура может достигать 2 000 К — и всё из-за небольшого расстояния до местного жёлтого карлика, оцениваемого в 0,01560 ± 0,00011 а. е.

До нынешних изысканий некоторое время велась дискуссия о том, является ли планета газовым гигантом типа Нептуна, только горячим, или всё же на ней преобладают тяжёлые элементы. После определения радиуса планеты (небольшого) и её значительной плотности версия «горячего Нептуна» отпала, и учёные констатировали, что это одна из первых (если не первая) планет, в отношении которой можно уверенно заявить: она углеродная. Дело в том, что в химическом составе местной звезды очень мало кремния и много углерода — черты, отсутствующие у Солнца.

Кроме того, наблюдения за спектром почти не выявили на поверхности 55 Рака e следов воды. Наряду с прочими факторами это означает, что планета по составу предельно далека от Земли, почти сплошь покрытой водой и с силикатной мантией. Мантия 55 Рака e в основном состоит из углерода, на который приходится до трети её массы. А учитывая огромные температуры и давления внутри, скорее всего, её мантия в основном состоит из алмазов. Даже если всего две трети углерода 55 Рака e находятся именно в этой форме, то алмазов там по массе вдвое больше, чем весит вся Земля.

Обнаружение первой углеродной планеты окончательно ставит точку в вопросе возможности или невозможности химического разнообразия планет, по размерам сходных с Землёй. Очевидно, что они есть, вопрос лишь в том, как их химия может влиять на происходящие процессы. Хотя большинство наблюдаемых жёлтых карликов (и их звёздных систем) ближе по составу к Солнцу, чем к 55 Рака (редчайшей сверхметалличной звезде), просто в силу обилия звёзд в Галактике можно предположить, что углеродных планет в ней миллионы, если не миллиарды: ведь одна 55 Рака имеет как минимум пять планет.

Уже сейчас очевидно, что на таких планетах может не быть сильного магнитного поля (из-за отсутствия текучести вещества в мантии) и тектоники плит (по той же причине). Более интересным вопросом является то, может ли на них существовать жизнь — разумеется, не на слишком горячей 55 Рака e, а на более далёких от солнц углеродных планетах, таких как спутники той же 55 Рака f, на поверхности которых вода может существовать в жидком виде. Если она всё же возникнет в столь бедных водой и кислородом мирах, её отличия от земной должны быть уникальными.

Соответствующее исследование вскоре появится в журнале Astrophysical Journal Letters, а с его препринтом можно ознакомиться здесь и сейчас.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Астрономии

Астрофизики из Нидерландов, Германии и Чили выяснили, как окружающее звёздное население влияет на развитие протопланетных дисков (ППД).

С точки зрения теоретиков, воздействие внешних светил на эти вращающиеся диски плотного газа у молодых звёзд ограничено процессами фотоиспарения и приливного разрушения краевых областей ППД. Кое-какую наблюдательную информацию по фотоиспарению астрономы уже собрали , а вот обнаружить явные следы сближений ППД с окружающими звёздами не удавалось. Причина этого банальна: продолжительность жизни ППД, измеряемая единицами миллионов лет, сильно уступает тому промежутку времени (~0,1–1 млрд лет), на котором встречи с их соседями могут заметно повлиять на популяцию дисков.

Очевидно, однако, что эффект разрушения и уменьшения размеров ППД всё же должен проявляться, если плотность расположения близлежащих звёзд (а следовательно, и вероятность их сближения с ППД) оказывается чрезвычайно высокой — преодолевает некое граничное значение. Последнее принимали равным ~103 пк–3.

Чтобы получить экспериментальную оценку того, на какой звёздной плотности «усечение» дисков становится заметным, авторы обратились к общедоступному каталогу ППД, расположенных в окрестностях Солнца. Поверхностная звёздная плотность Σ для каждого диска вычислялась по данным инфракрасных наблюдений близлежащих областей звездообразования.

В составленную учёными выборку попали 67 протопланетных дисков. Распределение их размеров по Σ показало, что верхний предел радиуса ППД находится, вероятно, на отметке в ~103 а. е. Как и следовало ожидать, распределение это было вполне равномерным, но с увеличением плотности до ~103,5 пк–2 крупных дисков всё же стало ощутимо меньше, что в дальнейшем подтвердил статистический тест Колмогорова — Смирнова .

Зависимости T от массы звезды с протопланетным диском, построенные для четырёх разных величин Σ. Пунктирная линия отмечает общее время жизни звезды. (Иллюстрация авторов работы.)Зависимости T от массы звезды с протопланетным диском, построенные для четырёх разных величин Σ. Пунктирная линия отмечает общее время жизни звезды. (Иллюстрация авторов работы.)Разумеется, относительно быстрое сокращение радиуса ППД, находящихся в тесных звёздных скоплениях c Σ > 103,5 пк–2, уменьшает и временнóй интервал T, на котором какие-либо области дисков (и, возможно, сформировавшиеся там планеты) попадают в обитаемую зону своего светила. Оценить этот интервал сверху совсем несложно: достаточно сравнить приблизительный внутренний радиус обитаемой зоны rz, традиционно определяемой как область, при попадании в которую планета может сохранять воду в жидком виде на поверхности, с радиусом ППД rd, рассчитанным для нескольких значений Σ. Время, в течение которого rd будет превосходить rz, и станет искомой оценкой.

Выполнив необходимые расчёты, астрофизики построили зависимости T от массы звезды, которой принадлежит протопланетный диск. Легко заметить, что время нахождения ППД в обитаемой зоне уменьшается не только с увеличением Σ, но и с ростом массы: для крупных светил характерны бóльшие значения rz.

Приведённый выше рисунок также позволяет сделать некоторые выводы о развитии нашей планетной системы. Параметры, соответствующие Земле, на нём отмечены ромбом, и расположение этой отметки сразу исключает возможность формирования Солнечной системы на участке с большой (свыше 103 пк–2) поверхностной звёздной плотностью, если только она не уменьшилась за довольно короткое время. С другой стороны, начальная плотность не могла быть слишком низкой, поскольку вблизи молодой Солнечной системы, согласно метеоритным свидетельствам, происходили вспышки сверхновых. Отсюда следует, что Солнце, скорее всего, принадлежало массивной, но слабо связанной звёздной ассоциации, которая распалась за ~10 млн лет.


Источник: КОМПЬЮЛЕНТА


 

 

Опубликовано в Новости Антропологии

Каменистый землеподобный мир кружит вокруг оранжевого карлика в 36 световых годах от нас в созвездии Паруса. Сила тяжести на поверхности этой планеты всего в 1,4 раза выше земной, а главное — там с большой долей вероятности может быть жидкая вода.

Новый мир был открыт при помощи прибора HARPS Европейской южной обсерватории. Он измеряет колебания радиальной скорости звезды (иллюстрация L. Calçada, ESO)Новый мир был открыт при помощи прибора HARPS Европейской южной обсерватории. Он измеряет колебания радиальной скорости звезды (иллюстрация L. Calçada, ESO)Учёные только что пополнили список потенциально пригодных для жизни миров вне Солнечной системы. Вновь найденная экзопланета HD85512b весит как 3,6 Земель и, по-видимому, несколько крупнее нашего мира.

Если новичка перенести в нашу систему, он расположился бы чуть дальше от Солнца, чем Венера, но ближе, чем Земля, пишет National Geographic.

Может показаться, что на поверхности HD85512b излишне горячо. Однако астрофизики посчитали, что умеренная облачность, закрывающая 50% поверхности планеты (для сравнения, средний показатель Земли — 60%), отражала бы в космос достаточно энергии, чтобы в том мире установилась более-менее комфортная температура, позволяющая существовать жидкой воде.

Сами облака тоже предполагаются водяные, а атмосфера планеты — сходная с земной, то есть азотно-кислородная. Но это всё догадки, основанные лишь на расположении новой сверхземли относительно своего светила, массе новоявленного мира и известных нам закономерностях в формировании планет.

С другой стороны, у HD85512b есть ещё два фактора, говорящие в пользу потенциальной обитаемости. Почти круговая орбита (следовательно, стабильный климат) и большой возраст. Той системе — 5,6 миллиарда лет, в отличие от нашей Солнечной системы, которой около 4,6 млрд, — вполне достаточно, чтобы развилась жизнь.

Отчёт об открытии выложен на arXiv.org и будет опубликован в Astronomy and Astrophysics


Источник:  MEMBRANA


 

Опубликовано в Новости Астрономии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Палеонтологи вывели формулу ребер аммонитов

14-10-2014 Просмотров:7733 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи вывели формулу ребер аммонитов

Раковины ископаемых головоногих моллюсков аммонитов широко распространены и пользуются большой популярностью у коллекционеров и любителей палеонтологии. Европейские ученые рассчитали специальную формулу, позволяющую предсказывать различные узоры из ребер, покрывающих эти раковины. Аммонит Древние...

На Земле царят самые высокие температуры за последние 120 тысяч…

27-09-2016 Просмотров:5943 Новости Экологии Антоненко Андрей - avatar Антоненко Андрей

На Земле царят самые высокие температуры за последние 120 тысяч лет

Климатологи проанализировали колебания температуры на Земле за последние два миллиона лет, и пришли к выводу, что сегодня на планете царят максимально высокие температуры за последние 120 тысяч лет, говорится в статье, опубликованной в журнале Nature. "Если климат сегодня работает...

Распад суперконтинента 116 млн лет назад заморозил Землю

21-06-2013 Просмотров:10290 Новости Метеорологии Антоненко Андрей - avatar Антоненко Андрей

Распад суперконтинента 116 млн лет назад заморозил Землю

Ученые выяснили, что 116 млн лет назад из-за распада Гондваны температура воды в океане упала на несколько градусов. Это привело к вымиранию целого ряда планктонных организмов. Земля мелового периодаРезультаты исследования, проведенного...

Генетики выяснили, как эволюционно разделились грибы и животные

12-10-2022 Просмотров:2340 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Генетики выяснили, как эволюционно разделились грибы и животные

Развитие эволюционных линий современных грибов и животных начиная от общего предка реконструировали ученые ТюмГУ в составе международного научного коллектива. По их словам, исследование не только проясняет один из ключевых эпизодов...

Ранние киты были змеевидной формы

20-11-2014 Просмотров:7673 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ранние киты были змеевидной формы

Новые род и вид древних китов описали новозеландские палеонтологи. 27 млн лет назад эти животные уже фильтровали планктон в окрестностях островного государства. Однако и внешне, и с точки зрения внутреннего...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.