Мир дикой природы на wwlife.ru
Вы находитесь здесь:Регионы>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Мир РНК


Среди теорий о возникновении жизни на Земле особой популярностью пользуется гипотеза мира РНК. РНК, как известно, может служить катализатором, и на заре жизни такие молекулы РНК могли одновременно и нести специфический наследственный код, и сами же его передавать от одного поколения молекул другому.

Элементы вторичной структуры (цветные) прионного белка, вписанные в конечный пространственный рельеф молекулы (рисунок UWMadisonCALS).Элементы вторичной структуры (цветные) прионного белка, вписанные в конечный пространственный рельеф молекулы (рисунок UWMadisonCALS).Однако, как полагает Майкл Блейбер из Университета штата Флорида (США), белки рано списывать со счетов. В статье, опубликованной в журнале PNAS, г-н Блейбер и его коллеги утверждают, что белки вполне могли возникнуть и функционировать без помощи нуклеиновых кислот. Как известно, правильная работа белковой молекулы зависит от её пространственной укладки, которая определяется последовательностью аминокислот. Эта трёхмерная структура определяет всякое взаимодействие белка с любыми другими молекулами. Можно предположить, что белок становится белком, когда в нём есть достаточное количество разных аминокислот: их разнообразие и количество определяют разнообразие и тонкость настройки пространственной структуры. А большое число разнообразных аминокислот требует шаблона для синтеза, и тут мы упираемся в необходимость РНК.

Но учёным удалось показать, что в определённых условиях пространственные структуры могут складываться из очень небольшого числа аминокислотных блоков. Среди аминокислот есть десяток таких, которые для своего синтеза не требуют сложной ферментной системы живой клетки. Иными словами, эти аминокислоты могли существовать до появления жизни. Учёные предположили, что из этих десяти аминокислот, не нуждающихся в «живых» ферментах, могут получиться пептиды, способные приобретать белковую пространственную структуру.

Исследователи продемонстрировали, что такие упрощённые белки действительно могут приобретать сложную пространственную структуру: число аминокислот удалось понизить до 12, из которых 80% были те, которые не требуют «живого синтеза». То есть двенадцати видов аминокислот достаточно, чтобы сделать белок со стабильной пространственной структурой (при этом, разумеется, аминокислоты могут повторяться и входить в молекулу в разных количествах и в разной последовательности). Хотя такой белок, как видим, не на 100% состоит из «неживых» аминокислот, можно допустить, что для этого нужны особые внешние условия, благоприятные для сворачивания аминокислотных цепей столь необычного состава.

Те белковые молекулы, что были описаны авторами работы, отличались тягой к кислой и высокосолевой среде, то есть могли приобретать пространственную укладку в довольно экстремальных внешних условиях. Во времена возникновения жизни, надо думать, подобные условия были не такой уж редкостью.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Микробиологии

Современное учение об эволюции представляет собой сложнейший сплав самых разных биологических дисциплин, от старых и уважаемых систематик животных и растений до новейшей молекулярной биологии. Что бы ни появлялось нового в смысле концепций, теорий и методов, эволюционное учение попробует это применить к своему предмету. Предмет же эволюционного учения сложен чрезвычайно, ведь теория эволюции изучает саму жизнь в её самых универсальных проявлениях, в развитии и взаимоотношениях с неживой природой. (Хотя мы допускаем, что с научной точки зрения такое определение предмета теории эволюции будет не вполне строгим.) В этом смысле можно сказать, используя уже весьма подзатёртое сравнение, что теория эволюции — это царица биологии.

Схема молекулы рибозима. С похожих молекул могла начаться жизнь на Земле (рисунок Laguna Design).Схема молекулы рибозима. С похожих молекул могла начаться жизнь на Земле (рисунок Laguna Design).И, разумеется, не проходит и года, чтобы биологи-эволюционисты не придумали, не подправили, не опровергли какую-нибудь из эволюционно-экологических закономерностей. Уходящий год не стал исключением, и тут, пожалуй, следует начать с концепций и гипотез, касающихся происхождения жизни — вечной темы, что волнует умы не только учёных мужей, но и весьма далёких от науки представителей рода человеческого. (Опять-таки в скобках заметим, что вопросы происхождения жизни, возможно, в теорию эволюции не входят, но мы их сюда на свой страх и риск включили, исходя из, может быть, весьма наивного соображения: ведь должна же эволюция жизни с чего-то начинаться!) Любая гипотеза о происхождении жизни должна объяснять несколько важных моментов: во-первых, живой организм должен копировать и передавать наследственную информацию; во-вторых, он должен быть отделён от окружающей среды мембраной или чем-то подобным; в-третьих, у него должен быть какой-никакой метаболизм, чтобы строить биомолекулы и самого себя из этих биомолекул.

Как известно, одной из самых популярных гипотез, объясняющих появление механизма сохранения и передачи информации в живых системах, стала гипотеза мира РНК. Наследственной информацией у нас заправляют нуклеиновые кислоты, но — только с помощью белков. Однако после открытия рибозимов стало понятно, что иногда нуклеиновые кислоты могут обходиться и без помощи белков. Это и подтолкнуло создание гипотезы мира РНК. Согласно ей, первыми молекулами на Земле были РНК, которые сами себя копировали, а уже потом к ним присоединились ДНК и белки, информация о которых уже могла записываться на нуклеиновых носителях. И в этом году группе исследователей из нескольких научных центров в США удалось поставить любопытный эксперимент, который показал, как в таком РНК-супе могла начаться эволюция. Оказалось, что в смеси рибозимов преимущество получают те молекулы, которые копируют других, а не себя. То есть запуск эволюции, процесс передачи информации вовсе не обязательно должен начинаться с самокопирования (этого, кстати, с рибозимами никому не удавалось достичь). Важно, чтобы молекулы-прародители могли работать не только со своей последовательностью, но и с чужой. Здесь, конечно, можно сказать о молекулярной взаимопомощи, но это уже будет чистой воды антропоморфизм.

Хорошо, пусть у нас существуют молекулы РНК, которые могут хранить и копировать информацию. Вопрос: как они встречаются в бескрайнем первичном океане? Если предположить, что они плавали в мембранных пузырьках, то получается, что, кроме одних сложных биомолекул, РНК, на заре жизни существовали и другие, которые организовывали мембраны, например, те же липиды. Однако, как показали эксперименты учёных из Пенсильванского университета (США), молекулы РНК могли группироваться и без участия сложносочинённых мембран. Оказалось, РНК любят концентрироваться в смеси довольно простых веществ, декстрана и полиэтиленгликоля, — их появление в видном растворе собирает РНК в ограниченной зоне. Существование на заре времён таких простых веществ, как декстран и полиэтиленгликоль, вполне вероятно. И с их помощью мир РНК мог обходиться без мембран.

Молекулярная модель большой частицы рибосомы дрожжей; разными цветами выделены разные белки. (Рисунок Laguna Design.)Молекулярная модель большой частицы рибосомы дрожжей; разными цветами выделены разные белки. (Рисунок Laguna Design.)Однако далеко не все согласны отдавать лавры основателей жизни одним лишь РНК. Учёные из Университета Иллинойса (США) полагают, что белки и РНК возникли и какое-то время существовали бок о бок, и лишь спустя какое-то время РНК позвали полипептидные цепи на помощь. Исследователи попробовали восстановить генеалогию и возраст разных фрагментов рибосомы, сложной нуклеопротеидной машины, которая и переводит язык нуклеиновых оснований в аминокислотную последовательность. Оказалось, что белки, образующие рибосому, ничуть не моложе соответствующих фрагментов РНК. Более того, важнейший реакционный центр рибосомы оказался моложе других её частей. Но даже если белки существовали до того, как объединились с РНК, остаётся вопрос, как они поддерживали свою структуру? Как они хранили информацию о самих себе?

Что же до происхождения метаболизма, то специалистам из Института Санта-Фе (США) удалось вроде бы вполне убедительно показать, что химические реакции, с помощью которых живые организмы манипулируют углеродом, существовали в древнейшей геохимии, хотя и были довольно неэффективными. То есть живые организмы подобрали из неживой природы что-то неочевидное и плохо работающее и с помощью миллионов лет эволюции сделали из этого вполне действенный метаболический аппарат. Другой вопрос, где живые организмы этим занимались. Общепризнанному мнению о том, что «жизнь возникла в океане», в уходящем году предъявили контраргументы. Группа исследователей, среди которых есть и наши соотечественники из МГУ, весьма небезосновательно предположила, что первые организмы не смогли бы выжить в тех солевых пропорциях, которые существовали в доисторическом океане. А потому первые эволюционные шаги жизнь должна была делать не в океанских глубинах и просторах, а на суше, в грязевых лужах, чей состав был более щадящ к первым живым существам.

Хоанофлагеллаты одиночные (слева) и образующие колонии после питания бактериями (справа). (Фото Rosanna A. Alegado / University of California, Berkeley.)Хоанофлагеллаты одиночные (слева) и образующие колонии после питания бактериями (справа). (Фото Rosanna A. Alegado / University of California, Berkeley.)Следующее эволюционное событие, которое в уходящем году пользовалось особым вниманием исследователей, это появление многоклеточных организмов. Эпизод этот относится, если можно так сказать, к проблемам повышенной фундаментальности, а чем фундаментальнее проблема, тем труднее найти для неё непротиворечивую теорию. Многоклеточность имеет очевидные плюсы, но что заставило древних одноклеточных перейти к такому состоянию? Тем более что в современном мире одноклеточные не такая уж забитая и угасающая группа, достаточно вспомнить бактерии и океанический одноклеточный планктон. Остроумное объяснение предложили исследователи из Калифорнийского университета в Беркли (США), работавшие с хоанофлагеллятами, которые, как считается, стоят на грани между одно- и многоклеточностью. По мнению учёных, предки многоклеточных объединились благодаря бактериям, точнее, благодаря некоторым веществам, которые содержат бактерии. Одноклеточные питались бактериями, а то вещество, которое в бактериях содержалось, склеивало многоклеточных вместе, в колонию. Не слишком аппетитная гипотеза, если вдуматься.

Ещё один удивительный результат получили учёные из Университета Миннесоты (США), у которых дрожжи превратились из одноклеточных в многоклеточные образования всего за… 60 дней. Движущей силой тут стала гравитация: чтобы быстрее осесть на дно, клетки дрожжей объединялись со своими родственниками, причём в получившихся кластерах разные клетки вели себя по-разному, то есть демонстрировали основные признаки зарождающегося многоклеточного «самосознания». Но самое удивительное тут, конечно же, сверхсжатые сроки, за которые это произошло. Ну и самая, пожалуй, удивительная гипотеза о происхождении многоклеточности вышла из-под пера Стюарта Ньюмана из Медицинского колледжа Нью-Йорка (США). Уважаемый профессор сравнил базовые структурные блоки, которые есть у самых разных животных, с вязкоупругими химическими субстанциями и пришёл к выводу, что первые многоклеточные сформировались под действием физико-химических сил, которые не влияют на одиночные клетки, но неизбежно вступают в свои права, если клеткам вздумается объединиться.

Вообще, эволюционное учение в последнее время стало необычайно широко пользоваться экспериментальными методами, хотя, казалось бы, с эволюцией ассоциируются миллионы и миллионы лет, о каких экспериментах тут может идти речь? Тем не менее исследователи вдруг поняли, кто им поможет поверить экспериментом тайны эволюции. Помощниками оказались бактерии и дрожжи: благодаря высочайшей скорости размножения они могут проявить эволюционные закономерности за вполне разумное время, нужно лишь правильно спланировать эксперимент. И с помощью этих микроскопических помощников в прошлом году удалось проверить ряд важнейших эволюционных концепций, которые до сих пор существовали только в виде умозрительных рассуждений. Так, исследователи из Мичиганского университета (США) сумели сопоставить генетическое понятие мутации и фенотипическое понятие признака. У вируса новый признак формировался за четыре мутации, бактериям для этого требовалось больше полусотни. В данном случае важна не столько абсолютная цифра (понятно, что для разных организмов и для разных признаков она будет разной), сколько сам способ, позволяющий оценить взаимодействие генов при формировании признака и число мутаций, которые должны в них попасть. И опять же с помощью бактерий удалось наблюдать увидеть целый эволюционный цикл: 56 тысяч поколений бактерий и 20 лет эксперимента позволили учёным увидеть три стадии формирования признака и сопоставить их с фенотипическими изменениями.

Пекарские дрожжи — одни из главных «рабочих лошадок» современной биологии (Dennis Kunkel Microscopy.)Пекарские дрожжи — одни из главных «рабочих лошадок» современной биологии (Dennis Kunkel Microscopy.)В свою очередь, дрожжи помогли исследователям из Университета Окленда (Новая Зеландия) подтвердить экспериментально одну из главных концепций в биологии: половое размножение с эволюционной точки зрения лучше, чем бесполое. Однако можно возразить, что все эти эксперименты ставятся на довольно специфических объектах, бактериях и одноклеточных грибах, а у них эволюция может идти иными путями. Но, как оказалось, по крайней мере у бактерий новые виды образуются так же, как у животных: за счёт генетического разнообразия внутри популяции, которое проявляется при смене экологических условий. То есть нет необходимости придумывать для бактерий какую-то свою, отдельную эволюцию.

Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.)Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.) Безусловно, нельзя не упомянуть эксперимент исследователей из Университета Род-Айленда (США), которые сумели увидеть эволюцию не в пробирке, не среди бактерий, а среди ящериц. Учёные задумали проверить, существует ли на самом деле эволюционно-генетический эффект, называемый эффектом основателя, когда расселяющиеся маленькие популяции оказываются между молотом и наковальней — между естественным отбором и собственным небогатым (из-за расселения) генофондом. Так вот, в течение нескольких лет учёные воочию наблюдали борьбу между двумя эволюционным факторами, которые раньше существовали только в теории. Правда, нельзя не признать, что с условиями эксперимента зоологам повезло: в их распоряжении оказались острова, очищенные от большей части фауны сильнейшим ураганом.

Из других новостей на тему общеэволюционных законов следует отметить два сообщения о молекулярных механизмах эволюции. В Стэнфорде (США) на примере колюшки была подтверждена известная гипотезу о том, что большая часть эволюционных изменений заключается в перетасовке уже имеющихся генов, нежели в создании новых. То есть у вида создаётся несколько генетических сценариев для жизни, из которых один работает, а другие спят. Если же возникает надобность, происходит переключение между этими генетическими наборами, благодаря мутациям в нескольких управляющих последовательностях ДНК. Именно так, по словам учёных, колюшкам удалось быстро перейти из морей в солёные водоёмы. И именно так, кстати говоря, мог возникнуть человек: по мнению некоторых исследователей, мы отличаемся от обезьян в первую очередь способом управления генами.

В другой работе, опубликованной учёными из Массачусетского технологического института (США), говорится о том, что главным молекулярным инструментом эволюции, главным молекулярным механизмом, обеспечивающим приспособление вида к среде, может быть альтернативный сплайсинг РНК. Во всяком случае, согласно результатам этой научной группы, разные виды отличаются друг от друга не столько активностью генов, сколько способами альтернативного сплайсинга.

Из более частных эволюционных исследований, которые касаются развития отдельных групп животных, можно напомнить о работе исследователей из Смитсоновского института изучения тропиков (США) и Университета Вагенингена (Нидерланды), которые пришли к выводу, что мелкие грызуны благодаря своим воровским повадкам спасли доисторические леса от вымирания. А исследователи из Университета Монаша в Австралии попробовали посчитать, сколько времени требуется эволюции, чтобы превратить мышь в слона и обратно — и тут эволюция поразила своей медлительностью. И, конечно, отдельная тема — это происхождение человека и эволюция самого человека. Про переход от обезьян к человеку и его эволюционно-генетические причины можно узнать в соседнем материале. Здесь же стоит упомянуть об экспериментах исследователей из Тринити-Колледжа (Ирландия), которые с помощью симулятора эволюции показали, что сложная общественная жизнь идёт рука об руку с развитием больших нейронных систем. То есть, грубо говоря, развитие мозга лучше происходит в обществе.

Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.)Ящерицы из рода анолисов стали участниками уникального эволюционного эксперимента. (Фото Jim Merli.)Однако, отделившись от обезьян и сформировав первые цивилизации, человек отнюдь не вышел из-под власти эволюции и естественного отбора. Так, учёные из Университета Шеффилда (Великобритания) показали влияние естественного отбора на человека на примере популяционной динамики в нескольких финских деревнях. Оказалось, что даже в моногамном обществе есть эволюционные изменения признаков, которые можно наблюдать на протяжении нескольких сотен лет. Можно предположить, что в современном мире, с развитием медицины, средств контрацепции, и т. д. и т. п. не найдётся места не только для старых традиционных сообществ, но и для эволюции. Однако исследователи из Университета Гронингена (Нидерланды) утверждают, что естественный отбор по сей день действует даже на такой важный с точки зрения эстетики и моды параметр, как рост: хотя современные мужчины и женщины предпочитают высоких партнёров, эволюция благоприятствует высокорослым мужчинам, но низкорослым женщинам.

 Долгое время феномен менопаузы не мог найти объяснения у учёных. Человек — одно из редчайших исключений среди животных, наши особи женского пола с некоего возраста теряют способность давать потомство. Эта странная и эволюционно нерациональная стратегия, кажется, нашла своё объяснение в теории: менопауза нужна, чтобы бабушки смогли заботиться о потомстве своих детей, тем самым повышая его выживаемость. Именно благодаря менопаузе, по мнению исследователей из Университета Турку (Финляндия), пожилая женщина может отдать своё время и силы ребёнку своей дочери или невестки, не отвлекаясь на собственных малышей. Эта гипотеза и раньше существовала, но на этот раз её проверили на человеческой популяции. Забота бабушек принесла свои плоды — антропологи из Университета Юты и Калифорнийского университета в Лос-Анджелесе (оба — США) подтвердили, что благодаря бабушкам человек стал жить дольше.

Можно ли вылечить рак с помощью теории Дарвина? (Фото Moredun Animal Health.)Можно ли вылечить рак с помощью теории Дарвина? (Фото Moredun Animal Health.)Выше мы назвали эволюционное учение царицей биологии. Злые языки могли бы сказать, что это в полном смысле царица: пользуясь результатами и методами других областей, она ничего не даёт взамен в смысле практической пользы, что пользы от неё как от козла молока (эволюционно совершенно непредставимая вещь, хотя и возможная с точки зрения генной инженерии). Это не совсем так — выводы, сделанные в рамках эволюционного учения, могут пригодиться другим, более практическим областям. Вот примечательный пример: учёные из Онкоцентра имени Х. Ли Моффита (США) опубликовали работу, в которой именно с помощью эволюционной теории объясняют удивительную способность раковых клеток противостоять химиотерапии. Собственно, исследователи рассматривают опухоль как популяцию, которая подчиняется соответствующим эволюционно-экологическим законам. Если гипотеза верна, то онкологам, чтобы справиться с раком, нужно в корне пересмотреть подходы к лечению. И, возможно, что именно благодаря эволюционной теории мы когда-нибудь победим рак. (Заметим, что уподобление рака популяции ещё не столь радикальный шаг — по сравнению с прошлогодней работой, в которой рак уподоблялся единому организму и предлагался едва ли не на роль нашего предка.)

Из иных результатов эволюционных изысканий, которые могут пригодиться с практической точки зрения, можно упомянуть о том, как климатические изменения играют на руку паразитам, а также о генеалогии зловещих лихорадок Эбола и Ласса, которые оказались гораздо старше, чем о них думали. И то, и другое пригодилось бы для эпидемиологов и вообще врачей, которые много бы дали за то, чтобы знать, чего можно ждать от инфекции в будущем.

Златокрот (фото Inspector Lewis)Златокрот (фото Inspector Lewis)В действительности, как легко заметить, современная теория эволюции больше всего напоминает некий призрак, неуловимую сущность, которая возникает на стыке самых разных дисциплин, от психологии до иммунологии. Так что имеет смысл говорить не столько об отдельной дисциплине, сколько об эволюционном подходе, который может стать мощным оружием в познании живого мира — всё равно, идёт ли речь об отвлечённо-высокой загадке происхождения жизни или о «низменных», повседневно-медицинских иммунологических вопросах. 

Однако, несмотря на всё величие и мощь эволюционного подхода, срабатывает он не всегда. И уходящий год дал нам два любопытных примера, когда биологам-эволюционистам оставалось только развести руками. Первый пример — это бактерии из пещеры Лечугия, что в американском штате Нью-Мексико. Местные микробы сумели приобрести устойчивость к большинству современных антибиотиков, хотя были изолированы от окружающей среды в течение последних тысячелетий, — феномен, который нельзя объяснить с эволюционно-генетической точки зрения. Вторым номером идёт златокрот: появление у этого удивительного животного переливающегося золотистого меха невозможно объяснить никакой эволюционной потребностью, и учёным приходится говорить, что в данном случае мы имеем дело с «побочным и бесполезным продуктом каких-то других эволюционных превращений».

 


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Эволюции

Недавно ученые смогли создать рибонуклеиновую кислоту (РНК), способную создавать свою собственную копию. До этого никогда прежде этим молекулам не удавалось наладить свое собственное воспроизводство. Это открытие является первым экспериментальным доказательством весьма популярной теории о происхождении жизни, получившей название "мир РНК".

News10a10a1a    Из школьного курса биологии мы помним, что   большинство важнейших процессов организма регулируется белками. Эти белки   производятся самими клетками в том количестве, которое необходимо в конкретный   момент времени (кстати, белки "извне" организм вообще не использует). Информация   о том, как каково должно быть строение каждого белка записано в виде   последовательности азотистых оснований (нуклеотидов) в определенных участках   молекулы дезоксирибонуклеиновой кислоты (ДНК), хранящейся в ядре клетки. Именно   эти участки неспециалисты называют генами (хотя это не совсем так, у гена, кроме   информативной части, есть еще и "служебная", не несущая информации о строении белка). Прочитать же эту информацию, а тем более, создать на ее основе белок, весьма непросто.

    ДНК обычно пребывает в форме двойной закрученной спирали, но именно в таком состоянии с нее ничего прочесть нельзя. Поэтому перед   считыванием специальные белки расплетают ее (примерно так же, как парикмахер с   помощью щипцов расплетает вьющиеся волосы), после чего другие белки снимают с   гена копию. Но эта копия существует не в виде ДНК, а виде одноцепочечной молекулы РНК, последовательность нуклеотидов которой полностью повторяет таковую в гене.

    Далее, после некоторых модификаций РНК-овый   "чертеж белка" отправляется в "сборочный цех" — специальные клеточные органеллы,   называемые рибосомами. Они расположены не в ядре, а за его пределами, в   цитоплазме. В рибосомах этот "чертеж" сразу же пускают в производство — на   основе сообщенной информации, заключенный в последовательности нуклеотидов   начинается синтез белка из аминокислот (как мы помним, каждой аминокислоте   соответствует кодон — группа из трех нуклеотидов). Как только синтез белка   заканчивается, "чертеж" сразу же уничтожается, то есть разрезается специальными   белками на отдельные нуклеотиды, которые затем переправляют обратно в ядро. При   надобности потом из них соберут новую РНК.

     Итак, белок отвечает за регуляцию всех процессов,   а ДНК хранит информацию об их строении. При этом, как вы понимаете, одно   вещество без другого не может — если нет ДНК, как клетка узнает о том, как   собирать белки, а если нет белка, то наследственную информацию невозможно будет   прочитать. В связи с этим те, кто занимается проблемой происхождения жизни,   постоянно задавали себе один и тот же вопрос — что же в процессе эволюции   появилось раньше, белок или ДНК?

    Этот вопрос, аналогичный проблеме курицы и яйца,   долгое время вообще не имел даже теоретического ответа. Более того, все   эксперименты показали, что самосборка белка без участия ДНК (и РНК) практически   невозможна. Точно также не происходит самопроизвольный синтез ДНК без участия   специфических белков. Поэтому предположение о том, что белок и ДНК появились   независимо, а потом вдруг встретились, подружились и стали вместе работать, увы,   абсолютно неправдоподобно.

    Однако в последнее время многие ученые считают,   что в начале, когда в примитивных организмах еще не было ни ДНК, ни белков, их   функции выполняла молекула РНК. Она являлась и хранителем информации, и   регулятором всех важных процессов. При этом она могла сама себя копировать для   того, что бы наследственная информация передавалась потомкам. Данная гипотеза   получила название "мира РНК".

    Что и говорить, гипотеза достаточно красивая,   однако есть ли у нее какие-нибудь доказательства? Что касается каталитической   активности РНК, то о ней было известно достаточно давно. Такие регуляторные РНК   называют рибозимами. Хотя они достаточно редко встречаются в клетках, тем не   менее, эти активные РНК очень важны для существования последних. Например,   активная часть рибосомы, в которой собирается белок из аминокислот, является   рибозимом. Именно он осуществляет сшивание отдельных аминокислот в белковую   цепочку.News10a10a2

    Однако может ли такой рибозим катализировать   сборку своей собственной копии без помощи других веществ? Долгое время ученые пытались создать такую РНК искусственно. Результаты, как правило, были не   очень-то обнадеживающие — долгое время эти молекулярные "Франкенштейны" могли   воспроизвести лишь последовательность из 14 нуклеотидов (а ведь самая маленькая   РНК вирусов содержит их несколько сотен). Кроме того, эти рибозимы оказались   весьма капризными — они копировали далеко не все собственные последовательности,   а лишь те, которые им по каким-то причинам нравились больше.

    И вот недавно Филип Холлигер из Кембриджского   университета (Великобритания) решил улучшить подобную РНК. Он и коллеги   проверили тысячи вариантов различных рибозимов на способность к длительному   копированию, потом отобрали несколько самых эффективных вариантов и создали из   них "суперрибозим", который назвали tC19Z. После чего новое вещество было   подвергнуто испытанию, в результате которого ему было предложено создать свою   собственную копию.

    В результате рибозиму удалось воспроизвести   последовательность РНК, состоящую из 95 нуклеотидов. Несмотря на то, что   какие-то последовательности он копировал лучше, какие-то — хуже, в целом tC19Z   был куда менее "привередливым", чем его предшественники. Но что более важно —   длина копируемых рибозимом кусков составляют почти половину его собственной   длины.

    Итак, впервые была получена молекула РНК, обладающая каталитической активностью, которая смогла достаточно точно   скопировать саму себя примерно наполовину. Правда, для того, что бы окончательно   доказать справедливость теории "мира РНК", то нужно получить фермент, способный   воспроизвести себя полностью. Однако, судя по всему, подобное уже не за горами.   А пока же сам факт того, что можно получить молекулу РНК хотя бы с половиной требуемой мощности, делает РНК-теорию о возникновении жизни на Земле всё более   достоверной.

News10a10a3    Согласно этой теории, первые РНК появились в   результате самосборки (подобное, как показывают эксперименты, вполне возможно в   бескислородных условиях), и были очень короткими. Они, обладая каталитической   активностью, выполняли функции регуляторов всех процессов в первичных   организмах, и, храня информацию о своем строении, могли создавать свои   собственные копии, передававшиеся потомкам. Постепенно РНК становились более   длинными, и, в какой-то момент смогли синтезировать более совершенные и   универсальные регуляторы — белки. После чего уступили им часть своих   обязанностей, оставив себе лишь почетное право хранить наследственную информацию   (у некоторых современных вирусов РНК до сих пор занимается именно этим).

    Далее, возможно в результате ошибок при   копировании в некоторых потомках РНК одни вещества оказались заменены на другие   (сахар рибоза — на дезоксирибозу, азотистое основание урацил — на похожий на   него тимин). В результате появилось ДНК, которая, благодаря своей способности   образовывать двойную спираль, оказалось лучшим хранителям наследственной   информации (она более устойчива к мутациям, чем одноцепочечная РНК). Так РНК   распростилась со своей другой исходной функцией, и, предав новому веществу все   заботы о хранении наследственной информации, сохранилась лишь как посредник   между ДНК и белком. В этой роли она пребывает и по сей день во всех живых   клетках…


 

Источник:  Pravda.ru


 

 

Опубликовано в Новости Генетики

Физик Джереми Ингланд из Массачусетского технологического института (США), проведя моделирование процесса воспроизведения простейших живых организмов, пришёл к выводу о том, что воспроизводство РНК и организмов на её основе значительно проще, нежели в случае ДНК. Но главное в другом: для воспроизведения РНК in vitro используется энергии лишь чуть больше, чем это абсолютно необходимо с термодинамической точки зрения.

Уровень потерь при воспроизводстве кишечной палочки чрезвычайно мал: даже при активном делении он всего в 2,5–3 раза больше абсолютно необходимого минимума. (Иллюстрация Jeremy L. England.)Уровень потерь при воспроизводстве кишечной палочки чрезвычайно мал: даже при активном делении он всего в 2,5–3 раза больше абсолютно необходимого минимума. (Иллюстрация Jeremy L. England.)Условно говоря, «КПД процесса» здесь близок к 100%.

ДНК более устойчива в химическом отношении, чем РНК, но и куда сложнее. Дело в том, что вместо сахара дезоксирибозы РНК содержит рибозу, имеющую дополнительную гидроксильную группу, увеличивающую вероятность гидролиза молекулы, то есть уменьшающую её стабильность.Упрощённые структуры РНК и ДНК. РНК в большинстве случаев не является двойной спиралью и значительно короче ДНК. (Иллюстрация Wikimedia Commons.)Упрощённые структуры РНК и ДНК. РНК в большинстве случаев не является двойной спиралью и значительно короче ДНК. (Иллюстрация Wikimedia Commons.)

Для проведения термодинамических расчётов по энергии, требуемой системе на репликацию в отношении РНК и ДНК, учёный использовал статистическую оценку РНК и ДНК как систем до и после их репликации. Зная варианты состояния компонентов в системе, при которой возможно самовоспроизведение РНК и ДНК, исследователь определил количество тепла, абсолютно необходимое с термодинамической точки зрения для процесса.

Оказалось, что термодинамически репликация РНК значительно проще и требует на порядок меньшего количества тепла. В сложных с точки зрения энергобаланса условиях вероятность репликации у РНК должна быть радикально выше, чем у ДНК. Именно этот тезис заставил исследователя предположить, что первый тип процессов исторически имел место значительно раньше, чем второй. И сей вывод как будто подтверждает гипотезу мира РНК , по которой первые самовоспровоизводящиеся живые организмы состояли из РНК, одновременно являвшейся и носителем наследственной информации, и средством её дальнейшего воспроизводства. Характерное для нынешней жизни разделение функций произошло, по его мнению, позднее, когда ДНК стала использоваться как носитель наследственной информации (более устойчивый, чем РНК), а ферментативная функция перешла к белкам.

Любопытно, что, оценивая термодинамическую эффективность размножения кишечной палочки, Джереми Ингланд заключил, что та тратит на размножение всего втрое больше энергии, чем это абсолютно необходимо с термодинамической точки зрения. Хотя этот показатель уступает КПД репликации РНК, близкого к 100%, тем не менее для столь сложной системы как клетка его можно считать выдающимся, заключает учёный.

С препринтом исследования можно ознакомиться здесь .


Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Генетики

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Тираннозавр Рекс признан каннибалом

24-10-2010 Просмотров:9365 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Тираннозавр Рекс признан каннибалом

Грозные гиганты Tyrannosaurus rex поедали собратьев. Это установили Николас Лонгрич (Nicholas Longrich) из Йеля (Yale University) и его коллеги из других университетов США и Канады. Тиранозавр РексОбладавший острым обонянием и мощным...

Адский вампир питается подводным мусором

26-09-2012 Просмотров:12588 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Адский вампир питается подводным мусором

Образ жизни адского вампира совершенно не соответствует его имени: вместо того чтобы преследовать добычу во мраке вод и высасывать из неё кровь, сей глубоководный головоногий моллюск предпочитает мирно собирать плавающий...

Рыбы-харацины "ловят" самок при помощи приманок, похожих на насекомых

17-07-2012 Просмотров:12053 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Рыбы-харацины "ловят" самок при помощи приманок, похожих на насекомых

Самцы тропических рыб-харацинов выработали уникальную стратегию для  привлечения внимания самок - они вырастили специальные приманки на своих жабрах, напоминающие по форме и окраске тело насекомых - основу рациона этих рыб,...

Палеонтологи реконструировали самую большую рыбу

28-08-2013 Просмотров:8620 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи реконструировали самую большую рыбу

Лучеперая рыба Leedsichthys problematicus из юрского периода подтвердила свой титул самой крупной рыбы всех времен и народов. Остатки гигантского животного длиной в 16,5 м обнаружили ученые в одном из карьеров...

По ночам Марс превращается в болото

15-04-2015 Просмотров:7989 Новости Астрономии Антоненко Андрей - avatar Антоненко Андрей

По ночам Марс превращается в болото

Планетологи выяснили, что в ночные часы на Красной планете становится влажно - по верхнему слою марсианского грунта начинает циркулировать жидкая вода. Об этом говорится в статье специалистов из космического агентства NASA,...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.