Ученые из университета Массачусетса в Амхерсте (США), под руководством ассистента-профессора Томаса Марески (Thomas Maresca) измерили величину силы, двигающей хромосомы во время деления клеток. Статью об этом, опубликованную в журнале Nature Communications, пересказывает пресс-релиз университета.
Когда клетка делится, хромосомы выходят из ядра и выстраиваются в линию с помощью т. н. «веретена деления», состоящего из микротрубочек. Затем хромосомы удваиваются и впоследствии те же микротрубочки «растаскивают» их по разделившимся клеткам. Хромосомы крепятся к трубочкам с помощью специальных белков-кинетохоров. Понять механику этого процесса очень важно, ведь малейшая ошибка в расхождении хромосом при клеточном делении приводит к опасным нарушениям, которые могут вызвать рак. А если речь идет о половых клетках — то тяжелые наследственные заболевания.
Несмотря на это, до сих пор не было сколько-нибудь точных и достоверных оценок величины сил, которые двигают хромосомы во время этого процесса. Ранее выдвигавшиеся оценки отличались в сотни и тысячи раз, что, конечно, совершенно недопустимо в науке. Марески с коллегами, судя по всему, смогли решить эту проблему.
Для этого они в течение трех лет изучили под мощным микроскопом свыше 3 тыс. веретен деления. К кинетохорам в них исследователи прикрепляли флюоресцентные молекулы-индикаторы двух типов. Молекулы первого начинали светить ярче, когда к кинетохору прикладывалось давление, в то время, как молекулы второго типа, напротив, тускнели. Поскольку яркость каждого из типов молекул в нормальных условиях была тщательно откалибрована, сопоставление ее изменений позволяло достаточно точно вычислить величину искомой силы. Она оказалась порядка сотни пиконьютонов (пН) — в масштабах клетки это много.
Наблюдения дали и еще некоторые результаты. Во-первых, оказалось, что эта сила исходит именно от нанотрубок. Во-вторых, действует она медленно, но планомерно.
«В клетках есть много разных движущих сил, многие из них похожи на спринтеров. Но та, что измеряли мы — скорее как бульдозер: она прикладывает большую силу медленно, но на постоянной основе».
Источник: Научная Россия
Учёные разгадали загадку, откуда взялось несколько видов центромер, за которые клетка растаскивает хромосомы по полюсам деления при размножении.
Во время деления перед клеткой стоит сложная задача: правильным образом распределить хромосомы между дочерними клетками. В зависимости от вида деления (митоз это или мейоз) в дочерние клетки расходятся гомологичные хромосомы или же сестринские хроматиды. Но в любом случае хромосому тащат за центромеру — особую структуру, которая, если нарисовать хромосому в классической Х-образной форме, будет находиться как раз в перемычке икса. Центромера отличается по структуре ДНК и связанных с ней белков от остальной хромосомы. Хотя в целом принцип упаковки ДНК здесь соблюдён: нить нуклеиновой кислоты наматывается на «шайбу» из белков гистонов, формируя элементарную единицу строения хромосомы — нуклеосому.
При делении к центромере крепятся особые молекулярные «канаты», которые начинают тянуть хромосому (или хроматиду) к полюсам деления. Понятно, что от строения центромеры зависит весьма много: неправильная центромера может стать причиной неправильного расхождения хромосом, а это чревато самыми разными болезнями, от синдрома Дауна до рака. Однако, хотя клеточное деление — один из самых интенсивно изучаемых феноменов, до сих пор учёные не имели единого мнения о структуре центромеры. Было известно, что в состав центромерной нуклеосомы входит особая модификация гистона H3. С другой стороны, по разным данным у центромер насчитали шесть разных структур. Вопрос о том, как они соотносятся друг с другом и с клеточным делением, долгое время был большой головной болью для клеточных биологов.
Учёным из Института медицинских исследований Стауэрса (США) удалось раскрыть эту загадку. По их словам, в ходе деления центромера просто меняет структуру, и, рассматривая клетку на разных этапах клеточного цикла, действительно можно насчитать несколько разных центромер. Выяснить это удалось с помощью остроумного методического решения. Исследователи работали с дрожжевыми клетками, у которых в состав центромеры входит гистон Cse4. Чтобы можно было наблюдать за его судьбой, к нему пришили зелёный флюоресцирующий белок. Но исследователи не просто наблюдали за светящимися точками в дрожжевых клетках: они сравнивали интенсивность светимости на разных этапах клеточного цикла.
У дрожжей 16 хромосом, и если в каждой из них есть по центромере, а в каждой центромере сидит по одной копии Cse4, то суммарная светимость клетки должна быть в 16 раз больше, чем светимость одной молекулы Cse4 со светящимся белком. Так и было до того момента, когда клетка начала непосредственно делиться. А когда хромосомы стали расходиться по полюсам, светимость клетки возросла ещё вдвое (то есть она светилась в 32 раза сильнее, чем одна молекула белка).
Иными словами, как пишут исследователи в журнале Cell, центромера обладает переменной структурой, причём эта переменность проявляется, казалось бы, в самый неподходящий момент. Это можно сравнить с тем, как если бы кран поднимал бетонную плиту вместе со строителями, а те вдруг решили поменять крепления между подъёмным тросом и плитой. В случае с центромерой один из белков нуклеосомного комплекса уходит, и на его место приходит ещё одна копия Cse4. После распределения хромосом одна молекула Cse4 покидает центромеру.
Похожие результаты, но с клетками человека были получены группой учёных из Национального онкологического института (США), которые опубликовали свои данные в том же журнале. То есть такие преобразования центромер не есть особенность дрожжей, а свойственны, скорее всего, самым разным организмам и типам клеток. Очевидно, у клетки есть причины для того, чтобы так усложнять себе жизнь. Пока же учёные радуются разрешению важной загадки, связанной с клеточным делением. Возможно, теперь станет ясным механизм некоторых аномалий развития: чтобы хромосомы разошлись неправильно, клетке нужно лишь забыть поменять перед делением один белок центромеры на другой.
Источник: КОМПЬЮЛЕНТА
30-11-2015 Просмотров:7351 Новости Эволюции Антоненко Андрей
Шотландские и американские ученые обнаружили останки гигантской древней змеи, жившей на Земле 90 миллионов лет назад, которая "рассказала" им о том, что змеи лишились ног и начали ползать по земле в тот момент, когда они начали...
07-11-2012 Просмотров:12592 Новости Палеонтологии Антоненко Андрей
Девять миллионов лет назад Европой правило (помимо прочих) трио суровых млекопитающих: «собакомедведь» (Magericyon anceps) и две саблезубых кошки (Machairodus aphanistus и Promegantereon ogygia). Эта необычная компания прекрасно уживалась друг с другом близ...
05-03-2015 Просмотров:9415 Экспедиции Антоненко Андрей
В этот раз мы переместимся к границе Казахстана с Узбекистаном и Киргизией, где среди гор, расположено два интересных природных парка. Аксу-Жабаглинский заповедникНаше путешествие начнется с находящегося на юге Казахстана Аксу-Жабаглинского заповедника.
01-07-2015 Просмотров:8389 Новости Микробиологии Антоненко Андрей
Относительно безобидная бактерия, вызывающая диарею и лихорадку, стала "бичом Божиим" средневековой Европы благодаря одной незначительной мутации и "воровству" короткого фрагмента ДНК у другого микроба, заявляют генетики в статье, опубликованной в журнале Nature Communications. Жертвы чумы"Полученные нами...
23-05-2016 Просмотров:7470 Новости Палеонтологии Антоненко Андрей
Уникальную находку сделали аргентинские ученые-палеонтологи в Антарктиде. Вблизи базы Марамбио они обнаружили останки птицы, возраст которых насчитывает более 50 млн лет. Вид ложнозубых птиц PelagornithidaeПо словам исследователей, речь идет о представителе...
Кто живёт на краю космоса? То есть — кто ещё, кроме пилотов и редких ныряльщиков в небо? На этот вопрос и собрался ответить один из сотрудников НАСА. Луна сквозь верхние слои атмосферы. Снимок…
Группа ученых под руководством профессора СПбГУ Андрея Козлова и руководителя лаборатории онкоэкологии НИИ онкологии имени Н.Н. Петрова Марка Забежинского больше года наблюдала за золотыми рыбками. В итоге исследователи пришли к…
Норвежские археологи обнаружили неолитический аналог Помпеев. Одна из находок (фото Lars Sundström / Kulturhistoriskt Museum, Universitetet I Oslo). Неподалёку от города Кристиансанн, что в южной части страны, найдено поселение,…
Исследователи экспериментально показали, что выросты на крыльях бабочек создают акустические помехи, которые мешают летучим мышам вычислять местоположение добычи. Сатурния луна (Actias luna)Об этом говорится в статье американских специалистов из Университета Джона…
Российские исследователи пробурили скважину до подледникового озера Восток в Антарктиде. Об этом корр. ТАСС сообщил министр природных ресурсов и экологии Сергей Донской. Станция Восток"Сегодня получена информация о том, что после трехлетней…
Зигзагообразный узор на паутине многих пауков-кругопрядов хорошо отражает ультрафиолет. Как полагают зоологи, это помогает паукам ловить насекомых-опылителей, чьи глаза настроены на этот диапазон. Паук-оса на паутине со стабилиментумом (фото Mr.Enjoy)Многие кругопряды,…
Обладателями мужского полового органа первоначально были все птицы, но потом большинство пернатых от него отказались — за исключением страусов, уток и некоторых других видов. Африканские страусы — счастливые обладатели мужского полового…
Ученые нашли на северо-востоке Китая гигантское кладбище яиц птерозавров, которое впервые позволило им узнать, что детеныши летающих гигантов мезозоя рождались абсолютно беспомощными, говорится в статье, опубликованной в журнале Science. "Это открытие окончательно подтвердило то,…
Взрослые носухи защищают детёнышей, ворующих пищу у других особей. Это происходит даже в том случае, если маленькие воришки не приходятся защитникам роднёй. Южноамериканские носухи живут сообществами в несколько десятков особей. Несмотря…