Мир дикой природы на wwlife.ru
Вы находитесь здесь:Регионы>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Myxococcus xanthus


Социальные сети бактерий давно престали быть для учёных новостью. Представления о микрофлоре как о куче обособленных бактериальных клеток за последнее десятилетие почти полностью исчезло, и теперь любую бактериальную «тусовку» рассматривают именно как сообщество — где все друг с другом общаются, помогают и т. д. Теперь исследователи заняты тем, что постепенно расшифровывают механизмы, с помощью которых бактерии поддерживают свои социальные сети. Обычно в таких случаях речь идёт о химических «средствах информации»; иногда же удаётся найти нечто уникальное в своей необычности (как это было с бактериальными электрическими проводами).

Фрагмент межбактериальной перемычки из мембранных пузырьков под электронным микроскопом (здесь и ниже фото авторов работы).Фрагмент межбактериальной перемычки из мембранных пузырьков под электронным микроскопом (здесь и ниже фото авторов работы).Исследователи из Национальной лаборатории имени Лоуренса в Беркли (США) обнаружили ещё один способ объединения бактерий в социальную сеть. Наблюдая за обычной почвенной бактерией Myxococcus xanthus, Манфред Ауэр и его сотрудники обратили внимание на мембранные нитевидные перемычки, соединяющие клетки бактерий. Эту межбактериальную сеть учёные описывают в журнале Environmental Microbiology; ирония же здесь в том, что то же самое видели многие исследователи и до группы г-на Ауэра, но все считали это артефактом, осколками клеток, разрушенных при отборе и анализе образцов.

То, что сеть действительно существует, удалось доказать с помощью особой трёхмерной сканирующей электронной микроскопии.

Бактерии часто обмениваются между собой химическими сигналами, причём эти сигналы они просто выделяют в окружающую среду. Однако это всё равно что обсуждать секретные военные планы в «Твиттере»: другие бактерии легко могут «подслушать» эти сообщения и использовать полученную информацию, чтобы, например, лишить конкурентов доступа к пище. Поэтому, для пущей секретности, бактерии упаковывают свои химические сообщения в мембранные пузырьки. Эти пузырьки объединяются в цепочки, которые потом находят соседнюю клетку.

Эти цепочки (которые напоминают скорее ожерелья, нежели ровные гладкие провода) соединяют только клетки M. xanthus. То есть бактериям не надо бояться, что их «подслушают» враги: наоборот, сами M. xanthus могут договариваться между собой, как им лучше вытеснить конкурентов с территории.

Впрочем, пока что от открытия больше вопросов, чем ответов. Учёным только предстоит понять, почему клетки другого вида не могут подсоединяться к таким проводам, и как, собственно говоря, по ним происходит передача сигналов. Однако в том, что эти перемычки служат именно для общения, для передачи сигнальных молекул, авторы нисколько не сомневаются.

 Модель образования межбактериальных проводов из набора мембранных пузырьков.Модель образования межбактериальных проводов из набора мембранных пузырьков.


 

Источник: КОМПЬЮЛЕНТА


 

Опубликовано в Новости Микробиологии
Воскресенье, 13 Май 2012 10:42

Как плавают бактерии без жгутиков

Океанические бактерии Synechococcus плавают с помощью волнообразных биений клеточной мембраны, которые вызывает белковая спираль, тянущаяся через всю клетку.

Бактерии рода Synechococcus (фото yundaga)Бактерии плавают с помощью жгутиков. Белковую нить жгутика приводит в движение хитроумный молекулярный мотор, закрепленный в мембране клетки: мотор работает, жгутик крутится, подобно пропеллеру, бактерия движется. Но есть весьма распространённый род бактерий, называемых Synechococcus, у которых жгутика нет, а однако ж они перемещаются с довольно значительной для бактерий скоростью в 25 мкм/с.

Synechococcus живут в океане и служат важным компонентом пищевой пирамиды. Генóм этих бактерий был прочитан ещё в 2003 году, но ответа на вопрос, как они двигаются, это не дало. В статье, опубликованной на сайте PLoS ONE, американские биофизики утверждают, что разгадали эту загадку. В своей модели они ориентировались на другую безжгутиковую бактерию — Myxococcus xanthus. Это почвенная бактерия, которая перемещается скольжением по твёрдой поверхности. Через всю её клетку тянется белковая спиралеобразная конструкция, упирающаяся в клеточную мембрану. Специальные белковые моторы путешествуют по спирали и, наталкиваясь на клеточную мембрану, заставляют спираль проворачиваться. По мембране от переднего конца к заднему пробегает волна, которая и заставляет клетку двигаться.

У Synechococcus тоже наблюдаются волны, пробегающие по клетке, которые зависят от наличия у бактерии белка SwmA, располагающегося во внешней мембране. Но скользить так по поверхности намного легче, чем плавать. Хватает ли бактерии «мембранного волнения», чтобы плыть в толще воды? Ответом на вопрос стала математическая модель, построенная учёными. Согласно их выкладкам, чтобы плавать таким образом, амплитуда бегущей волны должна достигать 0,05 мкм, а сама волна — распространяться со скоростью 73 мкм/с. Частота вращения двигателя-спирали в этом случае будет равна где-то 186 Гц.

Synechococcus, как пишут исследователи, справляется с задачей благодаря особенностям строения внешней клеточной мембраны. На ней, как уже было сказано, сидит белок SwmA, и его молекулы располагаются под углом 60˚ друг к другу. Когда спираль поворачивается, соединённые с ней молекулы SwmA тоже движутся, но из-за особенностей их взаиморасположения образующаяся волна оказывается больше, что дополнительно ускоряет бактерию. Хотя, разумеется, такой способ передвижения — с помощью белкового «буравчика» — всё равно не столь эффективен, как старый добрый жгутик, скорость вращения которого, для сравнения, составляет 1 700 Гц.

Внутренний белковый винт у бактерии Myxococcus xanthus (сверху) и у Synechococcus (снизу) (рисунок авторов исследования)


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Микробиологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Зоологи открыли новый вид черепах и сразу же занесли их…

14-02-2019 Просмотров:2322 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Зоологи открыли новый вид черепах и сразу же занесли их в Красную книгу

Малые дальневосточные черепахи, живущие в реках России, Китая, Кореи и других стран Восточной Азии, оказались разделены на два вида, одному из которых угрожает полное вымирание. Описание нового вида рептилий было...

Черепахи управляют развитием зародыша, перекрывая ему кислород

07-02-2013 Просмотров:10975 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Черепахи управляют развитием зародыша, перекрывая ему кислород

У некоторых современных рептилий есть полноценное живорождение — к примеру, у сцинков. Некоторые только начали переходить к такому способу: у них зародыш развивается в яйце, но яйцо остаётся в теле...

Колебания земного ядра влияют на длину суток

12-07-2013 Просмотров:8882 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

Колебания земного ядра влияют на длину суток

Ричард Холм (Richard Holme) из Ливерпульского университета (Великобритания) и его коллеги измеряли колебания в длительности дня с 1969 года — с того времени, когда наука начала регистрировать так называемые геомагнитные...

Эволюция биосинтеза белка могла начаться до появления рибосом

27-08-2013 Просмотров:9610 Новости Цитологии Антоненко Андрей - avatar Антоненко Андрей

Эволюция биосинтеза белка могла начаться до появления рибосом

Во время биосинтеза рибосома строит полипептидную цепь в соответствии с кодом, который она читает на матричной РНК. Сырьё для постройки белка приходит к рибосоме в виде аминоацилированных транспортных РНК: к каждой...

Китайские ученые обнаружили в янтаре древнее морское существо возрастом 100…

24-01-2018 Просмотров:3209 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Китайские ученые обнаружили в янтаре древнее морское существо возрастом 100 млн лет

   Китайские палеонтологи совместно с коллегами из Австрии и Канады впервые в истории обнаружили сохранившиеся в янтаре останки древнего морского существа - остракода, возраст которого составляет 100 млн лет. Об этом...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.