Геофизики показали на примере Австралии, что со сменой сезонов континенты немного сдвигаются. Это связано с круговоротом воды и распределением ее массы по земной поверхности.
опубликована в журнале Journal of Geophysical Research: Solid Earth.
К такому выводу пришел австралийский ученый Ши-Чан Хан из Университета Ньюкасла, чья статьяОткрытие было сделано с помощью 14 GPS-станций, установленных в разных концах Австралии. В течение 9 лет исследователь наблюдал, как меняется местоположение этого континента в зависимости от времени года.
Оказалось, что во время южнополушарного лета (в это время у нас стоит зима) Австралия смещается в северо-западном направлении примерно на 1 мм, ее юго-восточная часть немного поднимается, а северо-западная, напротив, проседает на 2-3 мм. Когда наступает зима, континент возвращается в исходное состояние.
По мнению ученого, этот эффект связан с перемещением больших водных масс между Северным и Южным полушариями. Когда в Австралии стоит лето, в экваториальных широтах испаряется большое количество воды – по всему экватору исчезает примерно 20-30 мм поверхностного слоя океана.
В результате земная кора, освободившись от тяжести, выпячивается вверх – это и тянет Австралию на северо-запад. Поскольку подъем коры сильнее в районе южной части Тихого океана, чем в других регионах, Австралию несколько «перекашивает».
Когда же в Южном полушарии наступает зима, а в Северном – лето, вода с экватора, запасенная в виде льда и снега в северных широтах, оттаивает и возвращается на свое место. Благодаря этому австралийский континент смещается в исходную позицию.
Источник: infox.ru
Группа Пабло Иглесиаса (Pablo A. Iglesias), профессора электрической и компьютерной инженерии в университете Джонса Хопкинса (США), разработала систему, которая позволяет визуализировать ответ клеточного центра управления, направляющего клетки туда, куда им следует двигаться. В своей работе ученые экспериментировали с белыми клетками крови амебы и человека. Результаты их работы опубликованы в журнале Nature Communications.
В ходе эксперимента клетки определяли путь, по которому им предстоит двигаться, на основе мельчайших различий в концентрации химических веществ между одним концом ячейки и другим. «Клетки могут обнаружить различия в концентрации до 2%, — говорит Петер Девреотес (Peter N. Devreotes), глава факультета клеточной биологии в университете Джона Хопкинса. — Они могут определять небольшие различия вне зависимости от уровня фоновой концентрации, от высокой до низкой».
«Обнаружение градиента происходит в два этапа, — говорит сотрудник лаборатории Иглесиаса Чуань-Хсян Хуан (Chuan-Hsiang Huang). — Во-первых, клетки настраиваются на уровень фонового шума. Сторона клетки, где концентрация меньше, просто перестает отвечать на запросы. Центр управления внутри клетки определяет, с какой стороны поступает сигнал, и клетка начинает двигаться в сторону большего уровня шума».
Но чтобы начать двигаться, клетка должна так перестроить свои внутренности, чтобы из бесформенного пузыря превратиться в нечто, имеющее явно выраженные переднюю и заднюю части. Группа Петера Девреотеса провела еще один эксперимент с участием Мингджие Ван (Mingjie Wang) и Юлии Артеменко. В этой работе биологи изучали роль так называемой полярности— различия в чувствительности к химическим веществам между передней и задней частью клетки — в ответ на градиент их плотности. «Мы хотели знать, зависит ли полярность от движения и как полярность сама по себе помогает обнаружить градиенты», — объясняет Юлия Артеменко.
Исследователи использовали специальный фармацевтический «коктейль», который не демонтирует скелет клеток, а замораживает их на месте. Затем, как и в работе другой группы, они смотрели на реакции клеточного центра управления на химические градиенты. «Даже если клетки не переделывают скелет, чтобы двигаться, они всё равно улавливают сигналы от градиентов, и замороженный скелет влияет на ответ клетки на градиент, — говорит Артеменко. — Этого не произойдет, если скелет полностью исчезнет. Теперь мы знаем, что сам скелет, а не его способность перестраиваться, влияет на определение градиентов». Результаты этой работы появятся 6 ноября в журнале Cell Reports.
Полученные данные в конечном итоге могут пролить свет на целый ряд важнейших процессов, зависящих от движения клеток, включая клеточное развитие, иммунный ответ, заживление ран и регенерацию органов. Еще одно возможное приложение — борьба с раковыми метастазами.
Источник: Научная Россия
Хотя осьминоги и считаются одними из самых умных животных, учёные всё равно до сих пор не могут взять в толк, как эти моллюски ухитряются управляться аж с восемью конечностями. Всё-таки для восьми ног их нервная система недостаточно сложна. Было даже сделано предположение, что каждое щупальце у осьминогов снабжено автономной нервной системой и они довольно независимы от приказов мозга.
Еврейского университета в Иерусалиме (Израиль), наблюдавший вместе с коллегами за тем, как двигаются обыкновенные осьминоги.
Но как в таком случае конечностям осьминогов удаётся совершать целенаправленные перемещения — без координации из центра? На этот вопрос попытался ответить Гай Леви (Guy Levy) изДевять взрослых моллюсков жили в специально оборудованных аквариумах с системой зеркал и видеокамер, позволявших проследить траекторию каждой присоски. Выяснилось, что осьминоги при перемещении не используют ритмического чередования конечностей, как это делают все прочие животные: каждое их щупальце движется независимо от прочих, и нет никакой закономерности между длиной «руки», её скоростью и ускорением.
Исследователи сделали вывод, что мозг осьминога формулирует общую задачу, задаёт направление движения, цель. Детали же исполнения ложатся на щупальца, которые вольны делать что угодно, лишь бы цель была достигнута. Надо сказать, осьминожьи «руки» не обделены нейронами: из 500 млн, которыми располагает осьминог, в его «руках» сосредоточено почти две трети, так что им есть чем «думать».
В результате можно наблюдать, как в процессе движения меняется ориентация тела осьминога, а его щупальца при этом вообще движутся под самыми разными углами и в самых разных направлениях. При этом общее направление перемещения не меняется. Щупальца сокращаются подобно червям, и весь комплекс таких сокращений обеспечивает осьминогу целенаправленное движение. Моллюск, таким образом, полагается на три особенности: червеобразное движение щупальцев, большую степень свободы каждого из них и отсутствие жёсткого контроля со стороны головного мозга.
Правда, учёным ещё предстоит определить, насколько мозг осьминогов не властен над конечностями. Какая-то простая моторная программа тут всё равно должна быть: это общее требование для всех нервных блоков, занимающихся локомоцией у животных.
Дальнейшая расшифровка особенностей движения осьминогов, возможно, пригодится тем, кто занимается робототехникой и вынужден думать над способами заставить робота контролировать свои движения.
Результаты исследования авторы доложили на съезде Нейробиологического общества в Сан-Диего (США).
Источник: КОМПЬЮЛЕНТА
19-01-2013 Просмотров:14692 Новости Палеонтологии Антоненко Андрей
Новые ископаемые находки говорят о том, что загадочный обитатель морского дна, впервые описанный более десяти лет назад, имел броню и был гораздо больше своего современного родственника. Cotyledion tylodes. Здесь и ниже изображения...
20-11-2011 Просмотров:16959 Новости Палеонтологии Антоненко Андрей
Канадские ученые из Университета Саскачеван (University of Saskatchewan) и Королевского музея Онтарио (Royal Ontario Museum) обнаружили след странного существа, которого они определили как кембрийского хищника, жившего полмиллиарда лет назад. Находка...
31-10-2010 Просмотров:11680 Новости Палеонтологии Антоненко Андрей
Динозавр, стоявший где-то близ самых корней инфраотряда зауроподов, обнаружен на юге Китая. Ценность находки объяснил палеонтолог Санкар Чаттерджи (Sankar Chatterjee) из Техасского технологического университета. Одно из главных откопанных сокровищ – череп...
12-02-2011 Просмотров:10784 Новости Зоологии Антоненко Андрей
Два типа морских червей (в том числе те, которые потребляют питательные вещества и избавляются от отходов через одно и то же отверстие) оказались ближе к нам, чем, скажем, насекомые или...
01-12-2016 Просмотров:5779 Новости Палеонтологии Антоненко Андрей
Палеонтологи нашли новые свидетельства того, что знаменитая Люси, считающаяся сегодня "праматерью" нашего рода, проводила много времени на ветках деревьев, а не только путешествовала по равнинам, говорится в статье, опубликованной в журнале PLOS ONE. "Для нас может...
Энтомологи открыли в джунглях Южной Америки кузнечиков, которые поют на сверхвысоких частотах и к тому же очень громко. Издавать ультразвуковые сигналы этим насекомым помогают особые резонаторы на крыльях. Открытый укзнечикСтатья с…
Согласно гипотезе российских ученых, бактерия чумы появилась из псевдотуберкулеза в позднем плейстоцене в Ценнтральной Азии. Видообразованию помогло похолодание. И оригинальный способ, которым грызуны защищались от холода. Тарбаган (монгольский сурок) В…
Шимпанзе имеют врожденную склонность к использованию различных полезных инструментов, в то время как бонобо (карликовые шимпанзе) — нет. Это удивительное открытие, сделанное учеными из Кембриджского университета (Великобритания), под руководством доктора…
Ученые выяснили, что ракоскорпионы, самые крупные членистоногие в истории Земли, были подслеповаты и не могли ловить быстро движущуюся добычу, как считалось ранее. РакоскорпионОб этом говорится в статье американских специалистов из Йельского…
Считается, что фагоцителла (др. название – паренхимелла) является предком всех многоклеточных животных. Фагоцителла состоит (подобно личинке современных низших многоклеточных – паренхимуле) из слоя поверхностных клеток – эктодермы, или кинобласта и…
Британские палеонтологи опубликовали описание весьма необычной окаменелости возрастом около 560 миллионов лет. Это старейший хищник, древнейшее существо с экзоскелетом, а также самый ранний известный представитель животного мира, чьи родственные виды…
В первые дни своей жизни зародыш черепахи, еще не имея ног, совершает целое путешествие. Он измеряет температуру в яйце и движется к источнику тепла, показали китайские зоологи. Эмбрион черепахиЭмбрионы черепахи оказались…
Цветковые растения, характерные для современной земной флоры, появились не в меловом периоде, как это считалось прежде, а намного раньше. Швейцарские палеонтологи обнаружили их окаменевшую пыльцу в горных породах триасового возраста,…
Новые род и вид древних китов описали новозеландские палеонтологи. 27 млн лет назад эти животные уже фильтровали планктон в окрестностях островного государства. Однако и внешне, и с точки зрения внутреннего…