Биофизики нашли ответ на вопрос, почему хвойные деревья круглый год остаются зелеными. Причина — в коротком цикле фотосинтеза, на который они переходят в зимнее время, считают авторы исследования, результаты которого опубликованы в журнале Nature Communications.
Ученые из шведского Университета Умео вместе с коллегами из Амстердамского свободного университета и канадского Университета Западного Онтарио расшифровали механизм фотосинтеза в иглах сосны и выяснили, что зимой он протекает по сокращенному циклу.
Зимой световая энергия поглощается молекулами зеленого хлорофилла, но не используется в последующих реакциях фотосинтетического механизма, поскольку низкие температуры останавливают большинство биохимических реакций.
При ярком солнце и низких температурах избыток световой энергии может повредить белки фотосинтетического механизма. Поэтому большинство деревьев сбрасывают листья на зиму. Но у сосны или ели фотосинтетический аппарат устроен особым образом, благодаря чему их хвоя остается зеленой в течение всего года.
"Мы наблюдали за несколькими соснами, растущими в Умео на севере Швеции в течение трех сезонов, — приводятся в пресс-релизе Университета Умео слова первого автора статьи аспиранта Пушана Бага (Pushan Bag), который круглый год собирал образцы хвои и проводил анализы. — Важно, что мы могли работать с иглами "прямо с улицы", чтобы они не успели адаптироваться к более высоким температурам в лаборатории, прежде чем мы проанализируем их, например, с помощью электронной микроскопии, которую мы использовали для визуализации структуры тилакоидной мембраны".
Авторы установили, что зимой структура тилакоидной мембраны хлоропластов, в которой происходят светозависимые реакции фотосинтеза, реорганизуется, что приводит к возникновению физического контакта между двумя фотосистемами — функциональными единицами, в которых энергия света поглощается и преобразуется в химическую энергию.
Оказалось, что в теплых условиях фотосистемы I и II находятся отдельно друг от друга, чтобы обеспечить эффективный фотосинтез, а зимой фотосистема II отдает энергию непосредственно фотосистеме I. Таким образом хвоя сосны справляется с избыточной световой энергией и защищает свой чувствительный фотосинтетический аппарат от повреждений в течение экстремальной северной зимы.
"Хвоя сосны дала нам возможность изучить этот механизм сокращения, или перетекания, представляющий из себя крайнюю степень адаптации", — говорит еще один автор исследования Альфред Хольцварт (Alfred Holzwarth) из Амстердамского свободного университета, который разработал для данного проекта специальный метод флуоресцентного анализа.
"Эта замечательная адаптация не только радует нас во время Рождества, но на самом деле чрезвычайно важна для развития человечества, — продолжает профессор Стефан Янссон (Stefan Jansson) из Университета Умео, руководивший исследованием. — Если бы хвойные деревья не смогли выжить в суровом зимнем климате, обширные территории в северном полушарии, возможно, не были бы колонизированы человеком, поскольку хвойные деревья давали дрова, жилье и другие предметы первой необходимости. И сегодня они составляют основу экономики большинства приполярных стран".
Авторы отмечают, что исследование проводилось на соснах, но они полагают, что аналогичный механизм свойственен и другим видам хвойных деревьев.
Старейшим деревом России является лиственница, растущая на байкальском острове Ольхон. Ее возраст составляет 777 лет. Вторым после нее, является произростающаю тут же сосна возрастом 606 лет (данные на 2020 год).
Ученые впервые построили тектоническую модель, которая объясняет образование множества вулканов на восточном побережье Австралии. Оказалось, что вулканизм связан с пододвигающейся под Австралийский континент океанической плитой. Результаты исследования опубликованы в журнале Science Advances.
Восточное побережье Австралии усеяно остатками сотен вулканов, самым молодым из которых всего несколько тысяч лет, а самым древним — около 80 миллионов лет. И все они располагаются исключительно в прибрежной полосе.
Геологи из Сиднейского университета вместе со своими новозеландскими коллегами решили выяснить, почему в этой узкой зоне, протягивающейся от Северного Квинсленда до Тасмании и далее до Новой Зеландии, произошли сотни извержений.
Дело в том, что Австралия — стабильный континент и не входит в знаменитое тихоокеанское "огненное кольцо", где в основном сосредоточены все вулканы и эпицентры землетрясений Тихоокеанского региона.
"Поэтому нам нужно было найти другое объяснение, почему на восточном побережье Австралии так много вулканов", — приводятся в пресс-релизе университета слова руководителя исследования доктора Бена Мэзера (Ben Mather) из Школы наук о Земле.
Ученых заинтересовало, что большинство извержений были разовыми, а их максимумы были приурочены к так называемым пикам вулканической активности, последние из которых имели место 20 и 2 миллиона лет назад. Многие из древних вулканов сегодня выглядят как обычные холмы, и поэтому, далеко не все из них идентифицированы.
"Вместо грандиозных извержений таких, как у знаменитых вулканов Кракатау, Везувий или гора Фудзи, эффект от этих вулканов больше похож на пузырьки, появляющиеся при нагревании смеси для блинов, — объясняет доктор Мазер. — Под нашим восточным побережьем мы находим особую летучую смесь расплавленных горных пород, которая всплывает на поверхность через более молодую, более тонкую кору восточного побережья Австралии".
"Большинство из этих извержений не связаны с прохождением тектонической плиты Австралии над горячим мантийным плюмом под земной корой, — рассказывает еще один автор исследования доктор Мария Сетон (Maria Seton) из Школы наук о Земле Сиднейского университета. — Вместо этого, существовала последовательная цепь событий с несколькими известными пиками".
Исследователи обнаружили, что пики вулканической активности приходятся на периоды увеличения объема материала морского дна, вытесняемого под континент с востока Тихоокеанской плитой. Этот процесс называется субдукцией.
"Пики вулканической активности хорошо коррелируют с количеством рециркулируемого материала морского дна в желобе Тонга-Кермадек к востоку от Новой Зеландии, — говорит доктор Мазер. — Оттуда он поступает в переходную зону между корой и мантией на глубины от 400 до 500 километров, а затем вновь появляется на поверхности в виде серии извержений вулканов вдоль восточного побережья Австралии, которое тоньше и моложе центра и запада континента".
На основе этой корреляции авторы построили тектоническую модель, которая лучше объясняет, почему столько извержений произошло на протяжении миллионов лет вдоль восточного побережья Австралии.
Предыдущие модели предполагали, что вулканы возникли из-за конвекционных водоворотов в мантии рядом с краем тектонической плиты или из-за того, что плита проходила над горячими точками в мантии.
Палеонтологи открыли новый вид динозавров, который получил название Ubirajara jubatus. Это маленькие шустрые динозавры с торчащими из плеч шипами.
Ученые предположили, что шипы вряд ли имели какое-то техническое предназначение, и могли использоваться в качестве украшения для привлечения внимания. Например, такую же функцию выполняет хвост у павлинов.
В ходе исследования палеонтологи установили, что новый динозавр принадлежит к компсоганату — роду динозавров, живших в конце юрского периода (157,3—145,0 млн лет назад). Они отличались развитыми органами чувств и быстрыми ногами, а также имели 68 острых слегка изогнутых зуба.
Небольшой динозавр размером с современную курицу вместо зеленой чешуйчатой кожи имел длинную, густую гриву, спускающуюся по спине, и пушистые передние конечности. Исследователи полагают, что животное могло поднимать свою шерсть, когда чувствовало опасность.
Во время спокойствия оперение было плотно прижато к телу, чтобы не мешать Ubirajara jubatus передвигаться.
Но грива — это не самая интересная особенность этого динозавра. Нас очень заинтересовали шипы, торчащие из его плеч. Это были длинные, плоские, жесткие ленты с небольшим гребнем посередине. Это не совсем перья, но они сделаны из кератина, вещества, из которого состоят птичьи перья, клювы и наши собственные волосы. Их расположение на плечах означает, что они, вероятно, также могут быть подняты и опущены по мере необходимости, — описывают палеонтологи.
Ученые отметили, что встречают подобное строение скелета впервые. Зачем этому маленькому динозавру нужны были такие заметные шипы, которые только привлекают внимание хищников?
Наиболее вероятный ответ, по мнению исследователей, надо искать у современных животных. Шипы, вероятно, использовались в качестве демонстрации, чтобы привлечь партнеров, превзойти соперников или отпугнуть хищников.
Например, многие современные птицы имеют пестрое оперение, которое нужно в первую очередь для привлечения партнеров. Находка Ubirajara jubatus показывает, что птицы унаследовали такую особенность от динозавров.
Новый вид динозавров, живший примерно 110 миллионов лет назад, является одним из старейших примеров такого рода украшений у динозавров.
Источник: Радиус
В отличие от многих других крупных хищных динозавров, тираннозавры и их ближайшие родичи росли не с постоянной скоростью, а большими рывками. К такому выводу пришли палеонтологи, результаты исследования которых опубликовал научный журнал Proceedings of the Royal Society B.
"Мы не можем точно сказать, почему это так, однако все виды целурозавров, к которым относятся и тираннозавры, в начале жизни росли очень быстро. При этом аллозавры, которые могли достигать таких же размеров, росли с относительно небольшой и постоянной скоростью. Возможно, эти различия связаны с разной диетой", – рассказал один из авторов работы, научный сотрудник Филдсовского музея естественной истории (США) Томас Каллен.
За последние годы представления о внешнем виде тираннозавров и их ближайших родичей – тетануров (Tetanurae) пережил радикальные изменения. В частности, сейчас палеонтологи предполагают, что тираннозавры были быстро бегающими пернатыми существами, а не неповоротливыми чешуйчатыми и зубастыми рептилиями, какими их изображают фильмы конца прошлого века.
Из-за открытий последних лет ученые усомнились и во многих других чертах этих древних ящеров. К примеру, палеонтологи сейчас спорят о том, были ли тираннозавры хищниками или падальщиками, как выглядели их детеныши вскоре после рождения и насколько быстро они росли.
В частности, как отмечает Каллен, исследования "годичных колец" в костях тираннозавров указывают, что в первые годы жизни эти древние хищники могли очень быстро увеличиваться в размерах, однако впоследствии их рост замедлялся. Однако ученые до недавнего времени не знали, было ли это характерно только для тираннозавров или же для всех двуногих хищных динозавров.
Каллен и его коллеги решили выяснить это. Они исследовали окаменелые кости нескольких десятков видов теропод, хищных двухногих динозавров, которых нашли в породах мелового периода на территории Аргентины и США. Среди них был и знаменитый тираннозавр Сью – предположительно, самый большой и пожилой представитель своего вида, останки которого хранятся в Филдсовском музее с октября 1997 года.
Среди них были как действительно крупные хищники, такие как тираннозавры, аллозавры и кархародонтозавры, так и небольшие ящеры, которые по размерам сопоставимы с современными страусами и другими крупными птицами. Изучив структуру "годичных колец" в их костях, ученые попытались найти закономерности, которые были бы характерны для представителей разных семейств и групп хищных ящеров мезозойской эры.
Оказалось, что все виды тираннозавров и их ближайшие родичи – тетануры и целурозавры – росли большими рывками. Они быстро достигали максимального размера в первые годы жизни, а затем практически не росли. В этом отношении они напоминали современных птиц и млекопитающих, рост которых тоже останавливается после достижения половой зрелости.
В частности, ученые выяснили, что Сью перестала расти примерно на 20-м году жизни, прожив в общей сложности около 33 лет. То есть чтобы достичь своей массы и размеров, в подростковые годы жизни она должна была съедать по 20 кг мяса в неделю. Как именно тираннозаврам удавалось поддерживать подобную высокалорийную диету, палеонтологи пока не могут сказать.
При этом аллозавры и кархародонты набирали массу медленно и увеличивались в размерах на протяжении всей жизни. В этом они больше были похожи на современных крокодилов и других рептилий. Ученые предполагают, что подобные различия в скорости роста хищных динозавров были связаны с различиями в их диете и видовом составе потенциальной добычи.
"Тираннозавры жили в окружении травоядных утконосых динозавров и трицератопсов, которые тоже росли быстро, а аллозавры питались мясом длинношеих четвероногих динозавров, которые производили много потомства и росли быстро лишь в первые годы жизни, но затем долго достигали максимального веса. Вполне возможно, что это давало аллозаврам источники пищи любых размеров", – подытожил Каллен.
Источник: ТАСС
Биологи выяснили, что тело мексиканских муравьев-листорезов вида Acromyrmex echinatior покрыто не только хитином, но и уникальной биоминеральной броней из кальция и магния. Ничего похожего у насекомых раньше не находили. Статью с описанием уникального панциря опубликовал научный журнал Nature Communications.
"Защитные структуры на основе минералов кальция встречаются у самых разных живых существ, однако у насекомых мы никогда раньше не встречали подобную броню. Мы обнаружили, что тело муравьев-листорезов вида Acromyrmex echinatior защищено биоминеральным панцирем из кальцита. По мере их взросления он становится все толще и толще", – пишут ученые.
Палеонтологические находки показывают, что первые панцири появились примерно 550 млн лет назад, практически сразу после начала кембрийской эры, когда возникли предки всех современных многоклеточных живых существ. Особенно широко была распространена броня на основе кальцита и других форм карбоната кальция, которая покрывала моллюсков, коралловых полипов, морских ежей и других беспозвоночных.
Насекомые в этом отношении не похожи на других беспозвоночных, так как их панцирь обычно состоит не из биоминералов, а из биополимера хитина. Многие эволюционисты считают, что появление хитина и экзоскелетов на его основе произвело революцию в животном мире: именно благодаря этому предки современных насекомых начали активно передвигаться, оставаясь при этом защищенными.
Американские биологи под руководством профессора Висконсинского университета в Мэдисоне (США) Кэмерона Карри открыла первое исключение из этого правила. В ходе своего исследования они наблюдали за жизнью муравьев-листорезов, которые обитают в тропических регионах Нового Света.
Эти насекомые живут в гигантских колониях по несколько сотен тысяч особей. Некоторые рабочие особи постоянно ухаживают за грибными "садами" муравейника и растущими личинками, другие собирают листья и защищают колонию от нахлебников. Значительная часть видов муравьев-листорезов устраивает периодические набеги на соседние муравейники, поедая их урожай и похищая их личинки, чтобы впоследствии превратить в рабов.
Наблюдая за жизнью листорезов, Карри и его коллеги заметили, что многих насекомых покрывал необычный белый налет, равномерно распределенный по поверхности их тела. Предположив, что это какая-то грибковая инфекция, биологи поймали нескольких особей муравьев вида Acromyrmex echinatior и детально изучили структуру и состав этого налета.
Просветив его рентгеновским излучением, биологи обнаружили, что это вовсе не грибковая инфекция, а биоминеральная броня. Она состоит из кристаллов кальцита, которые особым образом распределены по поверхности хитиновой оболочки. Биологи решили детально изучить свойства этого панциря, пытаясь понять, зачем он нужен и как формируется.
Оказалось, что материал для панциря непрерывно вырабатывают клетки хитиновой оболочки: они выделяют на поверхность хитина соединения магния и кальция. Интересно, что процесс формирования кристаллов и всего панциря в целом начинается только после того, как молодые муравьи достигают своих окончательных размеров.
Дальнейшие наблюдения показали, что эти кристаллы защищают муравьев не только от атак более крупных муравьев -"рейдеров" вида Atta cephalotes, но и резко уменьшают вероятность заражения различными формами грибковых инфекций. Оказалось, что, несмотря на небольшую толщину, кальциевый панцирь повышает прочность экзоскелета муравья примерно в два раза. Грибковые инфекции просто не могут пробиться через него и достичь хитина, который их клетки могут растворять.
Ученые предполагают, что схожая защитная оболочка есть у многих других видов муравьев-листорезов. Исследователи надеются, что дальнейшее изучение подобной брони поможет понять, как муравьи обзавелись подобным панцирем и когда это произошло.
Источник: ТАСС
13-04-2013 Просмотров:9298 Новости Палеонтологии Антоненко Андрей
Палеонтологи обнаружили на территории южного Китая целое "кладбище" динозавров, где сохранилось несколько десятков эмбрионов этих рептилий на разных стадиях развития с рекордным на сегодня возрастом — 190 миллионов лет, говорится...
25-01-2011 Просмотров:11750 Новости Зоологии Антоненко Андрей
Кораллы, окружающие Японию, устремились на север. Один из видов, к примеру, с помощью океанского течения покрывает 14 км в год. Пожалуй, это самое яркое напоминание о том, насколько быстро может...
11-09-2012 Просмотров:9535 Новости Геологии Антоненко Андрей
Супервулкан на архипелаге Санторин резко активизировался в начале 2011 года - в январе прошлого года под вулканом внезапно появился гигантский "пузырь" из свежей магмы, чье появление привело к повышению высоты...
21-06-2017 Просмотров:4577 Новости Микробиологии Антоненко Андрей
Заражение крови приводит к быстрой гибели организма и массовым нарушениям в его работе из-за того, что некоторые болезнетворные бактерии умеют "перепрограммировать" клетки иммунитета и заставляют их атаковать живые ткани, говорится в статье, опубликованной в журнале PLoS...
22-05-2015 Просмотров:7926 Новости Палеонтологии Антоненко Андрей
Ученые из Йельского университета (США) под руководством постдока Элисон Хсиань (Allison Hsiang) изучили «родословное древо» современных змей и реконструировали облик и образ жизни их древнего общего предка, жившего 128 млн...
Многие динозавры, даже из самых крупных, были прекрасными родителями. Они успешно высиживали яйца и затем заботились о вылупившихся из них маленьких динозавриках. Как удавалось вымершим гигантам не раздавить хрупкую скорлупу,…
Генетики реконструировали маршрут расселения огненного муравья, первого насекомого, которое расселилось по всему свету благодаря деятельности человека. Выяснилось, что ключевую роль в его распространении сыграли испанские торговцы. Огненный муравейОб этом говорится в статье американских ученых…
Земля относительно невелика и легка, к тому же расположена достаточно далеко от Солнца, чтобы сохранить на поверхности воду в жидком состоянии. Все эти факторы существенно затрудняют поиск планет, похожих на…
Новое теоретическое исследование, посвящённое страусам, показало, что компьютерная модель длинношеих зауроподов, использованная для моделирования движений динозавров в документальном фильме Би-би-си «Прогулки с динозаврами» и ставшая основой для экспозиции в Американском музее…
Сетчатка глаза — это не просто посредник между средой и мозгом, не просто набор фоточувствительных элементов, который передаёт в аналитический центр всё, что чувствует. Сетчатка занимается ещё и отчасти «творческой…
Самая крупная доля углерода, удерживаемого в почвах северных лесов, может приходиться на живые и разлагающиеся корни деревьев и кустарников, а также на грибки, которые обитают на них. Островок на северном шведском…
Зоологи из Швейцарской высшей технической школы Цюриха вместе с коллегами из Цюрихского университета наблюдали за поведением африканских сурикатов, живущих в пустыне Калахари. Там, где работали исследователи, через территорию сурикатов проходила…
Нам кажется абсолютно естественным, что ограниченность жизненного срока связана со старением: чем дольше мы живём, тем ближе подходим, так сказать, к концу земного пути — и тем дряхлее становимся. С…
Ученые проанализировали то, как сине-зеленые бактерии ощущают свет и движутся к нему, и пришли к выводу, что эти микробы используют те же принципы для работы своего зрения, что и глаза многоклеточных существ, говорится в статье, опубликованной в журнале eLife. Бактериальный глаз"То,…