Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Неопротерозойская эра


Мягкотелые обитатели докембрийских морей 540 млн лет назад были буквально сметены волной закованных в жесткие панцири животных современного типа. Драматические события, разыгравшиеся в начале кембрийского периода, практически мгновенно положили конец трехмиллиардолетней истории древнейших земных экосистем.

ВендобиотаВендобиота Напомним, что в далеком докембрии океаны Земли населяли странные мягкотелые существа, аналогов которым в современной фауне не существует. Основой экосистем тех времен служили бактериальные маты, устилавшие дно океана и располагавшиеся в самом нижнем ярусе тогдашних пищевых пирамид. Три миллиарда лет микробные сообщества выступали в качестве геологического фактора, формируя слоистые донные отложения, покрывавшие огромные пространства.

По мнению ряда ученых, докембрийские микробные сообщества исчезли из-за изменившихся в неблагоприятную сторону условий среды, а процесс их вымирания растянулся на миллионы лет. Согласно другой популярной гипотезе, некоторые вендобионты и прочие докембрийские существа продолжали существовать бок о бок с животными современного типа чуть ли не несколько геологических периодов, а их остатки мы не находим лишь из-за того, что окаменеть мягкотелые могут при чрезвычайно редком сочетании различных геологических факторов. Канадский палеонтолог Луис Буатуа, изучающий раннекембрийские отложения острова Ньюфаундленд, уверен, что все было совсем не так.

"Во времена кембрийского периода лицо нашей планеты изменилось навсегда, и у нас пока есть много вопросов, остающихся без ответов, – рассказал Буатуа, работающий профессором в университете Саскачевана. – Но результаты нашего исследования показывают, что кембрий был поистине уникален тем, что современные группы животных уже появились, но в то же время экология оставалась похожей на эдиакарскую еще в течение нескольких миллионов лет".

По мнению профессора Буатуа, исчезновение эдиакарской биоты представляет собой яркое и быстрое эволюционное событие, вызванное появлением животных современного типа, а не плавное вымирание в связи с постепенной ликвидацией условий, подходящих для эдиакарской фауны.

Внимательно изучая отложения Ньюфаундленда, Буатуа с коллегами обнаружили там типичнейшие бактериальные маты, соответствующие самому началу кембрия. Чуть выше по разрезу на смену им приходят окаменевшие донные отложения, перемешанные в результате деятельности донных организмов, что является характерной чертой морских экосистем с кембрия и до наших дней.

"Существует гипотеза, что появление на Земле "животных-экоинженеров" привело к окончанию царства бактериальных матов, затянувшегося почти на 3 млрд лет, и к старту "кембрийского взрыва" биологического разнообразия. Появление организмов с жесткими скелетами, коэволюция хищников и жертв привели к "агрономической революции", когдароющие организмы с твердыми скелетами перерыли, разрушили консервативную структуру бактериальных матов и тем самым открыли доступ кислорода и биогенов в более глубокие слои планеты", – пишет о происходивших в раннем кембрии событиях А.Б. Казанский, старший научный сотрудник Института эволюционной физиологии и биохимии им. И.М.Сеченова РАН.

Как показывают данные Буатуа, никаких заметных изменений экологических условий на границе докембрия и кембрия не происходило, а главным агентом вымирания причудливых докембрийских мягкотелых стали представители Bilateralia, оснащенные панцирями и переработавшие бактериальные маты в донный субстрат совершенно иного типа. Лишившимся привычных источников питательных веществ и не имеющим возможности сопротивляться челюстям и хелицерам животных современного типа вендобионтам осталось только тихо исчезнуть с лица Земли.

 


 

Источник: PaleoNews


 

Опубликовано в Новости Палеонтологии

Возникновение и первоначальное развитие жизни на Земле вовсе не нуждались в высоком содержании кислорода. Это экспериментально доказали датские биологи, поставив опыт над современными морскими губками.

Первые в мире животные сидели на бескислородной диетеПервые в мире животные сидели на бескислородной диете Губки считаются одними из самых примитивных многоклеточных животных и очень напоминают ранние формы жизни, появившиеся на Земле в эпоху ее молодости. Например, у губок еще не существует разнообразных отдельных органов и тем более их систем, а образ жизни донных фильтраторов, который ведет большинство этих существ, отличается глубокой древностью. Поэтому аспирант университета Южной Дании Даниэль Миллс и его коллеги остановили свой выбор именно на губках, чтобы выяснить роль кислорода в возникновении и первых шагах развития жизни.

Исследователи собрали несколько морских караваев (губок Halichondria panicea), обитающих в насыщенных кислородом водах датских фьордов, и поместили в специальный аквариум. С помощью лабораторного оборудования из налитой в аквариум воды постепенно удалялся кислород, и к концу эксперимента его содержание в воде было примерно в 200 раз меньше, чем в современных морях. Но, несмотря на столь жесткие условия, морские караваи очень неплохо себя чувствовали все 10 дней эксперимента и погибать от удушья вовсе не собирались.

Результаты смелого опыта, по мнению авторов, убедительно доказывают, что примитивные живые существа, обитавшие в первобытных океанах, нуждались в кислороде намного меньше, чем их более сложные современные потомки. "Есть еще много исследователей, утверждающих, что животные не могли появиться до тех пор, пока уровень содержания кислорода не достиг достаточно высоких величин, – заявил Миллс. – Наши результаты оспаривают эту точку зрения".

Как считает датский ученый, ему удалось экспериментально подтвердить альтернативную гипотезу, согласно которой зарождение и первоначальное развитие жизни могло происходить и в практически бескислородных условиях. Кстати, одной из причин, по которым древние океаны были лишены кислорода, может быть большое количество гниющей органики – микробов и бактерий, которые тратили весь кислород на окислительные реакции собственного разложения. Губки же, фильтрующие воду и питавшиеся этой органикой, очищали от нее океан и тем самым постепенно повышали уровень содержания кислорода. А вслед за ним росла и сложность непрестанно эволюционирующих живых существ.

Результаты Миллса и его команды отлично вписывается в данные генетических исследований, уверен профессор Уильям Мартин из немецкого университета Дюссельдорфа. Хотя окаменелости животных массово появляются лишь около 600 млн лет назад, когда океаны уже были богаты кислородом, генетическое разнообразие современных ДНК указывает, что первые животные начали развиваться по крайней мере на 100 млн раньше, в еще не насыщенных кислородом водах.

Более того, митохондрии, генерирующие энергию в клетках современных животных, у многих простых форм способны длительное время функционировать без кислорода. "Изучение того, как митохондрии губок ведут себя в условиях с низким содержанием кислорода, может прояснить, как они выживают", – отметил Мартин.

По мнению доцента университета Вандербильта в Теннесси Антониса Рокаса, результаты исследования датчан весьма изящны. Однако пока неясно, действительно ли именно губки были самыми ранними животными. Некоторое время назад на эту роль были предложены гребневики, и эти "отношения чертовски трудно расшифровать", подчеркнул Рокас, отметив, что было бы интересно проверить и гребневиков на способность выживать в условиях с низким содержанием кислорода.

Вполне возможно , что губки появились раньше других и помогли океанам насытиться кислородом, считает Тимоти Лайонс, профессор биохимии Калифорнийского университета, занимающийся изменением уровня кислорода на ранней Земле. Но это не означает, что океаны нуждались в животных, чтобы обогатиться кислородом. "Мы знаем, например, что уровень кислорода, скорее всего, был очень высок немногим ранее 2 млрд лет назад – но в те времена не было никаких животных. Эволюция еще не была готова", – приводит его слова New Scientist.


Источник: PaleoNews


Опубликовано в Новости Эволюции

Больше – действительно значит лучше. Во всяком случае, так было в докембрийские времена, когда первые многоклеточные организмы вступили в жестокую борьбу за существование с прежними властителями Земли – плотными бактериальными сообществами.

Дно эдиакарского моря. Реконструкция: John SibbickДно эдиакарского моря. Реконструкция: John Sibbick Исследовательская группа NASA похоже, нашла ответ на вопрос, почему на заре жизни примитивные микроскопические существа эволюционировали в более крупных животных. Большие рост и размер давали первым многоклеточным явные преимущества перед основными их конкурентами в борьбе за продовольственные ресурсы – бактериальными колониями, уверены американские и канадские ученые.

Группа смоделировала течения, существовавшие в мировом океане примерно 580 млн лет назад. Именно вода была в те времена основным источником необходимых для жизни веществ – минералов, кислорода и прочего. Поэтому, разобравшись с тем, что происходило с течениями, можно понять и почему живые существа вдруг стали быстро увеличиваться в размерах.

Основными объектами, которые исследовали палеонтологи в ходе своей работы, стали рангеоморфы – напоминавшие перья или щетки первые многоклеточные создания, встречающиеся довольно широко по всему миру и достигавшие размеров от нескольких миллиметров до десятков сантиметров. Они жили на экстремальных глубинах, где полностью отсутствовали возможности для фотосинтеза, уточнил ведущий автор исследования Дэвид Джейкобс, профессор эволюционной биологии Калифорнийского университета в Лос-Анджелесе.

Сложные поверхности рангеоморфов убеждает в том, что они поглощали необходимые им для жизни вещества прямо из морской воды, пишет UCLA Newsroom. Так же действовали и бактерии, с которыми первым многоклеточным пришлось конкурировать. Как оказалось, более крупные многоклеточные, приподнимаясь над морским дном, получали лучший доступ к ресурсам, переносимым придонными течениями. Более того, крупные скопления многоклеточных могли оказывать на эти течения определенное влияние, еще серьезнее улучшая условия своей жизни.

Самые высокие представители эдиакарской биоты, которую исследовало NASA, могли достигать метра и более в высоту, то есть обладали размерами, вполне сопоставимыми с современными живыми существами. В то же время бактериальные пленки – прежние обитатели донных пространств, были заключены в «двумерную плоскостную клетку», и не имели возможности дотянуться до более богатых ресурсами слоев течений.

После того, как эдиакарские многоклеточные получили преимущества в доступе к жизненно важным веществам, они смогли направить их на дальнейшее увеличение своих размеров, окончательно закрепив эволюционный успех, уверены исследователи.

"Науке всегда было сложно объяснить, как и почему ранние формы многоклеточных стали увеличиваться в размерах, – рассказал профессор университета Торонто Марк Лафламм. – Наше исследование позволяет прояснить вопрос о том, как из мира, в котором правят микроскопические бактерии, мы попали в сегодняшний мир современных растений и животных. Также мы смогли объяснить некоторые эволюционные механизмы кембрийского взрыва".


Источник: PaleoNews


Опубликовано в Новости Эволюции

Исследователи из Венского университета (Австрия) вместе с норвежскими коллегами из Бергенского университета обнаружили, что голова у животных начала развиваться ещё до своего появления. Речь идёт, разумеется, о генетическом аппарате, который управляет формированием головы. И под головой тут следует понимать не мозг, а именно часть тела на переднем его конце, снабжённую органами чувств, ртом, мозгом, в конце концов.

Морской анемон Nematostella vectensis, у которого нашли «гены головы» (фото авторов работы).Морской анемон Nematostella vectensis, у которого нашли «гены головы» (фото авторов работы).Учёные работали с морскими анемонами, или актиниями. У этих кишечнополостных есть передний конец тела и задний, а голова отсутствует. Личинки актиний плавают в океане в поисках места, где можно осесть. Найдя такое место, они прикрепляются к нему и превращаются в полип, который один концом тела сидит на субстрате, а другим концом, наделённым ртом и щупальцами, добывает пропитание. Учёным удалось определить гены, управляющие дифференцировкой переднего конца тела личинки — того, которым она движется вперёд и которым потом садится на субстрат. Среди этих генов оказался Six3/6, играющий роль управляющего всеми остальными генами. Причём вся эта цепочка, начинающаяся с Six3/6, есть и у других животных, включая насекомых, рыб и человека.

Когда личинка актинии плавает в поисках места, где можно обосноваться, она воспринимает какие-то сигналы из внешней среды, и делает это именно своим передним концом, так что его в каком-то смысле можно назвать «головой». Правда, эта «голова» потом превратится в «ногу», да и мозга, главного атрибута головы, ни у личинки, ни у взрослой актинии нет.

У высших животных и у морских анемонов около 600–700 млн лет назад был общий предок — тоже без головы, но вот предпосылки для её возникновения, судя по всему, уже были. Полученные данные подтверждают теорию о том, что эволюция предпочитает заранее готовить генетико-молекулярные механизмы, которые позволили бы сформировать ту или иную структуру. Когда для такой структуры приходит время, этим механизмам даётся карт-бланш (как это было, по-видимому, с мозгом).

Результаты работы опубликованы на сайте PLoS Biology.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Эволюции

  

Оглавление

1.

Общие сведения о животных

1.1.

Разделение классификации животных

2.

Появление и эволюция животных

2.1.

Протерозой. Довендская биота. Животный мир вендского периода (эдикария) 

2.2.

Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв 

2.3.

Животный мир ордовикского периода

2.4.

Животный мир силурийского периода

2.5.

Животный мир девонского периода

2.6.

Животный мир каменноугольного периода

2.7.

Животный мир пермского периода

2.8.

Животный мир триасового периода

2.9.

Животный мир юрского периода

2.10.

Животный мир мелового периода

2.11.

Животный мир палеогенного периода

2.12.

Животный мир неогенного периода

2.13.

Животный мир четвертичного периода

2.1 Животный мир протерозоя. Довендская биота. Животный мир вендского периода (эдикария)

Считается, что первые простейшие животные возникли в конце протерозойской эры - 700 млн лет назад (в некоторых публикациях указывается дата 1,4 млрд. лет назад или даже 2 млрд.лет назад).

В следствии большой распростроненности цианобактерий и водорослей резко возростает содержание кислорода в атмосфере Земли, что приводит к возможности появления таких существ, как животные. Безконтрольный рост кислорода и уменьшение парниковых газов в криогеновом периоде приводит к череде глобальных похолоданий (в период с 750 до 580 млн. лет назад) покрывших землю слоем льда толщиной до двух километров. Каждое оледениние могло длиться от 4 до 30 млн. лет. Оледенения заканчивались катастрофически быстро, когда благодаря наземному вулканизму в атмосфере накапливалось высокое содержание углекислого газа, более чем в триста раз превышающее его современный уровень. 

Колония хоанофлагелляты SphaeroecaРис. 2.1 Колония хоанофлагелляты SphaeroecaПредположительно первоначально в многоклеточные структуры объединялись простейшие хоанофлагеллаты (рис. 2.1), которые, как полагают, стоят на грани между одноклеточностью и многоклеточностью, образуют зародышеобразные колонии только с помощью бактериального липида, который получают из съеденных бактерий (прокариот). Следующим щагом было появление в этом же периоде первых настоящих многоклеточных макроогранизмов - эти организмы появились на Земле сразу после Мариноанского оледенения – одной из стадий глобального оледенения, когда нашу планету в течение многих миллионов лет сплошь покрывали льды. Первые многоклеточные существа были мягкотелыми организмами, состоящими из отдельных фракталов.

Одни из самых первых появившихся на Земле животных относятся к криогеновому периоду. Эти организмы по размерам были меньше эдикарских и являются не лентовидными, а червеобразными (иногда похожи на членистых). Многие из них строили из органики сегментированные трубки бакаловидной формы. Среди этих организмов нет ни медузоподобных "дисков" как в эдикаре, так и форм похожих на губки (примитивнейших из ныне живущих групп животных). Судя по всему, довендская хайнаньская биота не может считаться предковой ни для эдикарской, ни тем более для современной - фанерозойской [1].

Рис.2.2 Этапы происхождения многоклеточности:  I, II—сферические колонии жгутиковых,  III—V—фагоцителлы разной степени сложности;  1—кинобласт, 2—рыхлый фагоцитобласт, 3—скопление  чувствительных клеток на переднем конце тела, 4—ротовое отверстие, 5—половые клетки,  6—эпителизованный фагоцитобласт Рис.2.2 Этапы происхождения многоклеточности: I, II—сферические колонии жгутиковых, III—V—фагоцителлы разной степени сложности; 1—кинобласт, 2—рыхлый фагоцитобласт, 3—скопление чувствительных клеток на переднем конце тела, 4—ротовое отверстие, 5—половые клетки, 6—эпителизованный фагоцитобласт Родоначальником многоклеточных в настоящее время считают шаровидную колонию жгутиковых, половые клетки которых перемещались в глубь колонии, а соматические первично выполняли как функцию перемещения всей колонии в пространстве, так и пищеварения за счет переваривания фагоцитированных пищевых частиц, захваченных из воды.           

Осуществление одной и той же клеткой функций движения и пищеварения малоэффективно. С этим связана последующая специализация клеток в направлении преимущественно пищеварения или обеспечения движения. Результатом является возникновение фагоцитобласта (внутреннего слоя амебовидных клеток, занимающихся пищеварением) и кинобласта (наружного слоя клеток со жгутиками, обеспечивающими движение).
Стойкая дифференцировка соматических клеток по функциям и строению, возникшая первоначально на фоне выделения двух клеточных слоев, явилась ключевым моментом в происхождении многоклеточных. Именно с двуслойностью связано появление жидкой внутренней среды, через которую клетки обмениваются химическими сигналами, а также дальнейшее обособление и специализация части поверхностных клеток в направлении восприятия внешних раздражителей и передача возбуждения на другие клетки, располагающиеся в отдалении от них. Таким образом возникают предпосылки к формированию нервной системы.

Рис. 2.3. Трихоплакс - Самое примитивное  животное на свете похоже на медленно  ползающую тонкуюбесформенную пластинку. Рис. 2.3. Трихоплакс - Самое примитивное животное на свете похоже на медленно ползающую тонкуюбесформенную пластинку. Гипотетический предок многоклеточных животных назван фагоцителлой (рис. 2.2). Он плавал в толще воды за счет биения ресничек кинобласта, а питался, захватывая взвешенные в среде частички пищи и переваривая их клетками фагоцитобласта. На более поздних этапах эволюции происходили многочисленные адаптации потомков фагоцителлы к многообразным условиям существования при оседании их на дно или при перемещении к поверхности, а также при изменении источников питания (захват мелких или крупных, живых или мертвых пищевых частиц). [2]

Большое значение в эволюции потомков фагоцителлы имели также изменения характера движения: пассивное движение или прикрепленный образ жизни обусловливают лучевой тип симметрии, в то время как активное перемещение в определенном направлении предусматривает формирование двубоковой, или билатеральной, симметрии. В результате возникло огромное многообразие форм многоклеточных животных.[4]

По другой теории первым примитивным животным является - трихоплакс (рис. 2.3).

Это плоское создание, похожее на медленно ползающую кляксу, не имеет ни осей симметрии, ни мускулатуры, ни переднего и заднего концов, не говоря уже о таких сложных устройствах, как пищеварительная, нервная, кровеносная или выделительная система. Трихоплакс по своему строению напоминает личинок кишечнополостных, и его действительно довольно долго считали личинкой медузы. Но потом оказалось, что трихоплакс образует половые клетки и размножается половым путем.

Митохондриальный геном трихоплакса по своему строению занимает промежуточное положение между «ближайшими родственниками животных» (хоанофлагеллятами и грибами) с одной стороны и всеми остальными животными (включая губок и кишечнополостных) — с другой.[5]

Рис. 2.4. Гребневик. Рис. 2.4. Гребневик. Следующим этапом развития животных стало появление гребневиков (рис. 2.4).[6]

Дальнейшим развитием жизни - стало появление 635 млн лет назад (по некоторым данным 850 млн. лет назад) губок (рис. 2.5) развивавшиеся на морском дне, на мелководье, а затем распространившиеся в более глубокие воды.[7] 

До развития многоклеточных организмов на нашей планете повсеместно царствовали бактериальные сообщества, покрывая дно океана тонким слоем и выстраивая величественные строматолиты. Первые животные были вынуждены вести с ними жестокую борьбу за существование, получая птательные вещества с воды, им приходилось увеличивать свои габариты, что позволяло поглощать большее количества питательных веществ. [8]

Рис. 2.5. Семейство губок. Рис. 2.5. Семейство губок. Одними из наиболее древних находок многоклеточных животных являются археоциаты, а также рангеоморфы, такие, как Харния или чарния Charnia и Charnodiscus, многочисленны медузы (Beltanella, Medusinites, Cyclomedusa и проблематичные формы, близкие современным морским перьям (Rangea, Arborea) жившие в эдикарском периоде. На морском и океаническом дне в то время, обитало большое разнообразие кольчатых червей (известно 5 видов многощетинковых червей принадлежащих родам Сприггина (Spriggina) и Дикинсония (Dickinsonia), от которых в дальнейшем произошли моллюски и членистоногие. Кроме вышеперечисленных морских обитателей эдикария, встречались членистоногие-антроподы (Precambridium), являющиеся отдаленными предками ископаемых трилобитов, а также современных насекомых - пауков и скорпионов. Другими интересными животными эдикара являлись трибрахидиумы (Tribrachidium) которые до сих пор не нашли своей ниши в современой систематике. Некоторые из эдиакарских животных достигали больше метра в размере.

Рис. 2.6. Вендский период (Эдиакарийская биотика). Рис. 2.6. Вендский период (Эдиакарийская биотика). Вообще, в вендский период (рис. 2.6) образовалось большое количество мягкотелых животных не имеющих минерального скелета, останки которых, как уже говорилось, не дошли до наших дней. Тогда же появились первые кишечнополосные хищники.

Животные Эдиакар жили преимущественно на морском дне. Они кормились в слое органического вещества (детрита), который покрывал донный ил, образованный останками множества одноклеточных организмов, населявших толщу воды над ними. Плоские и кольчатые черви плавали над самым дном или ползали среди осадков. Спешить им было некуда, ибо хищников (животных, питающихся другими животными) здесь было очень мало.

Рис. 2.7. Животные Эдиакар (Вендский период). Все животные Эдиакар были мягкотелыми. Там обитало множество разновидностей медуз (1). Диксонии (2) и сприггины (3) были плоскими червеобразными существами. Сприггина имела вдоль боков множество крохотных плавательных пластинок, как у современных морских червей. Возможно, это животное- предок трилобитов. Харниодиск (4), ранге (5) и птеридиний, листообразные морские перья были колониями крохотных животных, похожих на гидр, которые отфильтровывали из воды частицы пищи. А вот трибрахидий (7) для нас полная загадка. У него был Y-образный центральный рот с щетинкообразными отростками. Возможно, он - предок современных иглокожих.
Рис. 2.7. Животные Эдиакар (Вендский период).
Морские перья поднимались с морского дна (рис. 2.7), подобно неким перообразным цветкам, тщательно отфильтровывая воду в поисках пищи. Трубчатые черви лежали среди донных отложений, шевеля своими щупальцами в насыщенной детритом воде. Примитивные иглокожие, родичи современных морских звезд и морских ежей, всю свою жизнь проводили в толстом слое ила. Было там и множество крупных плоских животных в форме блина; эти похожие на медуз создания также, судя по всему, обитали на илистом дне. А над ними в морской воде медленно проплывали настоящие медузы.

В Эдиакарских отложениях встречаются многочисленные окаменевшие отпечатки мягкотелых животных, ползавших когда-то по морскому дну. В некоторых местах в иле запечатлелись парные V-образные отметины, похожие на царапины, оставленные парами крохотных ножек. Возможно, это следы вышеупомянутых примитивных артропод, или членистоногих, - отдаленных предков ископаемых трилобитов, а также современных нам насекомых - пауков и скорпионов. Правда, твердых останков этих животных пока не обнаружено: по всей видимости, они еще не обзавелись твердым панцирем. [9]

Самые первые животные возникали в холодных водах, т.к. теплые мелководные бассейны, в частности, обширные моря покрывавшие континенты в рифее, контролировались архаичной прокариотной биотой вплоть до конца венда. Древние цианобактерии, как и современные, были способны защищать себя ядами, которые угнетают рост и размножение эукариот, а в ряде случаев приводят к гибели последних. Так что, колонизация высшими организмами тепловодных бассейнов была непростой задачей.

Первую попытку животных колонизовать тепловодный карбонатный бассейн мы наблюдаем на примере карбонатных отложений Оленекского поднятия (север Якутии). Когда по окончании Варангерского оледенения морские воды начали затапливать континент, животные быстро заняли теплые мелководные обитания. Вендские беспозвоночные довольно долго «удерживали свои позиции» – остатки мягкотелых беспозвоночных, преимущественно, кишечнополостных, в изобилии встречаются в битуминозных тонкослоистых известняках хатыспытской свиты в интервале более 100 метров. Трудно сказать точно, сколько длился этот эпизод, но цианобактериальные сообщества «взяли реванш» и надолго: толща строматолитовых пород туркутской свиты имеет мощность более 200 м. Судя по современным аналогам, строматолиты растут крайне медленно. Лишь в самом конце венда (542±1 млн. лет) и, особенно, в начале кембрийского периода сообщества животных получили возможность вернуться в свободные от строматолитов обитания.

Сезонность питания, характерную для высоких широт, можно рассматривать как фактор отбора в пользу форм с большей массой. Так называемая «резервная биомасса» нужна, чтобы переживать неблагоприятные периоды. Однако рост и размеры тела ограничиваются возможностью обменных процессов – прежде всего дыханием. Развитие гетеротрофии и эффективных способов сбора пищи могло реализоваться в создание резервной биомассы (больших размеров тела) только при условии достаточно высокой концентрации кислорода в воде. Холодноводные бассейны давали такое преимущество.

Путь из холодных вод, богатых кислородом, в теплые стал возможным в связи с резким ростом содержания свободного кислорода в атмосфере. Данные изотопного анализа углерода из позднего докембрия показывают, что это событие произошло в самом конце протерозоя.

Специалистам по кораллам известна одна замечательная закономерность: виды, имеющие симбиотические водоросли (их собирательное название – зооксантеллы) формируют прочный массивный скелет, и наоборот – виды без симбиотических водорослей имеют весьма слабую минерализацию скелета или не имеют минерального скелета вовсе. Как любая закономерность в мире живого, эта имеет массу исключений. Но представим вендскую фауну холодных вод, и станет ясно, что там не могло быть мощного минерального скелета по двум причинам: одна из них – низкая эффективности ферментов, ответственных за биоминерализацию, из-за низких температур; другая связана с высокой растворимостью карбоната в холодных водах, его труднее концентрировать и сохранять. Но, возможно была и третья причина – отсутствие зооксантелл у животных, обитающих в высоких широтах – там, где существуют долгие зимние ночи одноклеточным водорослям внутри живого тела выжить трудно. Колонизация тропиков и гарантированный световой день сделал симбиоз более эффективным в двух аспектах: снабжение кислородом хозяина и расширение возможностей биоминерализации.

Животные появились в относительно холодных водах вне карбонатного пояса планеты, который контролировался прокариотами. Эра великих оледенений давала большее преимущество именно эукариотам, в том числе, животным, хотя это было время их трудной эволюции. В эту холодную пору площади карбонатных бассейнов и ареалы прокариотных сообществ резко сократились. Высшие организмы, пережившие 200 млн. лет преимущественно холодной биосферы, по окончании ледниковой эры оказались способными бросить вызов архаичной бактериальной биоте и с начала кембрия прочно заняли тепловодные бассейны карбонатного пояса планеты, колонизировав тепловодные бассейноы карбонатного пояса планеты и постепенно заменяя карбонатные постройки цианобактерий рифами. Это обстоятельство резко ускорило эволюционные процессы, в том числе – на основе сформированного минерального скелета.

Рост разнообразия животных и эвкариот в целом способствовал удлинению пищевых цепей. Однако, в тканях животных, находящихся на вершине трофической пирамиды, могли накапливаться высокие концентрации ряда элементов, в частности, Ca, P, Si. Выведение минеральных солей или детоксикация стали необходимостью. Возможность строить минеральный скелет у части беспозвоночных была следствием детоксикации в условиях тепловодных местообитаний, где растворимость биоминералов ниже и энергетические затраты на биоминерализацию не так высоки, как в холодных водах. [10]

 

Животный мир протерозоя. Довендская биота. Животный мир вендского периода (эдикария)

<< Общие сведения о животных. Разделение классификации животных. Появление и эволюция животных <<

 |>> Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв >>

 


 А.С.Антоненко


 

 

Источники:  1. Хайнаньская биота
2. Фагоцителла/ Fagocitella (Паренхимелла)
4. Экологический портал
5. Элементы
6. ScienceBlog.ru
7. PrimeInfo
8. Размер имеет значение.
9. Теория эволюции как она есть. Эдикар
10. Теория эволюции как она есть. Протерозой
Опубликовано в Животные (Animalia)

Учёные из Чикагского университета (University of Chicago) представили новое исследование, свидетельствующее в пользу так называемой Земли-снежка (Snowball Earth) – предполагаемого глобального оледенения, действовавшего на планете примерно 650-750 миллионов лет назад.

Красными точками показаны места  находок формаций, свидетельствующих  об оледенении, чей возраст соответствует  предполагаемому периоду "Snowball Earth".  Как видно, они встречаются по всему  миру (иллюстрация New Scientist)   Красными точками показаны места находок формаций, свидетельствующих об оледенении, чей возраст соответствует предполагаемому периоду "Snowball Earth". Как видно, они встречаются по всему миру (иллюстрация New Scientist) Новый эксперимент геологов должен был дать ответ на главный вопрос, возникающий у её противников: каким образом планета потом оттаяла, ведь снежно-ледяной покров хорошо отражает лучи, ещё больше усиливая охлаждение?

Диаграмма, демонстрирующая схему движения морских ледников  в эпоху "Snowball Earth", в итоге приведшего к накоплению пыли на  значительной части поверхности планеты. Ранее оттепель объясняли  появлением в атмосфере большого количества углекислого газа от вулканов.  Однако последние исследования показывают, что уровень СО2 в то время  составлял лишь десятую часть от требуемого для растапливания льда  количества (иллюстрация Goodman, Pierrehumbert/Chicago University)Диаграмма, демонстрирующая схему движения морских ледников в эпоху "Snowball Earth", в итоге приведшего к накоплению пыли на значительной части поверхности планеты. Ранее оттепель объясняли появлением в атмосфере большого количества углекислого газа от вулканов. Однако последние исследования показывают, что уровень СО2 в то время составлял лишь десятую часть от требуемого для растапливания льда количества (иллюстрация Goodman, Pierrehumbert/Chicago University)Дориан Эббот (Dorian Abbot) и Реймонд Пьергумберт (Raymond Pierrehumbert) использовали климатическое моделирование, чтобы изучить влияние пыли, попадавшей в атмосферу в результате вулканических извержений и выветривания горных пород.

Они обнаружили, что поверхность Земли в то время достаточно быстро загрязнялась, особенно в тех регионах, где редко выпадал снег. Её отражающие свойства при этом настолько сильно изменялись, что огромные участки планеты могли поглощать солнечный свет и постепенно растапливать лёд.

   Таким образом, утверждают учёные, загадка оттепели может быть легко решена, если признать, что наша планета была скорее "грязевым комком", нежели "снежком". Эту гипотезу геологи намереваются проверить, поискав ископаемую пыль в отложениях того периода. Статья чикагских специалистов опубликована в Journal of Geophysical Research – Atmospheres, а прочесть её можно здесь (PDF-документ). 


Источник: MEMBRANA


Опубликовано в Новости Геологии

Примерно с 750 до 650  миллионов лет назад  разбалансированный механизм  климата сделал нашу  планету такой, как на этой  картинке. Удивительно,  что жизнь ухитрилась тогда  не прерваться (иллюстрация  с сайта physicsworld.com) Примерно с 750 до 650 миллионов лет назад разбалансированный механизм климата сделал нашу планету такой, как на этой картинке. Удивительно, что жизнь ухитрилась тогда не прерваться (иллюстрация с сайта physicsworld.com)  Примерно 700 миллионов лет назад, когда глобальное оледенение было настолько мощным, что льды доходили до экватора, в океане оставались свободными небольшие районы. Ключ к выживанию биосферы в один из самых критических для неё моментов обнаружили учёные из Британии и Австралии.

Образцы отложений в Южной Австралии, относящиеся к стертовскому оледенению (это часть криогения), продемонстрировали специфический тип структуры (hummocky cross-stratification — HCS), формирующейся при содействии крупных штормов.Новые данные учёным принёс хребет Флиндерс (фото с сайта  bbc.co.uk) Новые данные учёным принёс хребет Флиндерс (фото с сайта bbc.co.uk)

Структуры типа HCS возникают на морском дне, когда над ним регулярно проходят крупные волны. Открытие означает, что в некоторых районах планеты даже в стертовское оледенение существовала не занятая льдами вода.

По мнению авторов статьи, вышедшей в журнале Geology, такие участки были оазисами, которые помогли биосфере пережить тяжёлый период. Хотя значительная часть жизни тогда была уничтожена, часть организмов перенесла и холод, и длительное заточение под мощным льдом, чтобы позже прийти к новому всплеску эволюции.

Как сообщает BBC, эта находка является важным кусочком мозаики в гипотезе "Земли-снежка" (Snowball Earth), получившей не так давно прямое подтверждение. Здесь ещё не до конца понятны причины столь сильного оледенения планеты, хотя учёные уже выяснили ряд интересных деталей последующего оттаивания.

О том, как жизнь могла сохраниться в течение эпох даже без света, рассказали необычный эксперимент с фототрофами и открытие древних бактерий в кровавом водопаде. Теперь же выясняется, что даже в самые суровые моменты криогения кое-где в океане оставались участки, дававшие микроорганизмам доступ к солнечным лучам и кислороду.


Источник: MEMBRANA


Опубликовано в Новости Палеонтологии

Животным понадобилось каких-то 85 млн лет (мгновение по геологическим меркам) на то, чтобы развиться и обжить бóльшую часть суши и океанов. Хотя ископаемые останки и молекулярная биология могут многое рассказать об этом процессе, наука по сей день не знает, что именно вызвало столь масштабную диверсификацию.

Земля была похожа на космический снежок... (Иллюстрация boogerfingers.) Земля была похожа на космический снежок... (Иллюстрация boogerfingers.) Биохимики Тимоти Лайонс и Ноа Планавский из Калифорнийского университета в Риверсайде (США) обосновали одну из гипотез.

В 1990-х годах сразу несколько научных групп пришли к выводу о том, что 750–635 млн лет назад практически вся поверхность Земли была покрыта льдом. В дальнейшем удалось показать, что путешественник во времени мог бы проложить лыжню от одного полюса до другого. Увеличиваясь в размерах, ледники соскребали верхний слой камня и почвы, а в ходе последующего отступления сбрасывали накопленные минералы и питательные вещества в океан.

Начало стремительного отступления ледников совпадает с резким всплеском эволюции животных. Г-да Лайонс и Планавский предположили, что если им удастся измерить количество фосфора в океане тех времён, то можно выяснить, есть ли корреляция между двумя этими событиями или же это простое совпадение. Именно фосфор считается главным питательным элементом микроорганизмов и водорослей, находящихся в основе пищевой пирамиды.

Ну а как восстановить историю концентрации фосфатов в океане за последний миллиард лет? Учёные сообразили, что можно использовать богатые железом отложения древних океанов с низким содержанием кислорода, которые накапливали фосфаты предсказуемым и хорошо изученным образом. Как и ожидалось, анализ семи образцов из различных частей мира показал, что концентрация фосфатов достигла своего пика во времена таяния ледников.

Это привело к росту водорослей и других организмов, производящих кислород, что стало залогом эволюционного взрыва.

Результаты исследования опубликованы в журнале Nature.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Эволюции

На юге Китая ученые нашли уникальные ископаемые возрастом примерно 600 млн. лет. Похоже, это первые макроскопические организмы на нашей планете. Большинство напоминает современные бурые водоросли, но некоторые похожи на червей.

Ископаемое многоклеточное из формации Ланьтянь (Китай)  возрастом 600 млн. лет Ископаемое многоклеточное из формации Ланьтянь (Китай) возрастом 600 млн. лет Один из самых поразительных этапов развития жизни на нашей планете – эдиакарский — случился 635−542 млн. лет назад.

Тогда произошел огромный эволюционный скачок – после почти трех миллиардов лет исключительно микроскопической жизни появились первые макроскопические организмы. Таких необычных форм в природе не появится уже никогда. Окаменелости этого периода ученые делят на три группы, самая древняя из которых — авалонская. Ее возраст составляет примерно 575−565 млн лет. В основном это мягкотелые организмы, состоящие из отдельных фракталов. Размеры их тела варьировались от одного сантиметра до одного метра. Выглядели они настолько необычно, что долгое время ученые спорили, к какому царству – растений или животных их можно отнести. Но в конце концов решили, что это все-таки животные.

Отложения Ланьтянь

Похоже, группе ученых, которой руководит Сюньлай Юань (Xunlai Yuan) из Наньцзиньского института геологии и палеонтологии (Китай), удалось обнаружить самые первые макроскопические существа, которые жили еще до авалонской биоты. В формации Ланьтянь на юге Китая ученые описали несколько организмов, которые очень похожи на современные бурые водоросли и кольчатых червей.

Вообще-то, об ископаемых формации Ланьтянь ученые впервые узнали еще десять лет назад. Проблема состояла в точной датировке образцов. Дело в том, что отложения залегают там очень плотно. Например, в 150−тиметровых отложениях зашифрована история длиной в 90 млн лет. Из-за такой плотной упаковки датировать слои необыкновенно сложно. При помощи радиоуглеродного анализа удалось установить, что биота этой формации гораздо более древняя, чем можно было предположить. Ее возраст, по подсчетам ученых, составил примерно 635−577 млн лет.

Водоросли, черви и стрекающие

Как объясняет доктор Сюньлай Юань, эти организмы появились на Земле сразу после Мариноанского оледенения – одной из стадий глобального оледенения, когда нашу планету в течение многих миллионов лет сплошь покрывали льды (теория о существовании такого масштабного оледенения носит красивое название «Земля-снежок»). Как только лед растаял, океан стал теплеть и насыщаться кислородом. Это и привело, по мнению авторов, к новому витку эволюции – формированию макроскопических форм жизни.

Ископаемые организмы формации Ланьтянь ученые отнесли к пяти разным морфологическим типам: «Типы А и B очень напоминают современные водоросли, например бурую водоросль Postelsia palmaeformis. У них выделяется орган, с помощью которого они прикреплялись к субстрату, стебель и ветвящиеся лопасти», — пишут авторы исследования. Другие типы выглядели совсем необычно. «Типы С-Е, скорее, ближе к животным типа стрекающие. С веретенообразным телом, пищеварительной системой, окруженной оболочкой. Возможно, у них были и сократительные мышцы. Тип D и Е — вообще загадочный. Эти организмы напоминают червеобразных животных», — говорит доктор Сюньлай Юань.

По словам руководителя группы, все эти необычные организмы обитали в спокойных мелких водах, там, куда спокойно проникали солнечные лучи. А в пластах отложений они так и «законсервировались» в своем обычном положении.

Об ископаемых отложений формации Ланьтянь можно прочитать в cтатье «An early ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes», опубликованной в последнем номере журнала Nature.


Источник: Infox.ru


Опубликовано в Новости Палеонтологии

Палеогеологам удалось объяснить парадокс, который напрямую связан с гипотетическим периодом глобального обледенения Земли. Заодно они нашли подтверждение теории, известной как «Земля-снежок»

Бескрайняя ледяная пустыня (Википедия) Бескрайняя ледяная пустыня (Википедия) В конце неопротерозойской эры (примерно 1000 млн лет назад — 542 млн лет назад) на нашей планете происходило множество важных и часто загадочных событий. В то время раскололся на части суперконтинент Родиния, а потом Землю полностью сковали льды (этот процесс описывает теория «Земля-снежок»). В то же время появились первые макроскопические животные – представители эдиакарской фауны, которые больше напоминали растения. Тогда же подскочил уровень кислорода в океане и в атмосфере и произошло событие, которое долгое время ученые не могли объяснить — почему-то в карбонатных породах того времени отмечается резкое сокращение количества изотопов С13.

Выяснить причину этого скачка удалось профессору Кристиану Бьерраму (Christian Bjerrum) из Копенгагенского университета, и доктору Дону Кенфилду (Don E. Canfield) из Университета Южной Дании.

Откуда в океане оказалось столько углерода

«Датирование при помощи U-Pb-метода показывает, что эта аномалия случилась примерно 551 млн лет назад и длилась от одного до 10 млн лет. Концентрация изотопов С13 упала до неожиданно низких уровней», — пишут авторы.

Чтобы раскрыть секрет аномалии и понять, что же послужило причиной этого падения, Бьерраму и Кенфилду необходимо было выяснить, откуда углерод поступал в океан. Таких источников могло быть два – активная вулканическая деятельность в районе срединно-океанических хребтов и осаждение на дно мертвой органики. Правда, в случае поступления углерода в результате вулканической деятельности в породах присутствовало бы большое количество серы. Но ее оказалось немного: «Наши исследования состава океанических пород показывают, что содержание сульфатов в океане было небольшим и значительно ниже, чем в современном океане», — говорит Бьеррам. Это означает лишь одно – вулканы тогда играли вовсе не основную роль в поставке углерода. Значит, основной его источник – мертвая органика.

Метан замерзает и оттаивает

В условиях недостатка кислорода и низких температур органические вещества в океане разлагались не полностью, в результате выделялся метан. В обычных условиях метан представляет собой газ. Но на большой глубине при большом давлении и при низких температурах он образует с водой устойчивые комплексные соединения – клатраты (клатраты такого состава называют газогидратами). Когда температура стала повышаться, запустился процесс распада этих соединений с выделением газообразного метана. В итоге определенное количество метана попало и в атмосферу. А это сильный парниковый газ, из-за которого температура повысилась еще больше и лед начал таять еще быстрее.

«Модель, которую мы построили, показывает, что падение изотопов С13 связано с высвобождением метана из клатратов. Этот вывод имеет несколько следствий – аномалия длилась, скорее, два миллиона лет, а не десять. Температура должна была повыситься максимум на 10−15 градусов. Этот процесс также должен был сопровождаться повышенными концентрациями кислорода в атмосфере», — пишут ученые.

Подробное описание превращений углерода в неопротерозойскую эру можно прочитать в статье профессора Бьеррама и Канфилда «Towards a quantitative understanding of the late Neoproterozoic carbon cycle», которая опубликована в последнем номере журнала PNAS.

В прошлом году, мы уже рассказывали о полученных новых подтверждениях теории "Земли-снежка".

 


 

Источник: Infox.ru


 

Опубликовано в Новости Палеонтологии

В промежутке между двумя мощными оледенениями в морях обитали одноклеточные организмы. Они спасались от холода и хищников при помощи раковины-панциря. Ученые считают, что эти организмы были похожи на современных раковинных амеб.

Панцирный одноклеточный организмПанцирный одноклеточный организм    В конце неопротерозойской эры нашу планету полностью покрывали льды. Эта гипотеза носит красивое название «Земля-снежок». Считается, что это оледенение пережили совсем немногие виды. Например, практически все достаточно сложно организованные (имеющие ядро и оболочку) водоросли, к сожалению, исчезли. Но когда лед растаял, произошел настоящий взрыв жизни. Именно тогда появились самые необычные животные, которых когда-либо создавала природа, – представители эдиакарской фауны. Палеоклиматические данные говорят о том, что глобальное оледенение разделялось на два периода – Мариноанское и Стуртианское оледенения. В промежутке между ними произошло небольшое потепление, и лед, по-видимому, стал немного таять.

Одноклеточные с панцирем

    Группе ученых под руководством доктора Тани Босак (Tanja Bosak) из Массачусетского технологического института удалось обнаружить ископаемые останки удивительных одноклеточных организмов, которые появились как раз в эпоху этого потепления между двумя оледенениями примерно 710 млн. лет назад. «Мы достаточно хорошо знаем, что происходило до глобального оледенения, но вот о том, что происходило в период между Мариноанским и Стуртианским оледенением –данных очень мало», -- говорит Босак.

    Ученым удалось найти раковины одноклеточных организмов в отложениях на севере Намибии и Монголии. При помощи электронного микроскопа они рассмотрели их строение. Если в отложениях из Намибии преобладали круглые раковины, то монгольские отличались более вытянутой формой. Как объясняет Босак, каждая раковина имела отверстие (устье) для ложноножки, с помощью которой одноклеточные передвигались.

Амебы строили раковину

    С помощью рентгеноспектрального анализа ученые выяснили состав раковин. «Толщина этих раковин не превышала десяти микрон, они состояли из глинистых минералов разного размера и возраста. Это свидетельство того, что одноклеточные строили раковины из частиц, которые свободно плавали в воде, и скрепляли их выделениями цитоплазмы», -- пишут авторы. По-видимому, раковины защищали одноклеточных от многих неприятностей, например, холодной температуры и хищников.


 

Источник:  Infox.ru


 

Опубликовано в Новости Палеонтологии

Ископаемое, жившее 580 млн лет назад, поставило под сомнение привычное эволюционное древо животных.

News15a8a1Eoandromeda и её слепокБеспозвоночное, названное Eoandromeda octobrachiata (потому что его тело напоминает спиральную галактику Андромеды), призывает пересмотреть самые нижние ветви, полагают авторы исследования.

Группа палеонтолога Фэн Тан из Китайской академии геологических наук считает Eoandromeda пращуром современных гребневиков: эти желеобразные существа похожи на медуз, но круглее и обладают восемью рядами радужных «плавников» («гребней»). Если они правы, это самый старый гребневик из известных науке.

Гребневики находятся у основания эволюционного древа. Как правило, считается, что сначала появились губки, затем стрекающие (медузы, актинии и др.), а после них идут гребневики. Это расположение остаётся спорным. «Eoandromeda кладёт ещё немного на ту чашу весов, которая склоняется в пользу более базального положения гребневиков», — говорит соавтор работы Стефан Бенгтсон из Шведского музея естественной истории.

Всё дело в форме: ископаемое имеет окторадиальную симметрию, то есть его тело можно разрезать на восемь одинаковых кусков. Современные гребневики бирадиальны, то есть обладают двусторонней симметрией, их (как и людей, мух, морские анемоны) можно разделить только на две идентичные части.

Если Eoandromeda появилась после книдарий, билатеральная симметрия в истории эволюции возникала дважды — один раз у книдарий, а затем у других двусторонних организмов, пришедших после Eoandromeda. Гораздо проще считать, что Eoandromeda была первой.

Это не голословное утверждение, ибо анализ ДНК подтвердил: гребневики ближе к корню эволюционного древа. Коллег приветствует Энди Баксеванис из Национального НИИ человеческого генома (США), группа которого расшифровала ДНК гребневика мнемиопсиса и теперь сравнивает её с геномом губок, книдарий, червей и других животных. По его словам, результаты пока свидетельствуют о том, что губки и гребневики появились раньше стрекающих.

Однако некоторые учёные сомневаются в том, что ископаемое можно отнести к гребневикам. Восемь «спиральных рукавов» действительно напоминают восемь радужных «гребней» по бокам современных гребневиков, но в образце отсутствуют ключевые характеристики современных гребневиков — щупальца и рот.

В 1980-х годах Дольф Зайлахер из Тюбингенского университета (ФРГ) пришёл к выводу, что многие странные окаменелости эдиакария (635–542 млн лет назад) представляли собой аномально большие амёбоподобные одноклеточные организмы. Он выделил их в особое царство Vendobionta. По его словам, пока вендобионты не вымерли, многоклеточные жили в тени этих гигантов. Г-н Зайлахер видит в Eoandromeda (а она размером с мяч для гольфа) одного из вендобионтов.

«А я вообще не могу себе представить, как Eoandromeda могла плавать, обладая таким спиральным вооружением, — отмечает Клаус Нильсен, отставной эволюционный биолог из Музея естественной истории Дании. — Так что это никоим образом не гребневик».


Источник:  КОМПЬЮЛЕНТА


 

Опубликовано в Новости Эволюции

Науке известно около семи тысяч видов инфузорий. Все они имеют общую морфологию: каплевидная клетка покрыта крошечными волосками (ресничками), с помощью которых организм передвигается и ловит добычу.

Конфокальная микрофотография микрофоссилий. Пузырьки окрашены зелёным. (Здесь и ниже изображения авторов работы.)Конфокальная микрофотография микрофоссилий. Пузырьки окрашены зелёным. (Здесь и ниже изображения авторов работы.)Как долго инфузории населяют Землю, никто не знает: после смерти они просто растворяются в воде. Самые древние следы инфузорий в геологической летописи сумели обнаружить геологи из Массачусетского технологического института и Гарвардского университета (оба — США). Колбовидным микрофоссилиям 635–715 млн лет. Они более чем на 100 млн лет старше предыдущих окаменелостей: намёк на то, что ранняя жизнь была более сложной, чем принято считать.

К тому же такие первобытные протисты могли сыграть роль в появлении многоклеточной жизни и эволюции первых животных. «Это было время огромных био- и химических перемен, которые и привели к эволюции животных», — поясняет ведущий автор исследования Таня Босак из МТИ.

Группа обнаружила окаменелости в образцах породы из юго-западной Монголии. В 2008 году Фрэнсис Макдональд из Гарварда путешествовал по геологическому формированию Цаган-Олом. Там находятся остатки двух самых мощных ледниковых периодов в истории Земли, имевших место в криогении (715–635 млн лет назад). Найдено относительно немного окаменелостей, относящихся к тому времени.Найдены сотни таких окаменелостейНайдены сотни таких окаменелостей

Г-жа Босак и её коллеги растворили фрагменты породы в кислоте и рассмотрели остаток под микроскопом. Удалось обнаружить сотни прекрасно сохранившихся окаменелостей с суженным «горлышком» и расширенным «воротничком». Каждое ископаемое было заключено в структуру, напоминавшую пузырь. Сравнение с ныне живущими организмами показало почти полное соответствие тинтиннидам.

В отличие от большинства других инфузорий, тинтинниды имеют вазоподобную оболочку, которая обладает завидным сочетанием жёсткости и гибкости. Существа продевают реснички сквозь отверстия в этой оболочке. Пузырьки, образующиеся на оболочке, позволяют микроорганизму оставаться на плаву.

Благодаря толстым «раковинам» тинтинниды — та редкая разновидность инфузорий, которая способна оставить о себе воспоминание. Хотя само существо после смерти растворяется в воде, его панцирь в большинстве случаев опускается на дно. В анаэробном океане углеродная оболочка распадалась сравнительно долго, что приводило к накоплению углерода в воде, и это в свою очередь способствовало более активному высвобождению кислорода. Соответственно, рост концентрации кислорода приводил к появлению более сложных форм жизни. Действительно, ископаемые инфузории существовали в промежутке между двумя ледниковыми периодами, по окончании которых геологи обнаружили первых примитивных представителей животного царства.

Разумеется, есть все основания считать, что инфузории появились за сотни миллионов лет до этого, подготавливая почву дальнейшей эволюции.

Результаты исследования опубликованы в журнале Geology.


Источник:  КОМПЬЮЛЕНТА


 

Опубликовано в Новости Палеонтологии
Страница 2 из 2

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Насколько мы еще обезьяны?

18-04-2014 Просмотров:6086 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Насколько мы еще обезьяны?

В современной науке популярна гипотеза о том, что значительная часть реакций на зрительные, слуховые и прочие раздражители унаследована нами у далёких предков, которые приобрели их в процессе эволюции. Иными словами,...

В Кольском научном центре РАН ученые из МГУ прочтут лекцию…

19-07-2018 Просмотров:832 Новости Экологии Антоненко Андрей - avatar Антоненко Андрей

В Кольском научном центре РАН ученые из МГУ прочтут лекцию об уникальноcти городского микроклимата

20 июля 2018 года в 12-00 в конференц-зале КНЦ сотрудники географического факультета МГУ имени М.В.Ломоносова посетят Апатиты и в формате научно-популярной лекции расскажут об уникальноcти городского микроклимата, международном  научном проекте...

Жирафа, дочь моря. Новый плезиозавр из Марокко

11-06-2013 Просмотров:8448 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Жирафа, дочь моря. Новый плезиозавр из Марокко

Первый относительно полный скелет мелового плезиозавра обнаружили палеонтологи в марокканской фосфоритной шахте. Теперь ученые смогут лучше представить себе животный мир Африки накануне великого мел-палеогенового вымирания. Плезиозавр Zarafasaura oceanis  Плезиозавры – довольно...

Вирусы используют интерферон, чтобы закрепиться в организме

13-04-2013 Просмотров:8604 Новости Микробиологии Антоненко Андрей - avatar Антоненко Андрей

Вирусы используют интерферон, чтобы закрепиться в организме

Иммунологи и вирусологи довольно давно бьются над загадкой, как вирусам удаётся обойти иммунную защиту. Ведь, несмотря на интерферон, противовирусные клетки-детекторы и т. п., некоторые вирусы продолжают жить и процветать в...

Ледяные сталактиты и происхождение жизни

11-04-2013 Просмотров:9374 Новости Окенологии Антоненко Андрей - avatar Антоненко Андрей

Ледяные сталактиты и происхождение жизни

Одно из самых любопытных явлений на свете — ледяные сталактиты особого рода, которые, словно сосульки, свисают с нижней стороны арктического морского льда. Образование ледяных сталактитов в морской воде (иллюстрация авторов работы).Они...

top-iconВверх

© 2009-2020 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.