Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Зоологии


Новости Зоологии (727)

Американский суслик — зверь в некотором роде уникальный: во время зимней спячки температура его тела может опускаться до –4 ˚C, что является рекордом среди млекопитающих, засыпающих на зиму. Причём исследователи до сих пор ломают голову над тем, как животному удаётся сохранять свою кровь жидкой, ведь никаких антифризных белков у него не нашли.

Бодрствующий американский суслик (фото dean.franklin).Бодрствующий американский суслик (фото dean.franklin)Стоит ли говорить, что американский суслик пользуется особой популярностью у тех, кто изучает механизмы зимней спячки и работу циркадных ритмов (ведь долгий зимний сон предполагает, что биологические часы, которые заставляют нас просыпаться утром и засыпать вечером, каким-то образом отключены). Исследователи из Университета Аляски (США) решили, например, выяснить, каков нижний предел температур, при которых суслик может спокойно спать. Учёные постепенно снижали температуру воздуха в камере со спящим животным и обнаружили, что при –26 ˚C суслик начинает дрожать и просыпается. То есть это и есть тот самый нижний порог, который допустим во время анабиоза.

Температура тела животного поддерживалась на уровне –4 ˚C (для слежения за ней исследователи вживляли в желудок сусликов специальный термодатчик). Чтобы поддерживать её на этом уровне при очень сильном морозе, суслик, если можно так сказать, слегка просыпается и тем самым поднимает свою температуру.

С другой стороны, активность сусликов определяется не только температурой окружающей среды, но и сменой дня и ночи. Самцы просыпаются за три недели до самок, но какое-то время остаются в норе, питаясь запасами. При этом, что любопытно, температура их тела остаётся постоянной. Но стоит им выйти наружу и посмотреть на солнце, как у них запускаются суточные ритмы: температура тела поднимается в дневные часы и опускается в ночные. Результаты своих наблюдений учёные доложили на ежегодной конференции Общества сравнительной и интегративной биологии в Сан-Франциско (США).

Но как суслики поддерживают свои биологические часы в рабочем состоянии? Дело в том, что эти животные просыпаются и засыпают не по солнцу: они выходят из норы, кода уже светло, и прячутся обратно под землю вечером. Поэтому зоологи предполагают, что либо у сусликов есть какие-то специальные гены, которые не зависят от солнечного света, либо эти животные могут оценивать высоту, на которой солнце стоит над горизонтом, и спектр света, который к вечеру смещается в красную область.



 

Источник: КОМПЬЮЛЕНТА


 

Дельфин, который из-за искривленного позвоночника стал изгоем среди своих сородичей, прибился к стае кашалотов. Несмотря на то, что дельфины являются врагами кашалотов, те не стали прогонять больное животное и приняли его в свое общество.

260113331x252 UBkXa6RXEKbQfxrTHEoupE3LWRtHdOtXСтатья с описанием необычного феномена, подготовленная коллективом португальских и немецких экологов, опубликована в журнале Aquatic Mammals.

В 2011 году авторы работы обнаружили в 20 километрах от острова Пику, входящего в состав Азорского архипелага, группу из кашалотов (Physeter macrocephalus) с детенышами и взрослого дельфина-афалины (Tursiops truncatus). Дельфин отличался сильным искривлением позвоночника и имел S-образно изогнутый хвост.

В течение 8 последующих дней ученые наблюдали, как дельфин играл с кашалотами и терся об них. Это доказывает, что больное животное не было случайным попутчиком. Так в этом районе океана практически нет естественных врагов дельфинов, то нельзя сказать, что афалина прибилась к кашалотам, чтобы спастись от хищников.

Скорее всего, из-за своей болезни дельфин не мог следовать за своими собратьями, плавающими на высокой скорости, или же имел среди них слишком низкий социальный статус, что и побудило его присоединиться к кашалотам. Так как кашалоты передвигаются медленно, и, погружаясь, всегда оставляют с детенышами «няньку», одного из взрослых членов группы, афалине-инвалиду было комфортнее плавать именно с ними.

Ученые пока не могут сказать, почему кашалоты приняли дельфина в свою группу. Дело в том, что стаи афалин часто преследуют кашалотов и их молодь, так что между представителями этих видов существуют напряженные отношения.


Источник: infox.ru


Не только люди и птицы могут в своих странствиях сверять направление по звёздам. Учёные из Лундского университета (Швеция) обнаружили эту способность у существ, о которых в этом смысле можно было подумать в последнюю очередь, — у жуков-навозников. По словам исследователей, это пока единственный доказанный случай того, что насекомые способны ориентироваться по звёздам.

Жук-навозник с «кепкой» на голове, закрывающей от него небо (фото Marcus Byrne / University of the Witwatersrand)Жук-навозник с «кепкой» на голове, закрывающей от него небо (фото Marcus Byrne / University of the Witwatersrand)Найдя, так сказать, кучу отходов жизнедеятельности, жук скатывает навозный шарик и катит его поскорее прочь, чтобы не столкнуться с потенциальными конкурентами или хищниками. Даже если переместить жука в совершенно незнакомое окружение, его это нисколько не смутит, он всё равно будет двигаться так, чтобы максимально удалиться от навозной кучи. Ранее учёные уже выяснили, что навозники не используют ландшафтных ориентиров вроде деревьев или камней и что они ориентируются по солнцу и луне, «усваивая», по всей вероятности, поляризованный свет обоих небесных тел. О звёздах речь не шла; более того, в ранних экспериментах тех же исследователей из Лундского университета жуки теряли ориентацию, если не видели луну, хотя звёзды им были видны.

Потом, однако, стали появляться данные, что скарабеи всё-таки обращают внимание на звёзды. Чтобы окончательно выяснить этот вопрос, исследователи вместе с коллегами из Витватерсрандского университета (ЮАР) поставили следующий опыт. Жуков помещали в загон с высокими стенами, чтобы они могли наблюдать только определённый кусочек неба, или же насекомым на голову надевали особые «кепки», чтобы они вообще неба не видели. Для эксперимента выбирали лунные, безлунные и пасмурные ночи, когда и луна, и звёзды были затянуты облаками. Уверенней всего жуки чувствовали себя тогда, когда видели небо, однако исследователи продолжали сомневаться, что навозникам нужны звёзды: всё-таки зрение у жуков не настолько хорошее, чтобы различать светящиеся точки на небе.

И тогда эксперименты перенесли в планетарий. В планетарии можно было оставлять для обозрения те или иные звёзды, а остальные как бы «выключать». Как пишут исследователи в журнале Current Biology, чтобы определить, куда следует двигаться, жукам был нужен именно Млечный Путь. Если эта белая размытая полоса на ночном небе не была видна, то даже самые яркие звёзды жукам не помогали (при условии что и луны на небе тоже не было). То есть, говоря с некоторой поэтической натяжкой, жуки-навозники идут по Млечному Пути. Выходит, египтяне знали, кому поклоняться.

Одновременно стало понятно, почему в предыдущих опытах жуки игнорировали звёздное небо. Учёные экспериментировали с жуками на территории Южной Африки, и опыты проводили в октябре, когда Млечный Путь находится так близко к горизонту, что использовать его в качестве ориентира весьма затруднительно. В дальнейшем биологи хотят выяснить, какой из небесных ориентиров для скарабеев всё же предпочтительнее — луна или звёзды.


Источник: КОМПЬЮЛЕНТА


Пятница, 25 Январь 2013 22:04

Кого боятся белые акулы

Автор

Бразильская светящаяся акула — один из самых своеобразных морских хищников. При своих не слишком внушительных размерах (в длину в лучшем случае она достигает полуметра), бразильская светящаяся акула нападает на животных много крупнее себя. Что странно: обычно небольшие акулы выбирают небольшую добычу. Однако с жертвами героиня заметки поступает весьма своеобразно: она откусывает кусок мяса и уплывает, оставляя добычу раненой, но живой.


Следы от укусов светящейся акулы на теле тюленя (фото slobirdr)Следы от укусов светящейся акулы на теле тюленя (фото slobirdr)Следы укусов бразильских светящихся акул находили на тунцах, китах, дельфинах и морских слонах. Такая манера охотиться вызывает в памяти анекдот про хозяина, у которого по двору бегала свинья на трёх ногах: дескать, не резать же из-за одного холодца всю свинью. Особое строение зубов в нижней челюсти позволяет акуле как бы вычерпывать куски мяса из тела жертвы. Причём следы укусов светящихся акул находили даже на обшивке подводных аппаратов и подводных же коммуникациях. Как ясно из названия, у акулы есть фотофоры; предположительно, это помогает ей прятаться в стаях светящихся кальмаров, чтобы внезапно набрасываться на того, кто вздумает на этих кальмаров напасть.

Бразильская светящаяся акула (фото Norbert Wu)Бразильская светящаяся акула (фото Norbert Wu)Исследователи из Университета Флориды (США) обнаружили, кому ещё следует опасаться нападений бразильских светящихся акул. Следы её укусов найдены около рта белых акул, самых известных и самых страшных (по версии прессы) хищников моря. То есть дельфины, киты и тунцы — это ещё куда ни шло, но белые акулы — вот это уже перебор. Тем не менее авторы статьи в журнале Pacific Science уверены в своих данных. Хотя светящаяся акула живёт на большой глубине, она постоянно курсирует вверх-вниз, и глубина, до которой она поднимается, перекрывается с уровнем, на который может опускаться белая акула. Свою находку исследователи сделали вблизи острова Гваделупа.

Следует подчеркнуть, что речь идёт не о паразитизме, а именно об охоте одного хищника на другого. Хотя необычно само по себе, что на белую акулу охотится тот, кто в несколько раз меньше её. Белые акулы издавна занимали вершину пищевой пирамиды в морских экосистемах. Теперь, очевидно, им придётся потесниться, освобождая место рядом с собой мелкой светящейся акуле.


Источник: КОМПЬЮЛЕНТА


Многие организмы, обитающие у гидротермальных источников на морском дне, зависят от довольно специфических энергетических ресурсов вроде метана или сероводорода. Обычно такие животные сожительствуют с бактериями-симбионтами, которые и перерабатывают эту малоаппетитную «химию» в более доступные для усвоения формы. Однако такие участки, на которых из толщи земли в воду выходят метан, сероводород и т. п., могут отстоять друг от друга на сотни километров. И тогда возникает вопрос: как животные, которые зависят от таких источников, распространяются между ними?

Колонизация куска дерева бактериями и донными организмами (рисунок авторов работы)Колонизация куска дерева бактериями и донными организмами (рисунок авторов работы)По одной из гипотез, перевалочными пунктами в подобных путешествиях могли бы стать тела больших животных (например, китов), крупные мёртвые водоросли и утонувшие древесные остатки. Чтобы проверить это, исследователи из Института микробиологии моря Общества Макса Планка (Германия) опустили на дно Средиземного моря, на глубину 1 700 м, кусок дерева и достали его обратно спустя год.

Эксперимент, как видим, весьма незатейлив, однако он позволил понять, как происходит освоение мёртвой органики в морских экосистемах. Как пишут исследователи в веб-журнале PLoS ONE, первыми на дерево пришли двустворчатые моллюски рода Xylophaga, которые с помощью бактерий, перерабатывающих целлюлозу, подготовили деревянный кусок для следующих поселенцев. Разложение древесины привело к заселению её другими организмами и, как следствие, интенсивному потреблению кислорода, а это открыло дорогу сульфат-редуцирующим бактериям. Они тоже могут разлагать целлюлозу, но при этом предпочитают зоны, бедные кислородом.

Эти сульфат-редуцирующие бактерии производят сероводород, который служит ресурсом для тех, кто обитает у подземных геотермальных источников. И действительно, учёным удалось на экспериментальном куске дерева обнаружить моллюска, обычно живущего только в специфической, обогащённой серой среде. То есть чехарда бактерий на затонувшем куске дерева постепенно делала его пригодным для обитания специфических видов, которые для получения энергии предпочитают особые химические ресурсы.

Очевидно, на морском дне такие обломки дерева не редкость, и обитатели геотермальных источников вполне могут перемещаться по ним от одного источника к другому. Скорее всего, таким «мостиком» может служить и другая мёртвая органика, но учёным, понятно, удобней было использовать в эксперименте кусок дерева, нежели китовую тушу.


Источник: КОМПЬЮЛЕНТА


Многие животные используют фотосинтез, чтобы получать питательные вещества. Фотосинтезом на Земле занимаются растения, водоросли и бактерии, но сейчас речь идёт вовсе не о поедании их животными, а о симбиозе одних с другими. Например, кораллы получают углеводы, синтезированные живущими в них водорослями. Так же поступают губки и голожаберные моллюски. Более того, некоторые животные, кажется, сумели овладеть фотосинтезом сами, безо всякой помощи растений: вспомним хотя бы прошлогоднее сообщение о фотосинтезирующих тлях.

Пятнистая амбистома (фото Matthew Ignoffo)Пятнистая амбистома (фото Matthew Ignoffo)Но всё это примеры из группы беспозвоночных. Могут ли позвоночные пользоваться преимуществами фотосинтеза с водорослями или растениями, никто точно сказать не мог, хотя о таком сожительстве известно довольно давно. Так, в 1888 году биологи обнаружили, что одноклеточные водоросли Oophila amblystomatis колонизируют яйца саламандры амбистомы пятнистой. К 1940-м стало окончательно ясно, что тут имеют место симбиотические отношения: водоросли поглощали метаболический «мусор», выделяемый зародышами амбистомы. При этом зародыши усваивали кислород, выделяемый фотосинтезирующими сожителями. В итоге зародыши из яиц с большим содержанием водорослей развивались быстрее и выживали с большей вероятностью, чем те, у кого водорослей было мало.

Зародыши пятнистой амбистомы получают кислород и глюкозу от симбиотических водорослей. (Фото Pecos Valley Diamond.)Зародыши пятнистой амбистомы получают кислород и глюкозу от симбиотических водорослей. (Фото Pecos Valley Diamond.)Но не так давно обнаружилась ещё одна грань в отношениях между маленькими саламандрами и их симбиотическими водорослями. Оказалось, что водоросли живут буквально внутри эмбрионов, входя в их клетки. Это навело исследователей на мысль, что одним кислородом дело тут не ограничивается и зародыши амбистомы могут получать от водорослей ещё что-то.

Этим «чем-то» оказалась глюкоза. Исследователи из Темплского университета (США) держали яйца пятнистой амбистомы в воде, содержащей радиоактивный изотоп углерода-14. Водоросли брали этот углерод и встраивали его в молекулы глюкозы. При этом, как пишут учёные в Journal of Experimental Biology, зародыши тоже становились слегка радиоактивными, но только в том случае, если их держали на свету. То есть тот радиоактивный углерод, который получали зародыши, мог попасть к ним лишь в результате фотосинтеза.

Иными словами, зародыши не только дышали, но и кормились с помощью водорослей — подобно тому как это делают кораллы или губки.

Пятнистая амбистома пока что единственный пример позвоночного, использующего фотосинтез, но, как полагают исследователи, точно так же могут поступать другие земноводные, чьё развитие проходит в воде. Для зародышей присутствие водорослей чрезвычайно важно: без них эмбрионы развиваются дольше и хуже. Что же до водорослей, то пока не очень ясно, какое место в их жизни занимают яйца саламандр. Очевидно, их отсутствие не должно так уж сильно влиять на самочувствие водорослей. В конце концов, земноводные размножаются лишь в определённый сезон, и в остальное время года водорослям нужно как-то обходиться без саламандровых яиц.


Источник: КОМПЬЮЛЕНТА


Группа ученых под руководством профессора СПбГУ Андрея Козлова и руководителя лаборатории онкоэкологии НИИ онкологии имени Н.Н. Петрова Марка Забежинского больше года наблюдала за золотыми рыбками. В итоге исследователи пришли к выводам, которые могут сыграть существенную роль в борьбе с раком. Оказывается, любая опухоль появляется неслучайно.

Золотая рыбка фото википедияЗолотая рыбка фото википедияРечь идет о некоторых видах золотых рыбок (декоративная форма серебряного карася Carassius auratis), голова которых украшена наростом-"шапочкой". Их вывели полторы тысячи лет назад в Китае, и разновидности с "шапочками" особенно высоко ценятся аквариумистами. Раньше предполагалось, что "шапочка" — жировое образование, однако всерьез эти наросты никто не изучал.

Группа ученых под руководством Андрея Козлова и Марка Забежинского закупила 100 мальков, за ростом которых и развитием у них "шапочек" наблюдали в течение 14 месяцев. В ходе слежения периодически отбирали особей для гистологического исследования кожи головы.

Разрастания кожи головы у рыбок фиксировались с двухмесячного возраста. В возрасте 6 месяцев "шапочки" были выявлены у 39,5 процентов рыбок, а в возрасте 14 месяцев — у 60,7 процентов рыбок. При гистологическом исследовании "шапочек" на разных фазах их развития отмечено избыточное разрастание элементов (гиперплазия) эпителия с увеличением числа светлых клеток, что продуцируют слизь. Также наблюдалось утолщение и отек дермы (соединительнотканного слоя кожи, расположенного под верхними слоями) с дальнейшим возникновением папилломатозных разрастаний и эпителиальных погружных выростов.

Дальнейшая задача ученых — выяснить, в чем биологическая сущность этих разрастаний. Возможны четыре варианта: "шапочки" могли бы являться пороком развития, реактивным пролифератом, доброкачественной опухолью или злокачественным новообразованием. Исследователи пришли к выводу, что природа изменений — опухолевая (в пользу этого предположения говорит прогрессирующий характер изменений на макро- и микроскопическом уровнях). Явных признаков злокачественности ученые не обнаружили.

"Таким образом, наиболее вероятным следует считать предположение, что "шапочки" у золотых рыбок являются генетически детерминированной доброкачественной опухолью кожи. Если это предположение верно, то такие "шапочки" можно считать первым описанным в литературе примером искусственного отбора на доброкачественную опухоль, что подтверждает наше предположение о возможной эволюционной роли данных образований. Это принципиальный научный результат, полученный впервые в мире в России", — говорит профессор СПбГУ, директор Санкт-Петербургского Биомедицинского центра Андрей Козлов.

Косвенное подтверждение гипотезы о возможной эволюционной роли опухолей Андрей Козлов видит в том, что, как это следует из последних научных работ в данной области, большая часть опухолей, которые возникают в организмах животных (в том числе человека) остаются доброкачественными, никогда не переходя в раковые. По мнению ученого, опухоли появляются не просто так: именно они оказываются в организме поставщиком избыточного клеточного материала, и, следовательно, являются "лабораторией" эволюции.

Хорошо иллюстрируют идею бобовые растения. Опухоли (клубеньки) на их корнях, появившиеся миллионы лет назад, оказались впоследствии замечательными "квартирками" нитрифицирующих бактерий, которые способны фиксировать атмосферный азот, ставший для растения дополнительным источником питания и сыгравший важнейшую роль в их освоении суши. Вот так из обычных опухолей возникли в специальные органы растения, без которых оно уже не может обходится.

Научный коллектив под руководством профессора Козлова обнаружил, что в опухолях активируются и работают эволюционно новые гены. Но эта тема заслуживает отдельной публикации. В настоящее время Андрей Козлов пишет книгу, обобщающую его исследования и выводы о роли опухолей в эволюции. Ученый уверен, что его теория предсказывает новые подходы к профилактике, диагностике и лечению опухолей. А пока результаты работы были изложены в статье "Гиперпластические разрастания на коже головы золотых рыбок — сравнительно-онкологические аспекты", что недавно опубликована в авторитетном отечественном научном журнале "Вопросы онкологии".


Источник: pravda.ru


Японские перепела выбирают для гнезда поверхность, подходящую по цвету к скорлупе их яиц, чтобы защитить будущее потомство от хищников, говорится в исследовании, опубликованном в журнале Current Biology.

Японский перепел фото википедияЯпонский перепел фото википедияУченые из британского университета Сент-Эндрюс пришли к выводу, что японские перепела (Coturnix japonica) выбирают место для гнезда, исходя из особенностей "камуфляжного" рисунка на скорлупе яиц, индивидуального для каждой самки.

"Мы обнаружили, что птицы специально выбирают такие участки поверхности, где яйца будут наименее заметны, причем каждая самка знает "свой" рисунок и цвет скорлупы, и учитывает его", — отметил один из авторов исследования Джордж Лоувелл (George Lovell).

Японский перепел гнездится на земле, поэтому для сохранности яиц и защиты их от хищников птицы в процессе эволюции выработали "камуфляжную" окраску скорлупы яиц.

Авторы статьи, наблюдая за перепелками, обнаружили, что яйца, отложенные одной и той же самкой на протяжении всей жизни, имеют похожий "камуфляж". Его рисунок индивидуален для каждой птицы: у некоторых яйца густо покрыты темными крапинками, у других — почти однотонные.

Ученые провели серию экспериментов в лабораторных условиях: они предоставили самкам, готовым отложить яйца, на выбор несколько небольших лотков с имитациями природного субстрата для сооружения гнезда, причем варианты заметно отличались цветом и фактурой. Птицы безошибочно выбирали именно тот лоток, в котором их "фирменный" камуфляжный рисунок оказывался наиболее хорошо замаскирован.

По словам Лоувелла, животные делают выбор, "исходя из знаний об окружающей среде и о своем фенотипе", чтобы повысить свои шансы на успешное размножение и выживание.


Источник: РИА Новости


Собака и волк генетически очень близки, но собака стала «другом человека», а волк — нет. Как полагают исследователи из Массачусетского университета в Амхерсте (США), всё дело в различном сенсорном опыте, который переживают маленькие волчата и щенки домашних псов к тому моменту, когда им пора социализироваться.

Маленькие волчата слишком рано начинают и заканчивают интересоваться окружающим миром, чтобы относиться к нему с той же беспечностью, что и домашние щенки. (Фото Joe McDonald.)Маленькие волчата слишком рано начинают и заканчивают интересоваться окружающим миром, чтобы относиться к нему с той же беспечностью, что и домашние щенки. (Фото Joe McDonald.)Как пишут исследователи в журнале Ethology, и волчата, и домашние щенки познают разные впечатления примерно в одно и то же время. То есть понимать запахи они начинают с двухнедельного возраста, звуки — с четырёхнедельного, полноценное зрение формируется только к шестой неделе. Однако между волчатами и щенками есть разница в так называемом периоде социализации. Когда у домашнего щенка наступает этот период, он бродит и без страха знакомится с окружением: всякий новый объект вызывает в нём любопытство, будь то человек, лошадь или кошка. Дружеское отношение, которое установилось в этот период, останется у собаки на всю жизнь. А вот когда исследовательский период заканчивается, всякий новый сигнал в первую очередь будет вызывать настороженность и страх.

У волчат тоже есть период социализации, но (это важно) если у собак он начинается в четырёхнедельном возрасте, то у волков — в двухнедельном. Волчата в этом возрасте ещё глухи и слепы, и единственное, чем они исследуют окружающий мир, — это нос. Когда волчата начинают слышать и видеть, первые же слуховые и зрительные сигналы вызывают у них страх и тревогу. Обычные же щенки своего хозяина, например, в период социализации и видят, и слышат, и чуют, а потому социальные связи с хозяевами (и, скажем, с их кошками) будут прочнее. Можно сказать, что у собак и волков характер взрослой особи определяется детскими впечатлениями — совсем как у человека.

Из этого следует один побочный, но важный практический вывод: если хотите, чтобы ваша собака души в вас не чаяла, присоединяйтесь к её воспитанию как раз в это исследовательско-социализирующее время, которое у щенков наступает к концу первого месяца. С волком такую штуку тоже можно проделать, но уж больно хлопотно, пожалуй, выращивать двухнедельного слепого и глухого волчонка без помощи его матери.

Кроме того, полученные данные ещё раз говорят о том, что дело не столько в числе общих генов, сколько в их управлении. Важно не то, какие гены работают, а то, когда и в какой последовательности они включаются.


Источник: КОМПЬЮЛЕНТА


Суббота, 19 Январь 2013 00:49

Крабы тоже чувствуют боль

Автор

Чувствуют ли крабы боль? Вопрос не такой простой, как кажется на первый взгляд. Боль следует отличать от простого рефлекторного ответа на раздражение. Чтобы понять, есть ли тут именно болевое переживание, нам нужно как-то проникнуть в чужую голову. А как попасть в крабью голову? Можно попробовать найти болевые рецепторы, но опять-таки — где и как искать их у членистоногих?..

Даже крабы знают, что такое «больно». (Фото Womble67.)Даже крабы знают, что такое «больно». (Фото Womble67.)Тем не менее исследователи из Белфастского Королевского университета (Великобритания) именно это и попробовали сделать. Они изучали морских крабов Carcinus maenas, которые довольно широко распространены по атлантическому и тихоокеанскому побережью. Эти крабы активны ночью, а днём отсиживаются по затенённым местам, прячась от чаек. Для опыта взяли 90 крабов и поместили их в специальное место с двумя укрытиями. После того как крабы разбрелись по убежищам, половине из них (тем, что сидели в одном из укрытий) устроили встряску электрическим током.

После первой экзекуции крабы прятались в то же самое убежище, где их били током, однако во второй раз они уже спешили в другие места. Боле того, некоторые вообще предпочитали «электрическому» убежищу опасные освещённые участки. Крабов несколько раз забирали из аквариума и сажали в него снова, но после двух первых ударов током крабам вдруг понравилось оставаться на виду. В статье, опубликованной в Journal of Experimental Biology, исследователи делают вывод, что это нечто большее, чем просто рефлекторное избегание неприятных ощущений. Боль запоминается с первого раза, и учёные полагают, что именно боль могла заставить членистоногих столь быстро усвоить, где им нельзя находиться.

Ранее эта же группа исследователей ставила похожие эксперименты с креветками и раками-отшельниками, и результаты были такими же. То есть очевидно, что все десятиногие раки, к которым относятся и обычные речные раки, и морские омары, могут испытывать боль. Любопытно, что до сих пор чувство боли ограничивали в лучшем случае рыбами: членистоногие, как считалось, к боли нечувствительны. Теперь эту точку зрения придётся пересмотреть. И каждый любитель варёных раков, опуская их в кипящую воду, может весьма живо и на вполне научных основаниях представить себе ощущения своей будущей еды.


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Определены крайние точки земного притяжения

20-08-2013 Просмотров:10198 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

Определены крайние точки земного притяжения

Хотите быстро сбросить вес? Не нужно возиться с диетами — достаточно переселиться в более высокое место. Вы почувствуете себя легче благодаря колебаниям земной силы тяжести, которые, как показала новая карта,...

Ген решает, голова или хвост

18-05-2011 Просмотров:12527 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Ген решает, голова или хвост

Изучение регенерации планарии поможет на генетическом уровне разобраться в механизмах регенерации тканей человека, считают ученые. Планария (фото Википедия)Человек не умеет самостоятельно отращивать себе части тела, а плоский червь планария делает это...

Город в Австралии поглощает «волосатая паника»

25-02-2016 Просмотров:7315 Новости Экологии Антоненко Андрей - avatar Антоненко Андрей

Город в Австралии поглощает «волосатая паника»

Города Вангаратта на северо-востоке штата Виктория в Австралии постигло необычное бедствие. Всю округу заполонил высушенный сорняк, перекати-поле, Panicum Effusum, эту траву местные жители называют «волосатой паникой» (hairy panic). Сухую траву в...

Древний гигантский гусь использовал крылья для драки

16-01-2017 Просмотров:5867 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Древний гигантский гусь использовал крылья для драки

Палеонтологи из Италии изучили найденные на территории страны остатки ископаемой птицы, гигантского гуся Garganornis ballmanni, обитавшего здесь примерно 6-9 миллионов лет назад. Статья опубликована в журнале The Royal Society Open...

Названа птица с самым дальним ежегодным перелётом

11-10-2010 Просмотров:12122 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Названа птица с самым дальним ежегодным перелётом

Группа датских, исландских и американских орнитологов зарегистрировала самый дальний ежегодный перелёт в мире. Миниатюрная птичка "сделала" предыдущего чемпиона примерно на 7 тысяч километров. "Нынешние чемпионы передвигаются окольными путями, растянувшимися на тысячи...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.