Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Нейробиологии


Новости Нейробиологии (46)

Активность генов, определяющих ход биологических часов, зависит от активности «часовых» нейронов.

Гипоталамус, один из важных центров, связывающих суточные ритмы нейронов с эндокринной системой (рисунок Roger Harris)Гипоталамус, один из важных центров, связывающих суточные ритмы нейронов с эндокринной системой (рисунок Roger Harris)Наши суточные ритмы строятся множеством генов, функциональность которых меняется в зависимости от того, ночь на дворе или день. Эти гены переключают метаболизм, иммунитет, физиологические показатели и деятельность мозга в соответствующий режим, дневной или ночной. Но как сами гены узнают о том, какое на дворе время суток?

Кроме циркадных генов, существуют и циркадные нейроны, активность которых меняется в течение суток. Не так давно исследователи из Нью-Йоркского университета (США) обнаружили, что жизнедеятельность таких нейронов совпадает с колебаниями синтеза в них белка калиевых ионных каналов (Ir). В новой работе, опубликованной в журнале Current Biology, учёные описывают, как активность нейронных часов влияет уже на целый ряд циркадных генов.

Эксперименты проводились на плодовых мушках. Когда вечером, в часы снижения активности «часовых» нейронов, их искусственным образом стимулировали, то вслед за этим в чувство приходили и циркадные гены: они начинали работать так, будто настало утро. И наоборот, когда утром активность мушиных нейронов искусственно подавляли, вслед за этим засыпали и гены.

Главное, как подчёркивают авторы работы, удалось установить прямое соответствие между электрохимической активностью нейронов и активностью генов. Можно сказать, что молекулярно-генетическая часть биологических часов зависит от электрохимической батарейки — циркадных нейронов.

Исследователи сообщают, что им удалось определить последовательность в ДНК циркадных генов, от которой зависит чувствительность генов к нейронным сигналам. Оказалось, что эта регуляторная последовательность связывает белки, управляющие активностью генов в нейронах обучения и памяти. Так что в будущем учёные надеются выяснить не только как циркадные нейроны влияют на циркадные гены, но и как это связано с высшими когнитивными функциями.

 


 

Источник: КОМПЬЮЛЕНТА


 

Учёные проанализировали молекулярно-генетические отличия мозга человека от мозга обезьян.

Хотя у шимпанзе мозг в два раза меньше, чем у человека, учёные полагают, что главные отличия нашего мозга от обезьяньего — качественные, а не количественные (фото Bettmann / Corbis)Хотя у шимпанзе мозг в два раза меньше, чем у человека, учёные полагают, что главные отличия нашего мозга от обезьяньего — качественные, а не количественные (фото Bettmann / Corbis)Исследователи из Калифорнийского университета в Лос-Анджелесе (США) сумели подтвердить гипотезу о том, что развитие мозга приматов не столько увеличивало его, сколько усложняло его архитектуру. Учёные использовали образцы, взятые у человека, шимпанзе и макаки-резус из трёх зон: лобных долей, гиппокампа и полосатого тела. (В будущем авторы работы собираются повторить исследования с другими участками мозга.) Сравнивали, однако, не саму нервную ткань, а активность генов, которую оценивали по спектру мРНК.

Как пишут исследователи в статье, опубликованной в журнале Neuron , наибольшие различия были найдены в лобных долях, наименьшие — в древнем полосатом теле. У человека, по сравнению с обезьянами, во много раз усложнилась схема генетической активности в нейронах лобных долей. И в первую очередь это касается генов, отвечающих за синаптическую пластичность , которая лежит в основе обучаемости и вообще высших когнитивных функций.

Особенное внимание исследователей привлёк ген CLOCK, который считается главным регулятором циркадного ритма, а нарушения в его работе сопутствуют психоневрологическим болезням вроде биполярного расстройства . По-видимому, у CLOCK есть дополнительные функции, не связанные с суточным ритмом, — учёные полагают, что CLOCK организует работу разных генетических комплексов, в том числе тех, что обеспечивают наше отличие от остальных приматов.

Также по сравнению с обезьянами у человека более тесно взаимодействуют гены, управляемые FOXP1 и FOXP2. Об этой паре обычно вспоминают, когда речь заходит о способности говорить и понимать чужую речь.

Гены, отвечающие за размер мозга, в поле зрения исследователей не попали. То есть эволюционный скачок от обезьяны к человеку произошёл, очевидно, за счёт усложнения молекулярных взаимодействий между генами, с помощью изменений в активности генов-операторов, которые этими взаимодействиями управляют. А уж молекулярно-генетические изменения повлекли за собой перестройки в архитектуре.

Но совсем сбрасывать со счетов изменения в объёме мозга нельзя: всё-таки у шимпанзе он в два раза меньше, чем у человека. Но при этом учёные делают вывод, что главные отличия человеческого мозга от обезьяньего относятся всё же к характеристикам качественным, а не количественным.


Источник: КОМПЬЮЛЕНТА


 

Исследователи выяснили, что нейроны головного мозга взаимодействуют между собой легче и надёжнее, если они входят в группы по 40–50 клеток.

Нейронная сеть (фото Eran Lahav) Нейронная сеть (фото Eran Lahav)Среди исследователей головного мозга бытует мнение, что он похож на пластилин: мол, он такой же мягкий и пластичный и так же легко принимает любую форму, а его нейроны свободны соединяются с чем угодно и как угодно. А вот Генри Маркрем из Швейцарского федерального института в Лозанне предлагает другое сравнение: мозг — это конструктор «Лего». Вы можете «конструировать» что угодно, но только из элементарных нейронных комплексов-«кирпичиков».

Г-н Маркрем и его команда разработали метод одновременного «прослушивания» электрической активности сразу нескольких отдельных нейронов в мозгу с использованием сверхтонких игл. На двухнедельных крысах было поставлено свыше 200 экспериментов, и в каждом случае авторы записывали «переговоры» внутри группы из 12 нейронов. Для этого они возбуждали импульсом извне один нейрон и следили за откликами его соседей, чтобы построить карту соединений между клетками.

Если бы мозг был похож на «пластилин», то каждый нейрон имел бы равные шансы на установление связи с любым другим нейроном. Но это не так. Оказалось, что для двух нейронов вероятность передать сигнал друг другу (а также прочность установившегося «медиамоста») прямо пропорциональна числу их общих соседей. Учёные смоделировали на компьютере систему из 2 000 нейронов и воспроизвели на ней свой эксперимент на крысах. Результаты получились те же.

Согласно сформулированному «правилу соседей», удалось определить функциональную группу нейронов в 40–50 клеток. Эти 40–50 нейронов и образуют элементарный мозговой «Лего-кирпич».

Отчёт об исследовании опубликован в журнале PNAS.

«Характер взаимодействия этих элементарных структур между собой индивидуален, поэтому люди воспринимают одни и те же вещи, но запоминают по-разному», — поясняет Генри Маркрем. По словам учёного, комбинация таких структур может представлять собой тот нервный «носитель», на который в течение всей жизни записывается информация. 


Источник: КОМПЬЮЛЕНТА


Нейроны не могут самостоятельно оформить текущие переживания в долгую память. На помощь им приходят астроциты, которые снабжают нейроны дополнительным источником энергии.

Нейроны головного мозгаНейроны головного мозгаНейрофизиологи прояснили важный этап формирования в мозге долговременной памяти. Оказывается, чтобы информация о событии перешла из кратковременного отпечатка в длительное хранилище, нейронам необходим лактат – соль молочной кислоты. А получают его нейроны из соседних глиальных клеток, которые за свою звездообразную форму получили название астроцитов. Долгое время считали, что их единственная роль состоит в поддержании формы мозговой ткани, создании окружающей среды для нейронов. Потом узнали, что они играют важную роль в метаболизме нервных клеток. А в последнее время стало понятно, что астроциты участвуют в информационных процессах мозга.

Доказательство на крысах

Кристина Альберини (Cristina Alberini) и ее коллеги из медицинского факультета (Mount Sinai School of Medicine) Нью-Йорского университета показали на крысах роль лактата в памяти. Лабораторных грызунов обучали избегать камеры: в ней животные получали разряд электрического тока через решетчатый пол. Известно, что память об опасной камере хранится в мозге в течение нескольких недель, и крыса избегает заходить в помещение.

Ученые показали, что через некоторое время после обучения в пространстве вокруг нейронов гиппокампа крысы почти в два раза возрастает содержание лактата. Для этого биологи использовали метод прижизненного микродиализа (в область гиппокампа вживляют миниатюрную стеклянную канюлю и периодически исследуют ее содержимое).

Без лактата память короткая

Лактат поступает в нейроны из астроцитов, в которых он образуется как продукт расщепления гликогена. Это анаэробный (бескислородный) путь получения энергии. Он хорошо знаком людям, которые связаны с физическим трудом, а также спортсменам. Недостаток кислорода в крови приводит к избытку в мышечной ткани молочной кислоты, что вызывает порой довольно сильную боль.

Через клеточную мембрану лактат проходит с помощью специальных транспортных белков. В нейронах лактат служит источником энергии, окисляясь до пирувата.

Если перекрыть транспорт лактата из астроцитов в нейроны, то у крыс развивается амнезия. Чтобы подтвердить это экспериментально, ученые или блокировали расщепление гликогена, или удаляли из игры белки-транспортеры. Сразу после обучения крысы помнили об опасной камере, а через сутки – забывали. Следовательно, кратковременная память от блокировки не страдает, но в долговременную форму не переходит. Амнезия обратима: если лактат ввести непосредственно в мозг, то крысы вспоминают про опасность и избегают камеры с током. Интересно, что «кормление» нейронов глюкозой или другими источниками энергии к такому впечатляющему эффекту, как «кормление» их лактатом, не приводит.

Кратковременная и долговременная память различаются по своим механизмам, пишут авторы статьи в журнале Cell. Первая обеспечивается уже синтезированными белками и не требует специальной работы генов. А для долговременной памяти нужна активация сначала группы ранних генов, затем поздних генов и, в конечном счете, синтез новых белков. Все это требуется для изменения работы синапсов. В общем, долговременная память — очень энергозатратный процесс.

Средство для усиления синапсов

Измеряя электрическую активность нейронов гиппокампа, ученые обнаружили, что лишение клеток лактата делает невозможным так называемую длительную потенциацию – усиление синаптической передачи. По общепринятому мнению, именно усиление лежит в основе синаптической пластичности и долговременной памяти. Перестройка синапсов происходит только в присутствии лактата. Конечно, клеткам мозга необходимы кислород и глюкоза (на изменении потребления того и другого основаны современные методы функционального сканирования мозга). Но чтобы память закрепилась надолго, этого недостаточно, нужен еще и лактат. Кстати, ученые предполагают, что лактат используется не только как источник энергии, но и для координации нейронов и астроцитов между собой.

«Это неизвестный ранее механизм формирования долговременной памяти», — говорит Кристина Альберини. Она подчеркивает, что долговременная память – результат согласованной работы нейронов, астроцитов, а, возможно, и других клеток нервной ткани. Открытие важно не только для понимания работы мозга, но и для борьбы с нейродегенеративными заболеваниями и с возрастным ослаблением памяти. Ученые предполагают, что снижение лактатного транспорта – один из факторов, ведущих к гибели нейронов. Открывается новый путь для поиска лекарств. Впрочем, тропинка узкая — избыток лактата в мозге также ведет к патологии.


Источник: Infox.ru


 

Страница 4 из 4

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

"Стильные" и "волшебные". Каких животных открыли за год

09-01-2023 Просмотров:1155 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

"Стильные" и "волшебные". Каких животных открыли за год

Уходящий год принес множество открытий в зоологии. Пчела "с собачьей мордой", лягушка-тапир, волшебный губан и ряд других удивительных существ раньше на глаза человеку не попадались. О самых интересных животных, обнаруженных...

Зоологи открыли новые виды мельчайших рептилий

18-02-2012 Просмотров:10036 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Зоологи открыли новые виды мельчайших рептилий

Группа немецких и американских учёных обнаружила на островах севера Мадагаскара четыре новых вида карликовых хамелеонов. Первооткрыватели считают, что эти ящерицы могут быть самыми маленькими рептилиями в мире. Как сообщает Wired, все...

Микробиологи вычислили историю иммунитета

30-12-2010 Просмотров:13688 Новости Эволюции Антоненко Андрей - avatar Антоненко Андрей

Микробиологи вычислили историю иммунитета

Исследование взаимоотношений бактерий и вирусов-бактериофагов помогло учёным понять, как появилась простейшая иммунная система. "Тщательное исследование фрагментов чужого кода в геномах различных бактерий поможет найти их слабые места, а значит, создать новые...

Лапы личинок свинушек сочленены между собой зубчатым соединением

15-09-2013 Просмотров:9583 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Лапы личинок свинушек сочленены между собой зубчатым соединением

Насекомым, у которых огромные прыжки — один из главных способов перемещения, приходится решать серьёзную механическую задачу. Кузнечики, блохи и прочие прыгуны преодолевают в прыжке расстояние, во много раз превышающее длину...

Какую музыку любят попугаи?

30-12-2012 Просмотров:13455 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Какую музыку любят попугаи?

Исследователи из Университета Линкольна (Великобритания) попробовали определить музыкальные вкусы серых африканских попугаев (жако). Выбрав трёх птиц, двух самцов и одну самку, они дали им послушать набор ритмичных песен из репертуара...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.