Мир дикой природы на wwlife.ru - Новости Ботаники
Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Ботаники


Новости Ботаники (60)

Вопреки общепринятым представлениям, площадь лесов в Европе растет, объем рубок меньше прироста древесины, хотя каждое пятое дерево повреждено или погибло и большая часть лесов испытывает антропогенное воздействие.

News13a6a1WWF опубликовал десять фактов из доклада «Состояние лесов Европы 2011 г», подготовленным Европейской экономической комиссией ООН, Продовольственной и сельскохозяйственной организацией ООН и секретариатом Министерской конференции по защите лесов Европы.Авторы доклада включают в Европу Российскую Федерацию, леса которой составляют 80% всех лесов стран-участниц Министерской конференции по защите лесов Европы.

    1. Площадь лесов в Европе растет.

    В Европе леса покрывают 1,02 млрд га, что составляет 25% площади всех лесов планеты. В отличие от Африки и Южной Америки, где площадь лесов стремительно сокращается, за последние 20 лет площадь лесов Европы растет, в среднем, на 0,8млн га каждый год. За этот же период запас древесины в лесах Европы вырос на 8,6 млрд куб. м., что соответствует запасу древесины в лесах Франции, Германии и Польши вместе. Темп роста запасов древесины выше, чем роста площади лесов, а это означает, что в лесах Европы вырос запас древесины на единице площади. Как правило, это результат интенсификации лесопользования – грамотного ухода за лесом. Некоторые европейские страны получают с 1 га пригодного для рубок леса в 17 раз больше древесины, чем Россия.

    2. Леса Европы поглощают 10% эмиссии СО2 европейскими странами.

    В докладе показана весьма значительная роль лесов в аккумуляции углерода за счет превращения его в древесную биомассу. В среднем в Европе, включая Россию,леса поглощают около 10% СО2. «Но для России за последние пять лет поглощение CO2 лесами составляет более 20%, – говорит Алексей Кокорин, руководитель программы WWF России «Климат и энергетика». – Из-за активных рубок леса в Советском Союзе, возрастная структура леса в нашей стране сместилась в сторону более молодых деревьев, которые лучше поглощают СО2».

    3. Каждое пятое дерево в лесах Европы повреждено или погибло.

    Утрата деревьями листвы и хвои – ключевой индикатор ухудшения состояния и жизнеспособности дерева. По оценке, проведенной в 2009 г., примерно у 20%деревьев листьев и хвои было меньше нормы, а 25% деревьев были признаны серьезно поврежденными или погибшими.

    4. 11 млн га, или 1% лесов Европы серьезно повреждены насекомыми-вредителями и болезнями.

    Насекомые-вредители и болезни – основные факторы, наносящие ущерб европейским лесам, за ними следует повреждение дикими копытными и скотом. 1%территории лесов Европы серьезно поврежден (6% без учета лесов Российской Федерации). «К числу наиболее опасных насекомых-вредителей для нашей страны можно отнести, например, короеда-типографа и непарного шелкопряда. Так, мощная вспышка короеда-типографа возникла сейчас в ельниках московского региона, а непарный шелкопряд только в Челябинской области повредил более 285 тыс. га лесов. Однако примечательнее всего то, какой вклад в европейскую статистику вносят российские лесные пожары», - говорит Николай Шматков, координатор проектов по лесной политике WWF России. Повреждение лесов в результате пожаров фиксируется практически только на территории Российской Федерации, на юго-западе и северо-востоке Европы.

    5. Объем рубок существенно ниже прироста древесины

    Почти во всех европейских государствах среднегодовой прирост древесины существенно выше годового объема рубок, используется около 40% объема годового прироста лесов. В Российской Федерации объем заготовки леса упал с 41% (в 1990г.) до приблизительно 20% в настоящее время (эта тенденция сохраняется с 2000г.). Без учета Российской Федерации, в Европе наблюдается рост использования годичного прироста древесины с 58% в 1990 г. до 62% в 2010 г.

    6. Европа остается одним из крупнейших в мире регионов-производителей древесины

    В 2010 г. в Европе было произведено более 578 млн куб. м. круглых лесоматериалов. Леса Европы продолжают оставаться основным источником круглых лесоматериалов в мире. Во многих европейских странах наблюдается резкий рост спроса на топливную древесину. «Интересно, что при всеобщей в Европе тенденции к развитию альтернативной энергетики, в России отмечается крайне низкий уровень производства энергии из древесины», – отмечает WWF.

    Кроме того, согласно данным доклада, основными проблемами управления лесами в России являются низкая стоимость круглых лесоматериалов при больших запасах сырья и низкий уровень (в пересчете на единицу площади) рыночного использования недревесных ресурсов и услуг, связанных с лесом. Если Европа зарабатывает на 1га пригодного к рубкам леса в среднем 146 евро, Россия – 5 евро.

    7. В Европе растет площадь охраняемых лесов

    Охраняемые леса важны для сохранения и восстановления биоразнообразия, а также для охраны ландшафтов и поддержания рекреационных функций лесов. Площадь охраняемых лесов в Европе на протяжении последних 10 лет растет приблизительно на 0,5 млн га ежегодно благодаря политике по сохранению биоразнообразия. Без учета Российской Федерации, около 10% лесов Европы имеют охранный статус в целях, главным образом, сохранения биоразнообразия, и еще 9% лесов охраняются в целях сохранения ландшафтов – всего охранный статус имеют 39 млн га лесов. В Российской Федерации охранный статус имеет сравнительно небольшая площадь охраняемых лесов – 17 млн га.

    8. Большая часть ландшафтов Европы испытывает антропогенное воздействие

    Около 70% лесов Европы относятся к полуестественным как результат многих веков воздействия со стороны человека. Малонарушенные лесные территории составляют около 26% лесов и расположены преимущественно в отдаленных и труднодоступных районах восточной и северной Европы и на территории Российской Федерации. Плантации занимают 4% лесной территории, они расположены в основном в западной части Центральной Европы. «До сих пор последние в Европе малонарушенные старовозрастные леса, гордость России, рассматриваются у нас только лишь как «резерв» лесозаготовительной промышленности. Над некоторыми из них, например, над Двинско-Пинежским массивом в Архангельской области, нависла реальная угроза рубки», – говорит Николай Шматков.

    9. Работников лесного хозяйства становится все меньше

    В лесном секторе Европы занято приблизительно 4 млн чел., включая работников, занятых на перерабатывающих и целлюлозно-бумажных предприятиях.Наблюдается общая тенденция к сокращению числа людей, занятых в лесном секторе.Большое значение имеет старение рабочей силы и растущие трудности по привлечению в сектор новых работников. Работа в лесном секторе все еще связана с высоким уровнем риска для жизни и здоровья, ситуацию не удалось кардинально изменить за прошедшее десятилетие.


Источник:  infox.ru


 

За последние 11 лет на острове в Индийском океане учёные нашли самого маленького в мире примата, а также более шести сотен других интересных представителей флоры и фауны. Все они стали героями последнего доклада Всемирного фонда дикой природы.

Пожалуй, главный герой обзора от WWF – Microcebus berthae — бертов мышиный лемур. Длина туловища рекордного зверька составляет всего 92 миллиметра, а весит он 30 граммов (фото Herald Schuelz/WWF/PA Wire)Пожалуй, главный герой обзора от WWF – Microcebus berthae — бертов мышиный лемур. Длина туловища рекордного зверька составляет всего 92 миллиметра, а весит он 30 граммов (фото Herald Schuelz/WWF/PA Wire)    Собственно, доклад (PDF-документ) стал не столько перечислением, сколько напоминанием, что многие из них уже являются исчезающими видами. Из-за вырубки лесов, бедности отдельных районов страны и нелегальной торговли дикими животными и растениями эндемики постепенно исчезают. Напомним, что 70% видов флоры и фауны Мадагаскара не встречаются нигде в мире.Эта лягушка (вид Boophis bottae), конечно, не столь прозрачная как её хиросимские собратья, но зато «сделана» природой. 4-сантиметровое создание живёт на высоте 800 метров над уровнем моря (фото Axel Strauss/WWF)Эта лягушка (вид Boophis bottae), конечно, не столь прозрачная как её хиросимские собратья, но зато «сделана» природой. 4-сантиметровое создание живёт на высоте 800 метров над уровнем моря (фото Axel Strauss/WWF)

    В период с 1999 по 2010 годы на уникальном острове Индийского океана были найдены неизвестные науке: 41 вид млекопитающих, 61 — рептилий, 69 — земноводных, 42 — беспозвоночных, 17 — рыб и ещё 385 новых видов растений.

Не менее интересна змея Liophidium pattoni, чёрную спину которой украшают ярко-розовые ромбы (фото Sebastian Gehring/WWF)Не менее интересна змея Liophidium pattoni, чёрную спину которой украшают ярко-розовые ромбы (фото Sebastian Gehring/WWF)    Среди них оказались самоуничтожающаяся пальма и самый крупный паук, плетущий ловчие сети золотого цвета.

    Представители Всемирного фонда дикой природы не занимаются изучением новых видов, однако они помогают местным жителям уживаться бок о бок с уникальными существами, а также создают программы по сохранению животных и растений.

    Кстати, мы также рассказывали о том, как не так давно был обнаружен чрезвычайно редкий хищник Мадагаскара.Ещё один любопытный «экспонат» — Phelsuma borai — описанный в 2009 году геккон, меняющий цвет. Его кожа может почти мгновенно превратиться из коричневой в ярко-голубую. Ещё было найдено 11 новых видов хамелеонов, на снимках ниже некоторые из них: Calumma tarzan, Calumma crypticum и Furcifer timoni (фото Frank Glaw/Patrick Schonecker/Mark Creeten/Axel Strauss/WWF)Ещё один любопытный «экспонат» — Phelsuma borai — описанный в 2009 году геккон, меняющий цвет. Его кожа может почти мгновенно превратиться из коричневой в ярко-голубую. Ещё было найдено 11 новых видов хамелеонов, на снимках ниже некоторые из них: Calumma tarzan, Calumma crypticum и Furcifer timoni (фото Frank Glaw/Patrick Schonecker/Mark Creeten/Axel Strauss/WWF)


Источник: MEMBRANA


Кактусы стали успешной и разнообразной группой растений по эволюционным меркам совсем недавно — 5−10 млн. лет назад. По мнению ученых, к процветанию их привело резкое падение уровня углекислого газа в атмосфере, сухой и прохладный климат.

КактусыКактусыГруппа ученых под руководством доктора Моники Аракаки (Monica Arakaki) из Университета Брауна (США) выяснила, что кактусы появились на нашей планете приблизительно 35 миллионов лет назад, а пика разнообразия достигли 5−10 млн.лет назад. Одновременно с кактусами появились другие виды суккулентов, например, алое, очитки, хавортия. Процветание этих растений исследователи связывают с изменением климата. В то время, по палеоклиматическим данным, произошло резкое похолодание, уменьшилось количество осадков и резко снизилось содержание углекислого газа в атмосфере. Многие растения не справились со стрессом. А как раз к этим условиям кактусы и другие суккуленты оказались прекрасно адаптированы. Ведь эти растения используют особый САМ-путь фотосинтеза, который позволяет им поглощать углекислый газ из атмосферы ночью.Таким способом растения экономят воду, поскольку ночью листья испаряют гораздо меньше влаги, чем днем.

Как менялся климат

Чтобы узнать, когда появились кактусы, ученые провели филогенетический анализ. Для этого они проанализировали хлоропластные ДНК нескольких видов кактусов и их ближайших родственников. Оказалось, что первые представители семейства кактусовых появились приблизительно 35 миллионов лет назад. Но потом, в течение нескольких десятков миллионов лет, они оставались практически незаметными и встречались очень редко. И только 5−10 млн. лет назад стали занимать доминирующие позиции. Их ареал практически совпадал с современным – это Северная Америка, южная Африка и Южная Америка.

«В конце миоцена примерно 7 млн. лет назад, после довольно теплого периода произошло похолодание. Об этом свидетельствует анализ изотопов кислорода древних фораминифер. Правда, почему климат стал вдруг меняться, так и остается загадкой. В это же самое время уменьшилось количество осадков, и климат стал засушливым – об этом также говорят палеоданные», — пишут авторы.

Но к этим изменениям прибавилось еще одно, и именно оно и сыграло, по-видимому, ключевую роль в дальнейшем процветании кактусов: по каким-то причинам резко снизилось содержание углекислого газа в атмосфере. По данным, которые приводит в своей работе Аракаки, снижение произошло с 425 ppm до 200 ppm (сейчас по последним данным концентрация углекислоты в атмосфере составляет 390 ppm).

Господство суккулентов

Это резкое уменьшение концентрации углекислого газа стало катастрофическим для многих растений. Особенно, как объясняет Аракаки, для обитателей сухого климата. Поскольку, по словам ученых, в таких условиях недостаток влаги растения испытывают еще сильнее. Многие растения не выдержали такого испытания, и их место заняли более успешные виды, которые смогли к этим условиям адаптироваться. Ими как раз и оказались кактусы и другие суккуленты с их особым способом фотосинтеза (САМ-путем, при котором эффективно экономится испарение влаги). «Мы считаем, что во время позднего миоцена появилось много новых местообитаний. Их освободили растения, которые не смогли приспособиться к новым условиям. Эти местообитания благополучно заняли кактусы и другие суккуленты», — считают авторы работы.

Их статью можно прочитать в последнем номере журнала PNAS.

 


 

Источник: Infox.ru


 

Британские ботаники из комплекса Королевских ботанических садов в Кью нашли в горах на востоке Бразилии необычное растение с тонкими серебристо-серыми листьями. Находка получила статус нового вида.

Энхолириум (Encholirium)Энхолириум (Encholirium)Новый вид растения из семейства бромелиевые (Bromeliaceae) рода Энхолириум (Encholirium) обнаружили на востоке Бразилии в штате Минас-Жерайс в районе горной гряды Серра-ду-Шино ученые из комплекса Королевских ботанических садов в Кью. Растение назвали Encholirium agavoides. Этот вид встречался исключительно на каменистых участках склонов на высоте более 1000 метров. Ботаники обнаружили всего несколько популяций вида на расстоянии 10−12 километров друг от друга. По словам ученых, энхолириум агавовидный имеет листья необычного серебристо-серого цвета, по своей форме напоминающие листья агавы.

По последним данным, на нашей планете растет примерно 350 тысяч видов растений. Но описаны далеко не все виды, а только 287 тысяч. Ботаники не перестают находить новые растения – ежегодно к списку уже известных видов прибавляется до 2000 новых. Больше всего находок в тропических и влажных экваториальных лесах. Недавно ученые из Королевских ботанических садов в Кью обнаружили на Мадагаскаре и на юге Африки множество интересных новых растений. Например, кофейное дерево с гигантскими зернами кофе, дерево из семейства бобовые с огромными стручками длиной больше 30см.


Источник: Infox.ru


Щучка дернистая, покрывающая летом побережье Антарктического полуострова   и островов у берегов Антарктиды, усваивает азот особым способом. По мнению   ученых, именно он позволит щучке занять в ближайшее время ведущие позиции   в регионе.

Научная станция Британской Антарктической службы на острове СайниНаучная станция Британской Антарктической службы на острове Сайни    Ученые из Британской антарктической службы и нескольких университетов   под руководством доктора Пола Хилла (Paul W.Hill) из Университета Бангора   обнаружили уникальный способ, с помощью которого сосудистое растение (щучка   антарктическая, она же — дернистая) на одном из островов у берегов Антарктиды   усваивает азот. Щучка не ждет, пока микроорганизмы преобразуют органику   в минеральные компоненты (этот процесс происходит в этих широтах очень   медленно). Она поглощают сразу белки – короткие пептиды. Всегда считалось, что   это умеют делать только грибы и животные, а в растительном мире — мхи.

    Уникальная способность позволила щучке захватить доминирующие позиции на   острове Сайни (это один из Южных Оркнейских островов), где ученые проводили свои   исследования, и практически вытеснить мхи.

Зеленая Антарктида

    «Многие считают, что Антарктида всегда полностью покрыта снегом и льдом. Но   летом на Антарктическом полуострове и островах, окружающих сам континент, снег   тает, и там появляются растения – мхи и два вида сосудистых растений — Colobanthus quitensis (колобантус кито) и Deschampsia Antarctica (щучка антарктическая)», — говорит Пол Хилл.

    По словам ученых, в течение последних 50−ти лет климат на побережье   Антарктики теплеет быстрее, чем где-либо на Земле. Летние значения температуры   повысились там примерно на один градус Цельсия, и летний период стал более   продолжительным. Естественно, что на эти изменения сразу отреагировали   растения.Лето на острове СайниЛето на острове Сайни

    Обычно в прибрежных экосистемах острова Сайни доминировали мхи. Но в   последние годы ученые наблюдают другую тенденцию: на ведущие позиции выходят   злаки. Хотя мхи Sanionia uncinata все равно встречаются довольно часто и,   как правило, именно они первыми заселяют новую территорию. По мере того как они   погибают, формируется небольшой слой почвы. А уже там могут спокойно расти   другие поселенцы. Правда, в этом случае возникает проблема – конкуренция за   ресурсы: питательные вещества и свет, необходимый для фотосинтеза.

    Конкурентную борьбу удалось выиграть щучке антарктической. Ее острые листья   проникают в мох, так что им легко достается нужное количество света. С   питательными веществами, правда, дело обстоит сложнее.

Новый способ усвоения азота

    Растениям для жизни необходим азот. Но усваивать они способны только его   неорганические соединения, например, аммиачные соли и соли азотной кислоты. А   органический азот могут преобразовать в минеральные соединения только почвенные   микроорганизмы. Некоторые растения для этого образуют с ними симбиоз. Правда,   по словам Хилла, в Антарктиде растения этого не делают. Но сосудистые растения   как-то с этой проблемой справились. Чтобы понять, как, доктор Хилл и его коллеги   провели следующий эксперимент: они ввели в почву особые меченые формы   органического азота и наблюдали, как растения их усваивают.

    «Способность растений усваивать азот на самых первых стадиях минерализации –   это ключ к успеху. В своих исследованиях мы показали, что в Антарктиде щучка   антарктическая поглощает азот через свои корни в виде коротких пептидов. Это   самая начальная стадия преобразования белков в почве. Таким способом эти   растения усваивают азот в три раза быстрее, чем происходит усвоение аминокислот,   нитратов или солей аммония. И в 160 раз быстрее, чем это делают мхи, с которыми   этот злак конкурирует», — пишут авторы исследования. По их мнению, если   температура в Антарктике будет повышаться еще больше, тогда и органика будет   разлагаться быстрее. Это даст дополнительные преимущества щучке и, похоже, этот   злак продолжит свою экспансию на побережье.

    «Обнаруженный нами быстрый путь усвоения азота имеет значение не только для   экосистем Антарктиды. Если, окажется, что растения в умеренных и тропических   широтах могут действовать таким же способом, то это можно использовать для   создания новых технологий в сельском хозяйстве», — говорит один из авторов   исследования Кевин Ньюсэм (Kevin Newsham) из Британской антарктической службы.

    Более подробно о том, как злаки конкурируют с мхами в Антарктике и усваивают   азот, можно прочитать в статье «Vasclular plant success in a warming   Antarctic may be due to efficient nitrogen acquisition», опубликованной в   последнем номере журнала Nature Climate Change.


Источник:  Infox.ru


 Ученые открыли общий механизм межклеточной коммуникации. У животных он задействован в работе мозга, а у цветковых растений — в размножении.

Резухови́дка Та́ля (лат. Arabidópsis thaliána) Википедия Резухови́дка Та́ля (лат. Arabidópsis thaliána) ВикипедияМеждународная команда исследователей выяснила, что пыльца растений, содержащая мужские половые клетки, взаимодействует с пестиком по тому же самому биохимическому пути, что и нервные клетки в мозге животных. Это не только добавляет знаний о размножении растений, но и убедительно доказывает сходство всего живого.

Что происходит в цветке

При опылении цветковых (покрытосеменных) растений пыльцевое зерно попадает на рыльце пестика и при благоприятных условиях прорастает. Из него тянется пыльцевая трубка, которая доходит до завязи пестика и служит каналом для проведения мужских половых клеток – спермиев. Достигая семяпочки (яйцеклетки) в завязи, один спермий оплодотворяет ее, а другой, сливаясь с полярными тельцами, образует эндосперм – запасающую ткань семени. Такой процесс называют двойным оплодотворением. На рост пыльцевой трубки влияют такие факторы, как концентрация ионов водорода (рН) и ионов кальция. Но суть их влияния до сих пор не была известна.

Универсальные каналы

Группа Хосе Фейджо (José Feijó), профессора Лиссабонского университета (Universidade de Lisboa), изучала данный процесс у табака и резуховидки Таля (Arabidópsis thaliána). Ученые обнаружили, что рост пыльцевой трубки у этих растений обеспечивают те же самые кальциевые каналы, что и в нейронах. Это глутаматные рецепторы – у растений их назвали глутамат-подобными рецепторами GLR (Glutamate receptors-like). Известно, что они играют ключевую роль в проведении нервного импульса, в работе синапсов и, в конечном счете, в процессах обучения и памяти. Их патологию считают причиной многих заболеваний: рассеянного склероза, болезни Альцгеймера, болезни Хантингтона и других. Совершенно неожиданным оказалось участие GLR в размножении растений. Биологи нашли и гены, ими управляющие, у резуховидки таких генов насчитали 20.

Чтобы выяснить роль рецепторов-каналов, биологи применили несколько разных методов: использовали стимулирующие и тормозящие вещества, измеряли микроэлектродами электрический ток в ткани растения и, наконец, выводили мутантов. Они выяснили, что работу рецепторов-каналов стимулирует аминокислота D-серин (D-Ser). Это редкая аминокислота, и до сих пор считали, что ее роль ограничивается только работой в нервной системе.

Средство управления

Оказалось, что D-серин действует на GLR каналы в верхушке пыльцевой трубки, вызывает усиление кальциевой проводимости и деполяризацию мембраны. Это совершенно новый сигнальный механизм для растений. Если удалить аминокислоту или иным способом заблокировать GLR каналы, пыльцевая трубка перестает расти или деформируется. Растение при этом становится стерильным, не образует семена.

Сама же аминокислота D-серин образуется в женском половом органе – в завязи пестика. Таким образом, пестик управляет ростом пыльцевой трубки и направляет мужские половые клетки прямо к цели.

Открытие интересно с нескольких сторон. Во-первых, ученые нашли молекулярную природу кальциевых каналов у растений, что оставалось загадкой в течение многих лет. Во-вторых, узнали новое о размножении растений. И, в-третьих, получили доказательство общности фундаментальных процессов у растений и животных. «Мы нашли, что в межклеточной коммуникации у животных и растений участвуют одни и те же структуры, — говорит Хосе Фейджо. — Это показывает, что эволюция повторяет найденные ей успешные механизмы снова и снова».

О том, что объединяет нас с пестиками и тычинками, ученые написали в журнале Science.


Источник: Infox.ru


 

Южноафриканские ботаники выяснили, как местные орхидеи привлекают к опылению мясных мух.

Орхидея Satyrium pumilum и муха (фото авторов исследования) Орхидея Satyrium pumilum и муха (фото авторов исследования) Орхидея Satyrium pumilum, обитающая во влажных зонах Южно-Африканской Республики, может показаться загадочным растением. Часто она вообще не вырабатывает нектар, а если он и есть, то шпорец — специальная ёмкость для нектара у орхидей — имеет такую форму, что ни одно насекомое в него не доберётся.

И как же тогда это растение ухитряется привлекать опылителей?

Общей чертой семейства орхидей является склонность к обману насекомых, когда последние привлекаются к цветам с помощью ненастоящей приманки. С другой стороны, есть несколько растений, которые отдают падалью, что призывает мясных мух. К дурнопахнущим относится и героиня нашей заметки — южноафриканская орхидея. В этом месте возникает большое «но»: считается, что мимикрирование под падаль — очень ненадёжный способ опыления. Мухи-то, безусловно, слетятся, но они не будут столь же эффективно собирать пыльцу и переносить её на другое растение, как это происходит, если приманкой служит нектар.

Исследователи из южноафриканского Университета Квазулу-Натала решили проверить, насколько работоспособен в этом смысле падальный аромат орхидеи Satyrium pumilum и нет ли у неё каких-нибудь других «козырей в рукаве». Учёные выбрали обширный район с высокой плотностью орхидей, где разбросали трупы даманов, во множестве гибнущих в ЮАР под колёсами автомобилей. Ввиду огромного количества цветков невозможно было достоверно оценить посещаемость каждого из них насекомыми, поэтому исследователи собирали мух с трупов животных, разбросанных неподалёку от орхидей.

Оказалось, что мухи, собранные с тушек даманов, во множестве несут на себе пыльцу Satyrium pumilum. При этом в пыльце были выпачканы не все насекомые, а преимущественно самки мясных мух. Выяснилось, что интенсивность запаха падали у орхидей такова, что его могут учуять только мясные мухи и никакие другие.

Исследователи отмечают, что цветы орхидей весьма специализированы к приёму лишь одного вида гостей, и даже больше того: когда муха попадает в цветок, запах ведёт её в нужное место, чтобы она смогла вымазаться в пыльце. Иначе говоря, даже внутри цветка есть участки, которые пахнут сильнее и более привлекательны для мух; там и сосредоточены тычинки с пыльцой. Любопытно, что в цветах находили и личинок мух, то есть самки, одурев от запаха, откладывали здесь яйца.

Статья, посвящённая особенностям южноафриканской орхидеи, опубликована в журнале Annals of Botany. По словам учёных, их работа заставит пересмотреть скептическое отношение биологов к мимикрии как эффективному способу опыления у растений. 


Источник: КОМПЬЮЛЕНТА


Лён, выросший на загрязнённой радиацией почве, по белковому составу почти не отличается от растений с чистой земли.

Если не у человека, так хотя бы у растений есть шанс адаптироваться к космическим  «лучам смерти» и прочим напастям. (Иллюстрация Роба Шеридана.) Если не у человека, так хотя бы у растений есть шанс адаптироваться к космическим «лучам смерти» и прочим напастям. (Иллюстрация Роба Шеридана.) Страх современного мира перед «радиацией» — один из самых устойчивых и распространённых. По общепринятому мнению, радиация влияет на живые организмы исключительно пагубно: жёсткое ионизирующее излучение повреждает ДНК, приводя к вредоносным мутациям, в итоге люди заболевают раком, а в потомстве появляются нежизнеспособные уродцы.

25 лет назад случился трагический непреднамеренный «эксперимент» по влиянию радиации на жизнь — взорвалась Чернобыльская АЭС. Через четверть века почва в этом районе остаётся загрязнённой радиоактивным топливом. Группа учёных из Института генетики растений Словацкой академии наук решила проверить, как чувствуют себя растения в окрестностях атомной станции.

В качестве модельного организма исследователи выбрали лён. Одни растения высадили в радиоактивную почву, а другие — в такую же по составу землю, но без радиоактивного загрязнения. Лён, выросший на загрязнённой почве, отличался от растений, которые культивировались на чистой земле, но эти отличия не имели характера крупных генетических изменений.

Из 720 растительных белков под влиянием радиации трансформировалось лишь 5%. Исследователи поясняют, что анализ самого генома, то есть растительной ДНК, в данном случае был бы малоинформативен, поскольку только для небольшого числа генов льна можно однозначно указать, какой именно белок он кодирует. Растения, очевидно, оказались менее чувствительны к радиации, чем считалось. Учёные полагают, что индифферентность к радиации осталось у растений с правремён, когда Земля ещё не имела такой мощной, как сегодня, защиты от жёсткого космического излучения.


Источник: КОМПЬЮЛЕНТА


 

Исследователи из Франции и Германии признали пузырчатку самым быстрым хищным растением в мире. Чтобы зафиксировать рекорд, пришлось снять процесс поимки добычи насекомоядным растением на высокоскоростную видеокамеру.

Представители рода Utricularia – водные растения,  которые можно встретить везде кроме Антарктиды.  На снимке: ловчий пузырёк (фото Carmen Weisskopf) Представители рода Utricularia – водные растения, которые можно встретить везде кроме Антарктиды. На снимке: ловчий пузырёк (фото Carmen Weisskopf) Пузырчатка крепится корнями ко дну водоёма, но при этом питается мелкими беспозвоночными, например, копеподами.

Группа Филиппа Мармоттана (Philippe Marmottant) из университета Жозефа Фурье в Гренобле исследовала три вида растений из рода Utricularia, а также смоделировала их поведение на компьютере.

Оказалось, что поначалу пузырчатки выкачивают воду из ловчих пузырьков. Каждый снабжен отверстием, закрытым полукруглым клапаном, открывающимся внутрь. «Пузырёк „сдувается“, в его стенках накапливается энергия упругости, такая же, как в натянутой тетиве лука. Кроме того, на растении образуется впадина, как на пипетке со сжатым резиновым наконечником», — поясняет Филипп.

Иногда в ловушки попадаются не только мелкие ракообразные, но и  живность побольше (головастики, черви). Застрявшие наполовину  внутри пузырька они представляют собой жалкое зрелище – голодное  растение при помощи специальной слизи закрывает клапан почти  намертво и переваривает часть их тела (фото Barry Rice) Иногда в ловушки попадаются не только мелкие ракообразные, но и живность побольше (головастики, черви). Застрявшие наполовину внутри пузырька они представляют собой жалкое зрелище – голодное растение при помощи специальной слизи закрывает клапан почти намертво и переваривает часть их тела (фото Barry Rice) Когда добыча приближается к ловушке и дотрагивается до чувствительных волосков на клапане, энергия высвобождается. Происходит потеря устойчивости, «дверца» резко открывается, и жертва вместе с потоком воды, вызванным перепадом давления, устремляется в пузырёк.

Так же быстро клапан закрывается, и добыча уже не может сбежать из ловчего пузырька хищного растения, которому остаётся лишь переварить еду.

Жертва втягивается в ловушку меньше чем за миллисекунду. Получается, что скорость реакции пузырчатки даже больше, чем у Венериной мухоловки (Dionaea muscipula). (Кстати, учёные раскрыли секрет большой скорости захлопывания её листьев.) .

Статья авторов работы опубликована в журнале Proceedings of the Royal Society B (препринт можно посмотреть здесь).


Источник: MEMBRANA


 

Суббота, 12 Февраль 2011 00:00

Цветы травят пчёл

Автор

Есть немало растений, производящих токсичные химические вещества, чтобы защитить себя от травоядных животных, а многие цветковые растения приобрели такие цветковые структуры, которые не позволяют опылителям забирать с собой слишком много пыльцы. Экологи из Швейцарского федерального технологического института в Цюрихе впервые привели экспериментальные доказательства того, что цветковые тоже пользуются средствами химической защиты для охраны пыльцы от некоторых пчёл.

Лютик Ranunculus glaberrimus (фото oldmantravels)Лютик Ranunculus glaberrimus (фото oldmantravels) В ходе элегантного эксперимента исследователи собрали пыльцу четырёх видов растений (лютика, синяка обыкновенного, горчицы полевой и пижмы) с помощью остроумного метода, то есть не самостоятельно, а из гнёзд пчёл, специализирующихся на одном виде растений.

Затем учёные скормили пыльцу различным выводкам личинок двух тесно связанных видов пчёл Osmia bicornis и Osmia cornuta, отличающихся разнообразным рационом питания. Личинки показали значительные различия в способности расти на диете из одного вида пыльцы.

Личинки Osmia cornuta прекрасно чувствовали себя на пыльце синяка обыкновенного, но почти все (свыше более 90%) умерли всего через несколько дней диеты на лютике. На примере Osmia bicornis ситуация повторилась с точностью до наоборот. Пыльца дикой горчицы понравилась обоим видам, а пижма оказалась не впрок.

Растения имеют все основания для защиты от пчёл. Насекомым необходимо огромное количество пыльцы для взращивания детёнышей, тогда как растения больше заинтересованы в опылении. Одной личинке нужно порой несколько сотен цветов, а пчела к тому же является прекрасным сборщиком: она способна забрать 70–90% пыльцы за один приём.

Результаты исследования будут опубликованы в журнале Functional Ecology.

 


 Источник: КОМПЬЮЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Земля была пригодна для жизни уже 4,3 млрд лет назад

25-02-2014 Просмотров:5900 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

Земля была пригодна для жизни уже 4,3 млрд лет назад

Геологи выяснили, что наша планета обзавелась твердой корой почти сразу после своего возникновения. Это значит, что Земля была пригодной для жизни уже практически изначально. Земля 4,3 млрд лет назадРезультаты исследования, проведенного...

Гранд-Каньон, возможно, старше своего возраста

01-12-2012 Просмотров:10504 Новости Геологии Антоненко Андрей - avatar Антоненко Андрей

Гранд-Каньон, возможно, старше своего возраста

По мнению большинства геологов, Гранд-Каньон возник 5−6 млн лет назад в результате того, что река Колорадо размывала породу слой за слоем. Одно из доказательств — огромные кучи вымытого гравия на...

Насекомое мелового периода по камуфляжу оказалось близко к современным

12-12-2012 Просмотров:8071 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Насекомое мелового периода по камуфляжу оказалось близко к современным

В обнажении пород Эль Соплао в Кантабрии (север Испании) несколько лет назад был обнаружен странный фрагмент янтаря, на анализ которого у учёных во главе с Рикардо Пересом-де ла Фуэнте из...

Осетр восточносибирский - Acipenser baeri stenorrynchus

13-11-2012 Просмотров:12072 Рыбы Енисея Антоненко Андрей - avatar Антоненко Андрей

Осетр восточносибирский - Acipenser baeri stenorrynchus

В Енисее осетр является пресноводной рыбой. Представлен двумя формами - немногочисленной жилой и полупроходной. По внешнему виду различить эти две формы почти невозможно. Жилой осетр в Енисее распространен до г....

В Курской области водились мастодонзавры

20-01-2014 Просмотров:7635 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В Курской области водились мастодонзавры

Ископаемые остатки древней амфибии, предположительно принадлежавшей к мастодонзаврам (отряд Capitosauria), были обнаружены недавно жителями Фатежского района Курской области. По их словам, окаменелости в этих местах находили и раньше, но ничего...

top-iconВверх

© 2009-2018 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.