Мир дикой природы на wwlife.ru
Вы находитесь здесь:Мир дикой природы на wwlife.ru - Антоненко Андрей

Антоненко Андрей

Антоненко Андрей

Четверг, 13 Октябрь 2016 10:38

Четвероногие (Tetrapoda)

Надкласс: Четвероногие (Tetrapoda)

Научная  классификация 
 Без ранга: Вторичноротые (Deuterostomia)
Тип:  Хордовые (Chordata)
Подтип: Позвоночные (Vertebrata)
Инфратип:
Челюстноротые (Ghathostomata)
Надкласс:
Четвероногие (Tetrapoda)
Класс:

Млекопитающие (Mammalia)

Синапсиды (Synapsida)

Птицы (Aves)

Пресмыкающиеся (Reptilia)

Земноводные (Amphibia)

 

Оглавление

1.

Общие сведения о Четвероногих животных

2.

Происхождение Четвероногих животных

3.

Классификация Четвероногих животных

1. Общие сведения о Четвероногих животных

Примеры четырёх современных классов четвероногих: земноводные (лягушка), птицы (гоацин), млекопитающие (мышь), пресмыкающиеся (сцинк)Примеры четырёх современных классов четвероногих: земноводные (лягушка), птицы (гоацин), млекопитающие (мышь), пресмыкающиеся (сцинк)Четвероно́гие, или назе́мные позвоно́чные (лат. Tetrapoda) — один из надклассов входящих в группу Челюстноротых животных. Данный надкласс объединяет животных перешедших к жизни на суше. Некоторые из них, в течении всей жизни или в личиночной стадии сохраняют взаимосвязь с водной средой. Главный признак представителей Четвероногих - наличие четырёх конечностей, служащих для передвижения по суши. У некоторых представителей данного надкласса, конечности в результате эволюции были видоизменены и приспособились для полёта (птицы, рукокрылые, птерозавры), плавания (ластоногие, китообразные, мозозавры, ихтиозавры) или вообще редуцировались (змеи, некоторые ящерицы и земноводные).

Сейчас на планете обитает более 30 000 видов представителей Четвероногих. Приспособившись к жизни на суши они перешли на лёгочное дыхание (некоторые виды такие, как безлёгочные саламандры вторично потеряли лёгкие и стали дышать через кожу). Лёгочный тип дыхание имеют и такие животные возвратившиеся в морскую среду, как китообразные, сирены, вымершие ихтиозавры. Дыхание жабрами осталось только у приспособленных к жизне в воде личинок земноводных и неотенических земноводных таких, как аксолотль.

Большинство четвероногих имеют две пары конечностей с пятью пальцами. В некоторых случаях число пальцев уменьшается и только у ранних четвероногих из позднего девона, число пальцев варируется от 5 до 8 (тулерпетон - 6, ихтиостега - 7 и акантостега - 8). Конечности четвероногих состоят из сложной системы подвижно сочленённых друг с другом рычагов и шарниров, плечевым и тазовым поясами. Передняя конечность состоит из плеча, предплечья и кисти состоящей из запястья, пясти и пальцев. Задняя конечность включает бедро, голень и стопу.

Акантостега (Acanthostega model)Акантостега (Acanthostega model)Для четвероногих характерны усложнения внутреннего скелета и зубного аппарата, а в позвоночнике помимо туловищного и хвостового отдела, имеются шейный и крестцовый.

2. Происхождение Четвероногих животных

Каледонский цикл горообразования, происходивший в конце силура – начале девона привел к существенному изменению земной поверхности. Появившиеся высокогорные хребты привели к усилению эрозии со сносом горного материала в низины, что привело к обмелению многих водоемов и их зарастанием, а также резкому снижению содержания кислорода в воде.  Это привело к тому, что многим обитаемым в тех водоемах животным пришлось вырабатывать приспособления для использования атмосферного кислорода, а заодно начать собирать пищу на берегу.  Сейчас нечто подобное можно наблюдать у таких ныне живущих рыб, как змееголовы, бычки и некоторые сомики. Однако теперь, когда суша уже освоена большим разнообразием четвероногих позвоночных, эти приспособления не являются попыткой завоевать сушу и могут иметь только узко местное значение. В девонском же периоде из-за меньшей конкуренции, процессы эволюции перехода от водного образа жизни к наземному проходили более масштабно.  Скорее всего, в связи с недостатком растворённого в воде кислорода, адаптация к использованию атмосферного кислорода возникла в различных группах рыб, но больше всего продвинулась у девонских двоякодышащих и  лопастепёрых рыб, приведшее к образованию лёгких и зачатков второго круга кровообращения.

Рыба Panderichthys rhombolepisРыба Panderichthys rhombolepisБиологически обе группы схожи, но представители двоякодышащих рыб специализировались как относительно малоподвижные животные, обитавшие в стоячих, нередко пересыхавших водоемах и питающиеся преимущественно растительной пищей и придонными животными. В противовес им, пресноводные лопастепёрые (Rhipidistia) являлись крупными и сильными хищниками. Как правило, они преимущественно охотились за рыбами, нападая на них стремительным броском из засады. О данном способе охоты свидетельствуют форма тела и плавников, а также развитие на голове каналов боковой линии и возникновение специальной мускулатуры, позволявшей при дыхании бесшумно всасывать воду через едва приоткрытую ротовую щель или через брызгальца. Прорыв обонятельных мешков в ротовую полость и образование внутренних ноздрей - хоан - позволили при таком "затаенном" дыхании усилить  через орган обоняния ток воды, используя его для обнаружения добычи. Хорошо развитые парные плавники с мощной мускулатурой и специфическим внутренним скелетом, вероятно, давали возможность лопастеперым рыбам переползать с одного водоёма в другой при его обмелении или пересыхании.

Tiktaalik roseaeTiktaalik roseaeДальнейшие приспособления к наземному образу жизни привели к разделению лопастепёрых рыб на три ветви: первые две представлены отрядами Иниходонтиды (Onychodontida), или Струниеобразные (Struniiformes), и Актинистии целакантообразные и несколько вымерших семейств (Actinistia), а третья почти сразу распалась на две сестринские клады: Dipnomorpha — с отрядами  Поролепообразные (Porolepiformes), Янголепообразные (Youngolepiformes), Диаболепидиды (Diabolepidida), Двоякодышащие (Dipnoi) — и Тетраподоморфы (Tetrapodomorpha) (так что среди ныне живущих позвоночных двоякодышащие оказываются ближе к четвероногим, чем целакантообразные).

Тетраподоморфы наряду с тетраподами (четвероногими) включают в себя три отряда лопастепёрых, ископаемые останки которых известны начиная со среднего девона: Ризодонтиды (Rhizodontida), Остеолепообразные (Osteolepiformes) и Элпистостегалии (Elpistostegalia), или Пандерихтииды (Panderichthyida). Первые два отряда включают в себя типичных рыб, которые, некоторыми своими особенностями строения скелета схожи с ранними четвероногими, то элпистостегалии (состоящие из трёх родов: Panderichthys, Elpistostege и Tiktaalik) объединяют формы, переходные от рыб к четвероногим: у этих животных имеющих крокодилоподобный облика отсутствуют спинные и анальный плавники, а грудные и брюшные плавники состоят из костей, гомологичных костям конечностей четвероногих, но еще отсутствует членение дистальных частей плавников на пальцы. По современным представлениям, все три отряда, парафилетичны. Упращенную кладограмму показывающую родственные взаимосвязи между тетраподами и данными тремя отрядами можно представить в виде:

Tetrapodomorpha

 † Rhizodontida

 † Osteolepiformes

 † Elpistostegalia

Tetrapoda

Первые земноводныеПервые земноводныеПервые тетраподы появились около 390 млн лет назад в середине девонского периода, а современные группы тетрапод от которых произошли ныне живущие  их потомки появились в конце девона 367,5 млн. лет назад. В это же время от первых четвероногих, обособились три ветви земноводных. Одна из них представлена Тонкопозвонковыми - Lepospondyli, от которых в последствии произошли современные безногие и хвостатые земноводные, другая - Дугопозвонковыми - Apsidospondyli, прошедшими сложный путь эволюции приведший к появлению бесхвостых земноводных и третья ветвь - Антракозавры - Anthracosauria – эволюционировавшие довольно медленно, но давшие начало современным примитивным пресмыкающимся - Seymouriamorpha.[2]

Вслед за представителями земноводных, появились около 318 млн. лет назад амниоты или высшие позвоночные разделившиеся на несколько ветвей – одна давшая начало ящерицам, динозаврам, птицам и их родственникам, другая линии млекопитающих.

Господство земноводных длилось вплоть до пермского вымирания в результате которого в течении короткого периода в 60 тыс лет, на Земле исчезло 96% всех морских и 70% наземных видов позвоночных.

Представитель завропсидов - петролакозаврПредставитель завропсидов - петролакозаврИзменение климата, в частности замены влажного и теплого климата более сухим континентальным с последующим исчезновением многих мест их обитания, привело к упадку земноводных, чем незамедлительно воспользовались появившиеся к этому времени примитивные пресмыкающиеся, обособившиеся в середине каменноугольного периода от антракозавров путем адаптации к более наземному образу жизни, менее зависящему от водных источников.

Свой рассвет рептилии достигли в мезозойскую эру завоевав господство в воде, суше и воздухе. Широкая адаптивная радиация позволила им занять практически все пригодные места обитания и образовать необычайное разнообразие жизненных форм.

Представитель пеликозавров - ДиметродонПредставитель пеликозавров - ДиметродонСкорее всего, в триасе от относительно примитивных зверозубых рептилий обособились млекопитающие, а в середине юры - от орнитозухий (из подкласса архозавров) - птицы.

Вследствие полного господствования на земле рептилий, птицы и млекопитающие были сравнительно малочисленны. Напряженная борьба за существование совершенствовала их морфофизиологические особенности: увеличивалась подвижность, развивалась способность к терморегуляции, позволявшая меньше становиться зависимыми от климата, повышался уровень нервной деятельности и усложнялись формы заботы о потомстве позволявший повысить выживаемость вида, расширялся набор используемых кормов (в том числе и появившихся покрытосеменных растений).

Животный мир палеогенового периодаЖивотный мир палеогенового периодаВ конце мезозоя, произошло очередное четвертое массовое мел-палеогеновое вымирание, в результате которого вымерло большое количество видов и давшая бурное начало развитию млекопитающих и птиц.[3]

 

 3. Классификация Четвероногих животных

Надкласс Четвероногие делится на 4 ныне живущих класса (Млекопитающие (Mammalia), Птицы (Aves), Пресмыкающиеся (Reptilia), Земноводные (Amphibia)) и один вымерший - Синапсиды (Synapsida). При этом Земноводные  (Amphibia) представляют собой предковою парафилетическую группу, а все остальные классы образуют кладу Амниоты (Amniota). В свою очередь, пресмыкающиеся являются парафилетической группой по отношению к птицам, а синапсиды — к млекопитающим.

Особое место в надклассе занимают первоначальные позднедевонские семейства четвероногих, иногда их переносят с класса Amphibia, включая как отдельный специфический отряд Ichthyostegalia, или как отдельные семейства вне какого-либо класса.


Надцарство: Эукариоты -Царство: Животные - Подцарство: Эуметазои - Раздел: Билатеральные - Надтип: Вторичноротые - Тип: Хордовые - Подтип: Позвоночные - Инфратип: Челюстноротые -

- Надкласс: Четвероногие:

/ | | | \
Млекопитающие Синапсиды † Птицы Пресмыкающиеся Земноводные - Классы

 


 

 

 

Источники: 1. Википедия
2. Википедия
3. Зооклуб

 

 

Необычная окаменелость, найденная в Антарктиде, указывает на то, что динозавры не умели "петь", и что первые птицы издавали звуки, похожие на крякание уток, трубеж лебедей и гудение диких гусей, говорится в статье, опубликованной в журнале Nature.

131016 1479066163"Сегодня мы постепенно начинаем определять то, как мы можем использовать те черты в устройстве сиринкса, отпечатавшиеся в породах, для восстановления звуков пения этих птиц, однако для этого нам нужны данные по работе этого органа у существующих сегодня птиц. Что удивительно, никто никогда не задавался этими вопросами в прошлом", — заявил Франц Голлер (Franz Goller) из университета Юты в Солт-Лейк-Сити (США).

В последние два десятилетия в палеонтологии произошла революция, поменявшая то, как мы смотрим на динозавров и птиц. Так, ученые выяснили, что почти все динозавры обладали перьями и что многие из них высиживали яйца, раскрыли секреты окраса первых птиц и принципы их полета, а также успели по несколько раз перекроить древо их эволюции. Сегодня палеонтологи ожесточено спорят, зачем птицам и динозаврам нужны были перья и как они появились.

Голлер и его коллеги присоединились к этому спору с другой стороны – им удалось найти одну из тех черт, которая действительно может отличать птиц от динозавров и всех остальных рептилий. Речь идет о так называемом сиринксе – голосовом органе птиц, который расположен у основания трахеи, между воздуховодами, идущими к каждому легкому.

Как рассказывает Голлер, члены его научной команды уже более 10 лет ведут раскопки на антарктическом острове Вега, где в 2005 году были найдены останки пока единственной птицы мезозойской эры, которая является прямым родственником современных пернатых — Vegavis iaai. Они представляли собой небольших водоплавающих пернатых, которые жили бок о бок с гигантами мезозоя за полярным кругом.

Во время очередных раскопок в Антарктике ученым улыбнулась удача – им удалось найти великолепно сохранившиеся окаменелые тела этих древних "гусей", в которых можно было рассмотреть не только их перья и кости, но и даже отпечатки трахей и других мягких тканей.

Просветив новые останки Vegavis iaai при помощи томографа, Голлер и его коллеги смогли увидеть то, как был устроен их сиринкс, и сравнить его анатомию с аналогичным органом у современных птиц.

Как оказалось, голосовой орган древних птиц напоминал по своему устройству то, как была устроена эта часть трахей у современных гусей и уток, а также других птиц, не обладающих певческими навыками. Это, по мнению авторов статьи, позволяет с высокой долей уверенности говорить о том, что Vegavis iaai как минимум умели крякать и гудеть, как их современные родичи.

Что это говорит нам о том, какие звуки на самом деле издавали динозавры, ближайшие "современники" этих птиц? К сожалению, точного ответа на этот вопрос нет, так как ни в одних окаменелых останках динозавров отпечатка сиринкса не сохранилось.

Как полагают Голлер и его коллеги, отсутствие сиринкса у динозавров на самом деле свидетельствует о том, что они не обладали этим органом и что он был приобретен птицами в ходе их самостоятельной эволюции. Динозавры, как считают исследователи, умели выдавать лишь гортанные звуки, которые они издавали, не раскрывая рта.

Таким образом, умение выдавать трели и другие сложные звуки могло быть одним из ключевых факторов их развития и эволюционным преимуществом по сравнению с другими видами архозавров, заключают авторы статьи.


Источник: РИА Новости


Древний – не значит примитивный, уверены палеонтологи Боннского университета. Они изучали палеогеновых насекомых, сохранившихся в янтарях, и смогли лично убедиться, что жившие более 50 млн лет назад мокрецы были устроены куда сложнее и эффективнее своих современных потомков.

Округлый карман-испаритель феромонов на крыле Camptopterohelea odoraОкруглый карман-испаритель феромонов на крыле Camptopterohelea odoraНа крыльях древних насекомых ученые обнаружили особые органы, предназначенные для распыления в воздухе феромонов, благодаря которым эти животные находят себе пару. Ничего подобного ни у одного вида мокрецов в наши дни не наблюдается.

Аспирант Боннского университета Фрауке Стебнер (Frauke Stebner) собрала в Индии небольшую коллекцию палеогеновых янтарей возрастом 54 млн лет. В одном из кусочков окаменевшей смолы она с трудом различила крошечное черное пятнышко, но вместо того, чтобы выбросить бракованный сувенир, решила разобраться в том, что же это такое.

"Часто насекомые в янтаре могут быть идентифицированы только в виде черных меток", – пояснила исследовательница, отметив, что янтарное сырье вообще обычно выглядит достаточно скучно – оно непрозрачно и на первый взгляд напоминает солодовые пастилки. Только сложные шлифовка и полировка позволяют разглядеть крошечных существ, застывших в янтаре, а микроскоп еще шире распахивает это окно в прошлое.

Camptopterohelea odoraCamptopterohelea odoraИзучив свою находку под мощным синхротронным микроскопом, Стебнер выяснила, что видит неизвестный науке вид мокрецов (широко известных под народным именем "гнуса"), который немедленно и назвала Camptopterohelea odora – то есть душистая. Хотя эта конкретная особь была совсем крошечной – 0,9 мм в длину – палеонтолог выяснила, что перед ней самка, и что у этой самки на крыльях имеется нечто непонятное.

На переднем крае каждого крыла у Camptopterohelea odora располагалась странная везикулярная структура, говоря проще – кармашек с тонкими волосками по краю. "Ни один из современных видов мокрецов не имеет таких "карманов" на своих крыльях, – отметила Стебнер, – Зато очень похожие устройства есть у бабочек, и они служат для распыления феромонов в воздухе – чтобы привлечь партнера. Положение на кромке крыла позволяет распылять вещество в окружающий воздух настолько широко, насколько это возможно. А маленькие волоски с помощью турбулентности делают его распространение еще более успешным".

Удивительно, но отброшенные мокрецами миллионы лет назад распылители феромонов сегодня встречаются только у достаточно высокоразвитых бабочек и мотыльков. Сами же мокрецы теперь распространяют феромоны с помощью довольно простых органов, расположенных на брюшке.

"Феромонные испарители Camptopterohelea odora являются гораздо более сложными, чем у современных мокрецов, – подчеркнул старший автор исследования, профессор Джес Руст (Jes Rust), также из Боннского университета. – Очевидно, экологические условия, существовавшие 54 млн лет назад в девственных лесах, покрывавших нынешнюю Индию, делали необходимым такое приспособление".

 


 

Источник: PaleoNews


 

Капские голые землекопы, грызуны, победившие смерть, почти не чувствуют боли по той причине, что их ген, отвечающий за "включение" болевых рецепторов, отличается по своей структуре всего на одну букву от аналогичных генов человека и других млекопитающих, говорится в статье, опубликованной в журнале Cell Reports.

Капский голый землекоп (Heterocephalus glaber)Капский голый землекоп (Heterocephalus glaber)"Эти животные живут под землей в пустынях, и им приходится прикладывать массу усилий для того, чтобы добыть пищу. У них самая низкая скорость метаболизма среди всех млекопитающих. Можно сказать, что эволюция отключила в их организме все, что не является критически важным для выживания, в том числе и "лишние" рецепторы на нейронах", — заявил Гэри Льюин (Gari Lewin) из Центра молекулярной медицины Макса Дельбрюка в Берлине (Германия).

Голый землекоп (Heterocephalus glaber) — уникальное млекопитающее, обладающее множеством удивительных свойств. Этот безволосый подземный грызун размером с мышь и весом 30-50 граммов обитает в восточной Африке. В 1970-е годы ученые обнаружили, что эти существа живут необычайно долго для своего размера и не подвержены раковым заболеваниям. Кроме того, землекопы практически не чувствуют боли и не реагируют на раздражение кожи кислотами.

Капский голый землекоп (Heterocephalus glaber)Капский голый землекоп (Heterocephalus glaber)Дельбрюк и его коллеги поняли, почему землекопы почти не ощущают боли, изучив структуру тех генов и связанных с ними белков, которые отвечают за распознавание раздражителей и передачу болевых сигналов.

Как рассказывают ученые, тело человека и других животных становится гиперчувствительным к прикосновениям, теплу и другим раздражителям в том случае, если какая-то его часть испытывает боль. Это связано с тем, что система "распознавания боли" в нашем организме состоит из двух компонентов – генов и белков TRPV1 и TrkA.

Первый ген непосредственно связан с распознаванием и передачей болевых ощущений в мозг, и он, как показали опыты научной команды Дельбрюка, в рамках которых ученые пересадили "землекопскую" версию TRPV1 в клетки мыши, не отличается от того, как выглядит и как он устроен от аналогичной части ДНК других грызунов.

В свою очередь, ген TrkA является своеобразным ограничителем работы TRPV1. Он следит за наличием в окрестностях клетки молекул гормона NGF, свидетельствующего о начале воспаления и повреждении ткани. При появлении большого числа молекул NGF данный белок заставляет TRPV1 вести себя активнее, что усиливает болевые сигналы, которые нейроны с этими рецепторами посылают в мозг животного.

Как оказалось, структура данного гена и белка у голых землекопов ненамного, но отличается от того, как он устроен у мышей и 26 других видов млекопитающих. Замена всего одной аминокислоты привела к тому, что TrkA крайне слабо усиливает активность TRPV1 при появлении признаков боли, так как для его включения требуется в 10 раз больше молекул гормона, чем для "нормальной" версии этого белка. Это, как считают авторы статьи, и является секретом того, почему землекопы не чувствуют ожогов и слабо ощущают боль в целом.

Подобное предположение нашло подтверждение в экспериментах – когда Дельбрюк и его коллеги "пересадили" в клетки мышей ту версию гена TrkA, которой обладают землекопы, они тоже стали нечувствительными к боли. Схожие опыты по пересадке TrkA и других генов в организм живых мышей, как надеются авторы статьи, помогут нам раскрыть и другие секреты землекопов, в том числе и их долголетие.


Источник: РИА Новости


Южная Америка в очередной раз подтвердила свою репутацию континента, самого богатого ископаемыми остатками цинодонтов – гипотетических предков млекопитающих. Сразу два новых вида этих интереснейших существ были найдены в фондах одного из музеев Рио-де-Жанейро.

Bonacynodon schultzi. Реконструкция: Jorge BlancoBonacynodon schultzi. Реконструкция: Jorge BlancoПоявившиеся еще в пермском периоде, и широко распространившиеся по Земле в триасе, цинодонты обладали практически всеми признаками млекопитающих и занимали промежуточное положение между ними и рептилиями. Новые находки позволят палеонтологам разобраться в систематических взаимоотношениях хищных представителей цинодонтов из группы Probainognathia.

Сам термин Cynodontia означает "собачьи зубы". И действительно, зубы цинодонтов уже были разделены на клыки и коренные. Судя по всему, именно цинодонты могут с успехом претендовать на звание самых старых прямых предков современных млекопитающих, включая и человека. "Изучать цинодонтов очень интересно, потому что важно узнать больше о начале группы, к которой принадлежим мы сами и другие млекопитающие", – отметил ведущий автор исследования, палеонтолог Агустин Мартинелли (Agustin Martinelli) из Федерального университета Рио-Гранде-ду-Сул в Бразилии.

Новые виды цинодонтов описаны под названиями Bonacynodon schultzi и Santacruzgnathus abdalai – в честь известных южноамериканских палеонтологов. Череп и зубы B. schultzi показывают, что у этих животных имелись нетипично большие, напоминающие собачьи зубы, зазубренные с одной стороны. А S. abdalai, от которого сохранилась лишь нижняя челюсть, вероятно, был одним из самых мелких цинодонтов – его длина составляла всего 15 сантиметров. Оба они жили в позднем триасе на территории современной южной Бразилии.

Чтобы сделать свое открытие. Мартинелли не пришлось месить грязь в экспедициях – окаменелости B. schultzi пролежали без изучения в одном из музеев Рио-де-Жанейро 60 лет, пока палеонтолог не сдул с них пыль. Что касается S. abdalai, то их история практически аналогична, разве что ждать своего исследователя им пришлось всего восемь лет.

 


 

Источник: PaleoNews


 

Понедельник, 10 Октябрь 2016 11:23

Челюстноротые (Gnathostomata)

Инфратип: Челюстноротые (Gnathostomata)

Научная  классификация 
 Без ранга: Вторичноротые (Deuterostomia)
Тип:  Хордовые (Chordata)
Подтип: Позвоночные (Vertebrata)
Инфратип:
Челюстноротые (Ghathostomata)
Надкласс:

Четвероногие (Tetrapoda)

Рыбы (Pisces)

 

Оглавление

1.

Общие сведения о Челюстноротых животных

2.

Происхождение Челюстноротых животных

3.

Классификация Челюстноротых животных

1. Общие сведения о Челюстноротых животных

Челюстноротые (Gnathostomata)Челюстноротые (Gnathostomata)Челюстноро́тые (лат. Gnathostomata) — один из инфратипов (групп) Позвоночных животных, включающий в себя около 60 000 видов. В отличае от Бесчелюстных, представители данного инфратипа характерны наличием противопоставленных челюстей развившихся из жаберных дуг, а так-же, за исключением последующей редукции у некоторых животных - наличием зубов, парных конечностей, третьим (горизонтальным) и полукруглым каналом внутреннего уха. На клеточном уровне представители Челюстноротых имеют адаптивную имунную систему и миелиновое покрытие нейронов [1]. Самыми примитивными челюстноротыми являются рыбы.

2. Происхождение Челюстноротых животных

Акантониды силура-девонаАкантониды силура-девонаПервые представители Челюстноротых, появились в ордовике 462 млн. лет назад и относились к надклассу рыб. Вплоть до девона, на протяжении почти 100 млн лет им приходилось конкурировать с обитавшими в те временами Бесчелюстными рыбами [2]. В конце силура - начале девона пресноводные рыбы были многочисленны и разнообразны.

На сушу первые представители данной группы начали выходить в позднем девоне, около 380 млн лет назад в дальнейшем дав начало современным амфибиям, рептилиям и млекопитающим.

 

 3. Классификация Челюстноротых животных

Челюстноротые животные разделяют на два надкласса: Рыб (Pisces) и Четвероногих (Tetrapoda). Однако из-за того, что исторически последние являются частью первых, рыбы не могут считаться монофилетическим таксоном. Поэтому Рыбы являются законным таксоном в рамках эволюционной таксономии (где допускается использование парафилетических таксонов) и не признаются как естественная группа в рамках кладистики.

Более точно эволюционно-исторические отношения челюстноротых могут быть описаны совокупностью следующих трёх кладограмм (для ясности в них добавлены явные указания, в какие именно группы следует включать четвероногих):

Gnathostomata

Placodermi (Панцирные рыбы)

Chondrichthyes (Хрящевые рыбы)

Teleostomi

Acanthodii (Колючезубые)

OSTEICHTHYES (Костные рыбы, вкл. Tetrapoda)

Osteichthyes

Actinopterygii (Лучепёрые рыбы)

SARCOPTERYGII (Лопастепёрые рыбы, вкл. Tetrapoda)

Sarcopterygii

Coelacanthimorpha (Целакантообразные)

Choanata

Dipnoi (Двоякодышащие)

TETRAPODA (Четвероногие)

Появление челюстейПоявление челюстейНе смотря на это, даже при таком подходе не удалось описать точную филогению четвероногих: опущен целый ряд ископаемых форм, стоящих в эволюционном отношении ближе к Tetrapoda, чем к современным Dipnoi (в частности, роды Tinirau, Panderichthys, Tiktaalik, Elpistostege).

Переходя к общей характеристике челюстноротых, заметим, что их название чётко соответствует важному эволюционному приобретению этих животных по сравнению с бесчелюстными: их рот вооружён подвижными челюстями. Во внутреннем ухе имеется уже три полукружных канала, а не два, как у бесчелюстных. Челюстноротые способны к энергичным передвижениям, к активному захватыванию найденной пищи.


Надцарство: Эукариоты -Царство: Животные - Подцарство: Эуметазои - Раздел: Билатеральные - Надтип: Вторичноротые - Тип: Хордовые - Подтип: Позвоночные -

- Инфратип: Челюстноротые:

/ \
Четвероногие Рыбы - Надкласс

 


 

Источники: 1. Википедия
2. Википедия

 

 

Палеоэнтомологи обнаружили в янтаре из Бирмы возрастом около 100 млн лет необычное насекомое, относящееся к паразитическим осам. Из-за жизни под корой оно потеряло способность к полету, но зато научилось прыгать.

Aptenoperissus Aptenoperissus О находке в журнале Cretaceous Research сообщил профессор Александр Расницын, заведующий Лабораторией артропод Палеонтологического института РАН. В качестве его соавторов выступили специалисты из Великобритании и США.

Бирманский янтарь, датируемый серединой мелового периода, уже давно славится обилием насекомых. Например, недавно в нем были найдены муравьи-единороги и сетчатокрылые кровососы, предположительно атаковавшие лягушек. Но на этот раз в руки ученых попало еще более причудливое существо, с трудом поддающееся идентификации.

Длина насекомого составляет чуть менее 4 мм. Скорее всего, оно относится к перепончатокрылым - отряду, который включает ос и пчел. В отличие от большинства представителей этой группы, Aptenoperissus (так ученые окрестили находку) полностью лишен крыльев, но зато обладает мощными бедрами задних ног, что свидетельствует о его умении прыгать.

Исходя из наличия парных шпор, которые Aptenoperissus несет на голенях всех своих конечностей, авторы статьи отнесли его к надсемейству Ceraphronoidea. Оно включает в себя два современных и несколько ископаемых семейств паразитических ос. Из-за необычного облика Aptenoperissus удостоился быть отнесенным к особому семейству Aptenoperissidae.

Орудия паразита: яйцеклад и странные антенны

Скорее всего, Aptenoperissus утратил крылья потому, что они мешали ему лазать под корой деревьев или в лесной подстилке - это же характерно и для некоторых самок современных перепончатокрылых. Найденный экземпляр был как раз самкой - своим коротким и мощным яйцекладом насекомое прокалывало жертв с твердыми покровами, чтобы отложить туда свои яйца.

Среди уникальных черт Aptenoperissus - его коленчатые антенны. Каждая из них состоит из длинного первого членика (его наличие свойственно, например, муравьям) и прикрепленного к нему «жгутика» из множества более мелких члеников. У современных перепончатокрылых два эти признака часто встречаются по отдельности, но никогда не сочетаются вместе.

Скорее всего, такие антенны помогали паразиту изучать потенциальную жертву (например, куколку какого-нибудь жука) перед тем, как отложить в нее яйцо. Прикоснувшись кончиком антенны к объекту своего интереса, Aptenoperissus затем подносил его ко рту.

Самцы, относящиеся к этому же роду, пока не найдены, но ученые уверены, что они также обладают двойными шпорами и коленчатыми антеннами. Открытие доказывает, что насекомые способны претерпевать экстремальные модификации в результате сравнительно незначительных перемен в образе жизни (в данном случае - при переходе к обитанию в тесном пространстве).


Источник: infox.ru


Воскресенье, 09 Октябрь 2016 19:31

Поганка серощёкая (лат. Podiceps grisegena)

Пога́нка серощёкая (лат. Podiceps grisegena)

Podiceps grisegenaПоганка серощёкая (лат. Podiceps grisegena)

Голос  Поганки серощёкой

Суббота, 08 Октябрь 2016 22:50

Поганка малая (лат. Tachybaptus ruficollis)

Пога́нка малая (лат. Tachybaptus ruficollis)

Пога́нка малая (лат. Tachybaptus ruficollis)Пога́нка малая (лат. Tachybaptus ruficollis)

Голос  Поганки малой

Пятница, 07 Октябрь 2016 10:15

Почему пальцев именно пять

Профессор Мари Кмита (Marie Kmita) и ее коллеги из Монреальского университета (Канада) решили разобраться, почему у человека и позвоночных именно по пять пальцев на руках и ногах. Они выяснили, что за различия в развитии конечностей у водных и «сухопутных» животных отвечают различия в деятельности всего одного гена. Результаты исследования опубликованы в журнале Nature, а их краткое изложение представляет портал Science Daily.

Известно, что наши конечности эволюционировали из плавников. Эволюция, которая привела к появлению членов и, в частности, к возникновению пальцев у позвоночных, отражает изменения скелета, связанные с переменой среды обитания — переходом от водной среды к жизни на суше.

071016 7cca0d7b42Совсем недавно — в августе этого года — исследователь из Чикаго, профессор Нил Шубин и его команда, показали, что два гена — hoxa13 и hoxd13 — ответственны за формирование лучей плавников и наших пальцев. «Этот результат очень интересен, потому что он четко устанавливает молекулярную связь между лучами плавников и пальцами», — сказал Ясин Херджемил (Yacine Kherdjemil), докторант в лаборатории Марии Кмиты и первый автор статьи.

Тем не менее, переход от плавников к рукам и ногам не происходил одномоментно. Ископаемые останки указывают на то, что наши далекие предки были многопалыми, а это означает, что у них было больше, чем пять пальцев. Вопрос, почему же у нас в итоге их именно пять.

В ходе лабораторных экспериментов авторы исследования обратили внимание на то, что во время роста эмбрионов мыши и человека гены hoxa11 и hoxa13 активируют рост лишь отдельных областей зачатков конечностей, в то время как у рыб эти гены активируются в перекрывающихся областях, что ведет к  развитию плавников.

Пытаясь понять значение этого различия, ученые показали, что при воспроизведении рыбьего типа гена hoxa11 у мышей, они развивают до семи пальцев на каждой лапе, то есть, образно говоря, возвращаются к исконному облику. Мари Кмита также обнаружила последовательность ДНК, ответственную за переход между рыбьим и мышиным типом регулирования для гена hoxa11. «Мы предполагаем, что это значительное морфологическое изменение произошло не за счет приобретения новых генов, но изменения их деятельности», — сказал исследователь.

С медицинской точки зрения, это открытие подтверждает гипотезу, согласно которой пороки развития в период внутриутробного развития происходят не только из-за мутаций в генах, но и за счет изменения работы последовательностей ДНК, известных как регуляторные последовательности.

«В настоящее время технические ограничения не позволяют идентифицировать этот тип мутации непосредственно у пациентов, поэтому важно проведение фундаментальных исследований с использованием животных», — рассказала профессор Кмита.

 


 

Источник: Научная Россия


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Яд морской улитки признан лучшим обезболивающим

17-06-2010 Просмотров:10635 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Яд морской улитки признан лучшим обезболивающим

Две из четырёх специальных наград Queensland Health выиграл препарат, полученный из яда смертельно опасной морской улитки-конуса. Обезболивающее нового поколения на порядок мощнее всех современных аналогов, включая морфий, – утверждают специалисты...

Речные сети намекают на бурное геологическое прошлое Титана

20-07-2012 Просмотров:9960 Новости Астрономии Антоненко Андрей - avatar Антоненко Андрей

Речные сети намекают на бурное геологическое прошлое Титана

На протяжении многих лет мощная атмосфера Титана, насыщенная метаном и азотом, не позволяла астрономам увидеть, что находится под ней. Самый большой спутник Сатурна выглядел в телескопе туманным оранжевым шаром. В 2004...

Биологи выяснили, почему все вредители до сих пор не вымерли

23-10-2018 Просмотров:3201 Новости Генетики Антоненко Андрей - avatar Антоненко Андрей

Биологи выяснили, почему все вредители до сих пор не вымерли

Все растения Земли не стали смертельно ядовитыми для вредителей из-за того, что производство токсинов крайне негативно влияет на скорость роста и размножения, заявляют генетики в статье, опубликованной в журнале PNAS. "Мы впервые показали, что огромные "вложения" в оборону...

Нового велоцираптора нашли на кладбище цератопсов

21-03-2016 Просмотров:6653 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Нового велоцираптора нашли на кладбище цератопсов

Небольшой хищный динозавр, довольно похожий на знаменитых велоцирапторов из фильма "Парк юрского периода", попался палеонтологам в канадской провинции Альберта. Похоже, он является одним из самых высокоширотных представителей семейства Dromaeosauridae и...

Палеонтологи заглянули в мозг динозавров

22-05-2013 Просмотров:9957 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи заглянули в мозг динозавров

Уникальную возможность исследовать особенности формирования мозга динозавров получили европейские ученые. Им в руки попали прекрасно сохранившиеся черепа двух особей Dysalotosaurus lettowvorbecki, находящихся на разных стадиях развития. Скелет дизалотозавра (Dysalotosaurus lettowvorbecki) Первый дизалотозавр...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.